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ABSTRACT

Rapidly deployable sensor networks are portable, reusable,
and can take advantage of a human user in the field attending
to the deployment. Unfortunately, even small disruptions or
problems in collected data must be addressed quickly, as the
overall quantity of data gathered is small relative to long-
term deployments.

In this paper we describe a procedure for calibration and
a system for online fault remediation. Care in the calibration
process for ion selective electrodes used for water quality
assists interpretation of the data. Scientists will have more
confidence in the data obtained from a rapid deployment
if in-field users can detect and compensate for problems
as they occur. We have designed and implemented a tool
for use in the field to detect potential faults and provide
actions to remedy or validate the faulty data. In January of
2006 we deployed 48 sensors over a period of 12 days in
Bangladesh in order to aid in validating a hypothesis on the
mass presence of arsenic in the groundwater. Our system
is based on the the approximately 25,000 measurements we
collected.

1 INTRODUCTION

The presence of arsenic in groundwater has led to
the largest environmental poisoning in history; tens of
millions of people in the Ganges Delta continue to drink
groundwater that is dangerously contaminated with arsenic.
In Bangladesh alone, if consumption of contaminated water
continues, the prevalence of arsenicosis and skin cancer will
be approximately 2,000,000 and 100,000 cases per year,
respectively, and the incidence of death from cancer induced
by arsenic will be approximately 3,000 cases per year [23].

A current working hypothesis is that the influx of
dissolved arsenic into the ground water is greatly enhanced
where irrigation for rice cultivation provides the primary
source of aquifer recharge [15]. To aid in validating this

Figure 1: Depiction of deployment (drawing by XXXXXX).

hypothesis, we accompanied a group of scientists from MIT,
Stanford, and the Bangladesh University of Engineering and
Technology, to undertake a rapid deployment of a wireless
sensor network in a rice paddy in Bangladesh in January
of 2006. We deployed 48 sensors over a period of 12
days, collecting approximately 25,000 measurements. The
deployment setup is illustrated in Figure 1.

Rapid deployment We discuss this Bangladesh
experiment as a case study in therapid deploymentof
a wireless sensor network (WSN). This model, which holds
great promise for environmental monitoring, has emerged
as one alternative to the traditional long-term, autonomous,
and static WSN deployment model. Rapidly deployable
networks are designed to be quick and simple to deploy; also
they may only be left in place for a relatively short period
of time [2]. Water quality sensing can benefit greatly from
rapidly deployed sensor networks. Although good water
quality is critical for public health, “analysis is still primarily
conducted in a laborious manner by physical collection of a
sample that is analyzed back in a laboratory.” [22] This kind
of data collection and analysis is time consuming, mostly
undirected, and, in many instances, misses the contaminant
events of interest. While a long-term deployment could
simplify collection, it would not be able to respond quickly
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to contamination events, and would be expensive and
difficult to maintain.

Rapidly deployable sensor networks have several
advantages. First, because the deployment duration is
relatively short, on the order of days or weeks instead
of months, a user may continually be present during
the course of the deployment. This human in the loop
enables enhanced flexibility and network functionality
challenging or impossible to achieve within the confines
of complete network autonomy; for example, a user can
manually replace a broken node or sensor. Second, sensors
that require frequent calibration and maintenance can be
infeasibly expensive to deploy for extended periods of
time. Minimizing the deployment time can facilitate the
maintenance and replacement of such sensors.

However, there are many issues to address in order to
achieve a robust rapid deployment.

Detecting and remediating faults Due to the short
duration of rapid deployments, in many instances the focus is
on collecting a sufficient amount of useful data as quickly as
possible. Thus, all faults affecting thequantityandqualityof
data should be immediately addressed and fixed to minimize
their impact. Reliable data transmission [3] increases the
quantity of recovered data, but ensuring that scientists have
confidence in the quality of the data collected by the network
is more challenging.

A large variety of faults can impact data quality, including
sensors affected by aging, biofouling, or leaking of internal
solution, or simply sensors with a bad or no connection to
the board. Moreover, during a deployment, often there is
too much data to manage; manually detecting faults online
can be difficult. Our experience in Bangladesh exemplifies
these issues. Many of our sensors reported data outside
of their operating range. In addition, data from many
sensors were punctuated with anomalous patterns, some that
are physically impossible. Despite careful pre-deployment
preparation, we were not able to detect all of these issues
in the field. A systematicin-field approach is required, one
that helps a user find and fix faults as quickly as possible in
the limited time available.

In this paper, we describe two ways to increase confidence
in data from a rapid deployment for environmental
monitoring. Careful pre-deployment calibration procedures
are crucial for correctly interpreting data from ion selective
electrode sensors. Mistakes at this stage can result in
data interpretation errors. More importantly, online fault
detection can allow the user to alleviate system faults in the
field. Our system identifies unreliable data along with an
associated remediating action that is likely to fix the fault’s
cause. The goal of the system isnot to identify all unreliable
data in the field; instead it only identifies data that has an
associated validating or remediating action. However, as we
discuss further in Section 6, our system associates an action
with most data identified as unreliable by an independent
system.

Our contributions are three-fold. First, we describe

procedures we followed before leaving for Bangladesh
for calibrating and testing the entire system extensively
(Section 4). Our second contribution is the fault-detection
and remediation system we developed upon returning from
Bangladesh (Section 6). The system applies a simple set
of rules, identifying anomalous data patterns that indicate
potential faults in the system. Each rule has an associated
action that can help the user remedy the fault or validate the
data. Our third and final contribution is that of our experience
with a rapidly deployed sensor network to gather water
quality data in Bangladesh. We describe the application
and sensor network in Section 3, and the experience in
Bangladesh itself in Section 5.

Validation Before beginning, it is necessary to spend a
moment on the issue of data validity. Our system identifies
faults associated with almost 40% of the data points we
collected, but there is no guarantee that those faulty points
are actually unreliable. We argue that this issue—a lack of
ground truth—is common to sensor deployments, and that a
system such as ours will help develop consensus on expected
behavior over time.

We carefully calibrated and tested our sensors before
going to the field. This step was critical for data
interpretation, but in the field the sensors frequently
exhibited quite different behavior than in our pre-deployment
testing. What can we do with the resulting data? How do we
know when the network is reporting garbage, and when it is
reporting unusual phenomena worthy of study?

Sensor networks are deployed precisely to produce data
that was previously unobservable; since this data, such as
our soil chemistry readings, was difficult to obtain before
with equal spatial and temporal density, consensus on
ground truth—what the networkshould report—remains
unachieved. Additionally, as WSN technology is in its
infancy, best deployment practices for obtaining reliable
data have not yet been developed. Even as WSNs become
more common, new sensor types and deployment scenarios
will continue to erode consensus on ground truth and
best practices. We based our system on the one area of
consensus we did find: domain experts were able to tell
us which data is most likely faulty. Our system builds
on these classifications, our deployment experience, and
physical mote characteristics to decide when a fault has
likely occurred.

Lack of ground truth means we cannot, for example,
measure false positives and false negatives in our evaluation.
However, human-attended deployments are well-suited to
refining fault judgements and achieving ground truth
consensus through in-field fault remediation. For instance,
our system may indicate that a measurement is faulty
and that replacing the sensor board would likely help. If
replacing the board does bring the measurement back into
realistic bounds, then we gain confidence in our system’s
judgments. Likewise, consider an out-of-range datum that
our systemdoes notidentify as faulty. A human standing
by to sample the corresponding area with more precise,
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expensive methods, again acting to confirm or deny our
hypothesis that our assignment of actions to data points
covers most truly unreliable points in the data set. This sort of
active, directed investigation requires a system such as ours.

2 RELATED WORK

2.1 Fault detection techniques

Fault detection is a critical step in data analysis, especially
when the data are being used for scientific purposes. In [7],
Bertrand-Krajewski et al. develop a set of seven criteria
derived from physical processes underlying the data and
measurement system to determine validity of the data.
These criteria are: status of sensor, physical range, locally
realistic range, duration since last maintenance, signal
gradient, material redundancy, and analytical redundancy. If
a data point fails a single criterion, the point is considered
unreliable. The authors advocate a significant initial effort to
gather data and select parameters for the criteria.

This set of criteria is very useful for eliminating unreliable
data offline, but in a rapid deployment a user is available to
fix problems and salvage data while the system is online.
Independently of the work in [7] we have developed a set
of rules that relate directly to potential causes, such as a
poor connection or a broken sensor. These rules and their
implementation are tailored for online use during a rapid
deployment. The data identified by our rules are similar to
that identified by the offline reliability criteria, which isan
affirmation of our online system.

A significant difference between our system and these
criteria in [7] is the assignment of actionable causes to each
rule. Our system is designed to run in the field and attempts
to direct the user to remediate and validate anomalous data.
Developing rules specifically for cause identification and
remediation or validation is an important contribution of our
work.

There exists a large body of work on expert systems
for fault diagnosis. The importance of interaction between
human operators and expert systems is motivated in [18].
This research is based on the idea that fault diagnosis and
repair are knowledge-intensive and experiential tasks [20].
In our work we apply some of these techniques to sensor net-
works. We explore rules that are specific to data we collected
in Bangladesh.

2.2 Deployment papers

The authors of [19] discussed their experiences
instrumenting a redwood tree with a wireless sensor
network to collect data about the climate directly around
the tree. They gathered data for 44 days from 33 sensor
nodes with temperature, humidity, and incident and reflected
photo-synthetic radiation sensors. They defined data yield
as the percentage of expected points which they actually
received and reported a yield of 49%. This is a very
good yield for a long-term deployment; in this paper
we address rapid deployments which must have higher
yields. They found that the accuracy of their sensors’
factory calibration was not much improved by a thorough

calibration before deployment. They did not, however,
verify that the calibration accuracy endured throughout the
deployment. Our work extends to chemical sensors, where
calibration and maintenance issues are more significant than
with physical sensors. Additionally, our contribution builds
on this work by discussing ways to increase quantity and
quality of data online during the deployment.

A rapid deployment to record acoustic activity at a
volcano in central Ecuador is described in [21]. Three nodes
with infrasonic microphones were deployed, collecting over
54 hours of signals. Their sensors sampled at 102Hz
per node, thus their main challenges were that of time
synchronization of the data and transmission bandwidth
management. Our challenge is instead handling data from
many individual sensors and ensuring the quality of that data
with calibration and fault detection.

The Networked Infomechanical Systems (NIMS) [13]
project is a rapidly deployable system built of infrastructure-
based robotics. The NIMS node provides extremely high
resolution spatiotemporal mapping of stream contaminants
and properties. However, a long-term continuous presence is
both unnecessary and impractical due to the cost of the node
and its vulnerability to theft. More importantly, even brief
installations are sufficient to elucidate water quality trends at
an unprecedented level of detail. One rapid deployment of a
mobile NIMS node, investigating urban drainage in Medea
Creek [11], has been deployed in an urban stream monthly
over the past seven months [9]. The system requires only
about 2 hours to install and collects samples for 24 hours.
In this deployment, a bucket of a known solution was placed
on the bank and the NIMS node periodically moves to this
bucket for in-situ calibration [9]. In our deployment, the
sensors are not only immobile but buried underground, so
we must take a different approach to in-situ calibration. Our
experience with a non-mobile rapidly deployable system is a
unique look at rapidly deployable sensor networks.

In [1], the authors describe a WSN to monitor soil ecology
(including soil temperature and moisture). The moisture
sensors were calibrated individually and they had set up a
database to apply soil temperature and individual moisture
sensor calibration equations to provide calibrated moisture
readings.

3 STUDYING ARSENIC IN BANGLADESH

The factors controlling arsenic mobilization to ground water
in Bangladesh are not fully understood. A group of scientists
has been studying the Munshiganj district for the past 5
years. Their current working hypothesis is that the influx of
dissolved arsenic into the ground water is greatly enhanced
where irrigation for rice cultivation provides the primary
source of aquifer recharge1. Aquifers can be recharged
by various sources such as rain-water or water used for
irrigation. The hypothesis (simplified for our purposes)

1An aquifer is a body of geologic material that can supply useful
quantities of ground water to natural springs and water wells. Aquifer
recharge is the process by which water seeps down through thesoil into
an underlying aquifer (http://www.nj.gov/dep/njgs/enviroed/aqfrchrg.htm)
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Figure 2: Ammonium and chloride recorded on Pylon 1 with sensors buried
2 feet deep (P1-2ft) over the course of 12 days showing diurnal and diel
cycles. Horizontal lines show the upper and lower limits of the sensor’s
operating range; the extents of the vertical lines show the more limitedlinear
detect range(Section 4). There is one vertical line per day.

states that infiltration of irrigation water rich in organic
matter can change the oxidation-reduction potential just
below the surface of the field. Microbial respiration of the
organic matter in the irrigation return flow causes reduction
(gain of electrons) and solubilization of arsenic-containing
minerals [12, 15, 17]. Our sensor network deployment
aimed to collect data that might validate or invalidate this
hypothesis.

The scientists wanted to use the dense temporal and
spatial sensing provided by a sensor network to better
characterize the subsurface environment. Soil is spatially
heterogeneous, requiring modeling [14] or dense sampling.
Traditional subsurface water sampling entails drilling holes
and placing slotted tubing through which to withdraw
samples. Samples are brought to the surface using pumps
and transported to laboratories or analyzed using a field
kit. Thus, there is a substantial effort in taking dense
samples and a time lag between sampling and observing the
environmental phenomena. Our sensor network deployment
would potentially avoid both these problems.

One goal of our deployment was to test for diurnal
changes in the groundwater chemistry. Indeed, the
temporally dense measurements revealed changes (shown in
Figure 2) that were previously unobserved and may be due
to photosynthetic activity of either algae or the rice plants
themselves.

Several chemicals are integral to the mobilization of
arsenic in the soil. Since off-the-shelf arsenic sensors
are not available, the scientists hope to further validate
work showing that proxy geochemical measurements such
as ammonium and calcium can indicate elevated arsenic
concentrations. These chemicals are directly measured more
easily than arsenic. In addition, they plan to use the data
collected from the network to develop a reactive transport
model for arsenic mobilization. This model will inform
future well placement decisions and deep well construction.

Ion-Selective Electrodes We used 3 types of sensors in
our network: Decagon2 moisture sensors which measure
the dielectric constant of the soil, Digi-key3 thermistors,

2http://www.decagon.com
3http://www.digikey.com

and Sentek4 ion-selective electrodes (ISEs). The ISEs and
moisture sensors were used to characterize the groundwater
chemistry. The output from ISEs is temperature dependent
but can be adjusted for temperature using the Nernst
equation5. In order to use this equation, temperature sensors
must be deployed with the ISEs in order to record
temperature at each point in time. We also deployed
2 pressure transducers with local logging capabilities to
monitor water depth.

ISEs are designed to measure the concentration of a
specific ion in a solution. They have an ion-selective
membrane treated to allow through the ion of interest.
Combination ISEs report the electric potential between ions
that pass through this membrane and an internal reference
voltage (provided by a gel probe).

ISEs are the most suitable sensor available for in-situ
water chemistry measurement with a sensor network. The
sensor we chose from Sentek is the cheapest acceptable
version of this technology. ISEs are designed for measuring
water chemistry and not necessarily for soil environments,
but we showed in the laboratory that they are effective for
some levels of partially saturated soils and for fully saturated
soils. ISEs require frequent maintenance and calibration,and
are thus poorly matched with the demands of a longer-term
deployment; they are at least theoretically suitable for rapid
deployments, however.

Our deployment used 7 types of ISEs:

• ORP measures changes in oxidation-reduction
potential of the soil as the organic-rich irrigation water
flows through;

• ammonium and calcium, which have been shown to
correlate with arsenic in this region in work done by the
group in past years [12];

• chloride, pH, nitrate, and carbonate help better
characterize the geochemical parameters.

In order to get a stable reading from an ISE in the
lab, we had to average over multiple values to minimize
the noise in the signal. We define anoise window as
the number of samples required for a reliable average.
We set the noise window to 15 for our deployment, and
samples are taken once per second in this noise window.
In addition, often the first several measurements in a noise
window are unrepresentative, so we throw away the first 5
measurements at the server when calculating an average. All
of these parameters were experimentally derived and chosen
conservatively for our deployment.

Of all of the sensors we used in our network, the ISEs
required the most attention in calibration and fault detection,
and also provided the most interesting data. Thus, the focus
of this paper is on the data produced by the ISEs.

4http://www.sentek.co.uk/direct.htm
5The Nernst equation is described at

http://www.nico2000.net/Book/Guide4.html
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Figure 3: Top panel is the layout of our deployment in the field. Depths
below ground are indicated on the diagram. Light rectangle corresponds to
a full suite of 7 ISEs, and dark rectangle corresponds to 1 temperature and 1
moisture sensor. Bottom panel is an image of a pylon without alid deployed
in the rice paddy in Bangladesh.

Pylon Design In addition to choosing sensors for our
deployment, we had to design an enclosure for the mote
system, implement the software, and test the hardware and
software that we would deploy. The first challenge was to
design an enclosure that would protect the motes from the
environment, be easy to deploy, and minimize disturbance
of the soil during the deployment process. At each location,
we wanted to deploy a full suite of sensors at 3 different
depths, in order to characterize the chemistry above, in
middle, and below an iron band that the scientists suspected
was located at an approximate depth of 3 feet. We designed
and deployed the PVC enclosure which houses all the
networking hardware needed for three depths and sits on top
of a column (Figure 3). One suite of sensors included the 7
ISEs listed above and temperature and moisture sensors. The
layout of the sensors and pylons is in Figure 3.

Initially our plan was to deploy all sensors in a single
hole beneath the pylon column. However, placing sensors
at multiple depths disturbed the soil too much, making it
hard to pack down. Thus, we settled on deploying a single
depth of sensors in a hole, and placing the holes as close
together as possible. We could not fit more than 4 ISEs in
one hole, and the moisture sensors were isolated so that
their electromagnetic radiation would not interfere with the
electric potential measured by the ISEs. Thus, we dug three
holes per depth to accommodate a full suite of sensors. When
the pylon is deployed, the sensor cables come out from the
bottom of the pylon and extend to the satellite holes.

To aid in ease of deployment, we are developing javelin
pylons [4] to replace the pylons we used in Bangladesh.

These pylons are even easier to deploy as the pylon column
itself contains the sensors. The javelin narrows at the bottom
so that it can be driven into the ground, minimizing the
impact on the soil and avoiding the need to dig holes for the
sensors or for the pylon structure itself.

Networking The enclosure of the pylon housed the
networking and sensor-related hardware. We used Mica2
motes connected to a MDA300 sensor-board to collect data
from the sensors in the pylon. The base-station, a Stargate6

powered by a car battery, collected data from the network.
We used the Extensible Sensing System [5] for our network
stack; this included multihop data collection at a centralized
sink, time synchronization, a network debugging tool [6],
and a disruption tolerant networking layer [3] based on delay
tolerant networking [8].

Since improving the quantity of data is especially
important for rapid deployments, the disruption tolerant
networking layer was critical for our success. While
this layer does not provide end-to-end reliability, it
can handle longer-term route disruptions that MAC-layer
retransmissions cannot. If a valid route to the base station
is not present or the MAC layer fails to successfully transmit
a packet to its next hop, the disruption tolerant networking
layer saves the packet to local storage [3]. Writing data to
local flash consumes power, but the additional reliability
justified the tradeoff in practice. For example, many nights
we were not able to deploy our base station due to
security issues (even the car battery was vulnerable to theft)
and various software problems. However, we lost minimal
data as a result of these issues or any other base station
outages, eventually receiving 76% of the expected packets—
a relatively high yield in the spectrum of sensor network
deployments [19].

4 CALIBRATION AND TESTING

Before deploying our sensor network in Bangladesh we
spent 2 months in the lab calibrating and testing our system.
Calibration is the process of mapping a sensor’s measured
output to an estimate of the property being sensed. The
calibration process for the ISEs is the most involved of all the
sensors we used in Bangladesh, so we focus our discussion
on them.

Mistakes in the process of calibrating the sensor can result
in large margins of error when translating sensor readings.
Thus, proper pre-deployment calibration is a critical stepin
enhancing a user’s confidence in the subsequent collected
data.

The accuracy requirements of the application must be
considered during this step. As described in Section 3, the
purpose of our deployment was to collect data to learn more
about the groundwater chemistry in the shallow soil of the
rice paddies. We were interested in diurnal behavior of the
ionic content. Thus, we needed a good characterization of
the sensor’s response to changing ionic concentrations.

6All of our networking hardware is manufactured by Crossbow,Inc.
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Figure 4: Idealized calibration curve. Calibration parameters are
represented by the slope and offset of the equation for the linear portion of
the line, and are referenced as such in the paper. Linear and total detection
ranges for the sensor - concepts used throughout this paper -are labelled in
the diagram.

In this section we describe first the process of calibrating
the ISE sensors and the relevance to our deployment and
post-deployment work. Then we describe the differences
between traditional ISE calibration and calibrating the
sensors with the sensor network.

4.1 Ion Selective Electrode Calibration

ISEs are calibrated by exposing the sensor to a range of
standard concentrations and developing a function relating
millivolt (mV) readings to concentration. Traditionally,the
sensor is hooked up to a data acquisition device, such as a pH
meter, which displays the millivolt reading from the sensor
and a signal as to when that reading stabilizes.

For ISEs, the electric potential relates linearly with the
logarithm of the concentration. TheR2 value of the resulting
linear regression gives a measure of the confidence to
be placed in concentration values translated from voltage
readings. The slope and offset of the linear regression line
can also be used to identify problems with the sensor. Each
type of ion has an expected slope7. If the actual slope is
lower than expected, the sensor has a sluggish response
and translated values will not be as accurate. Additionally,
large changes in the slope and offset over the course of the
deployment can be indicative of a problem with the sensor.
We discuss ways to address this in Section 7.

The calibration curve for a sensor is usually created
over the expected operating range of the sensor, or its
total detection range (TDR). An idealized curve is shown
in Figure 4. The TDR is further divided into thelinear
detection range (LDR), and non-linear detection range
(NLDR) as shown in Figure 4.

Linear detection range The LDR is the linear portion
of the calibration curve. The cutoff for this range depends
on the accuracy desired in the application. Prior to our
deployment, we performed a 12-point calibration curve for
each sensor. Data points near the non-linear detection range
were sequentially omitted from the graph until theR2 value
for the regression line in the LDR was greater than 0.97. We

7Monovalent, or single charge ion sensors, are expected to have a slope
of approximately 59 mV/decade of concentration, and divalent, or double
charge ion sensors, are expected to have a slope of approximately 29
mV/decade of concentration.

used a model for the groundwater in Bangladesh based on
previous work done at our site [12]. In this way, we were
able to identify both the approximate TDR and the sensor’s
response to expected concentrations in Bangladesh.

Non-linear detection range The NLDR is the portion
of the calibration curve where the sensor has a non-linear
response to the measured phenomenon. Data that falls in
this range may still be useful, but has a lower associated
confidence because it indicates a region of lower sensitivity
for the sensor. Piecewise linear calibrations can extend the
sensor LDR, but both the regressions and the knots between
the regressions must be carefully developed for each sensor
individually. Below the LDR, the calibration curve decreases
in slope where the ISE response cannot be distinguished
from water devoid of the targeted ion. An NLDR may
also be present at elevated concentrations, where corrective
calculations using ion activity coefficients may be necessary.

Based on the calibration results, we characterize each
sensor with respect to its TDR, LDR, NLDR, slope, and
offset. Correctly calculating these parameters is extremely
important, not only to accurately translate millivolt readings
into concentrations, but also to identify faulty sensors. Using
the TDR as the expected operating range of the sensor,
readings from a sensor that occur outside of its TDR can be
discarded as faulty. Incorrectly defining the TDR or the slope
and offset of the calibration equation could easily result in
classifying measurements as being outside of the detection
range of the sensor when they are not.

4.2 Calibrating the mote system

Calibrating an ISE sensor for a sensor network involves
more than just replacing the pH meter with a mote
and repeating the calibration process. The interaction
between the hardware of the sensor-network and the
sensors necessitate changes and additions to the traditional
calibration process.

The goal of this process is to characterize the entire
system, not just the sensor, because different hardware
can result in different offsets. Even with high quality
instruments, issues such as different acquisition hardware
and wire-lengths can change the parameters of the
calibration curve. In our experiments we encountered a
difference of approximately 100 mV, which corresponds to
about 2 orders of magnitude in concentration for most of
our sensors, when taking readings from a sensor using a
pH meter instead of the mote. We also found variations in
offset across different sensor boards, though they were much
smaller. We attempted to minimize the impact of such issues
by calibrating sensors with the exact hardware and wiring
they would be deployed with.

Calibrating one sensor with the mote and the software
interface we used consumes about 25 minutes. This includes
the time to send a query each time the sensor is placed in
a standard concentration, retransmit lost queries, samplefor
a noise window, move sensors between concentrations, and
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wait 60 seconds to account for hysterisis of the sensor in
changing concentrations.

While low quality hardware of sensor networks means
problems with channel isolation and impedance mismatch
can cause additional problems, we found that the best
approach is to use the same hardware configuration during
calibration as during the deployment. While similar to the
previous idea of calibrating with the exact hardware that will
be deployed, this idea is different. More specifically, when
calibrating a sensor, all other sensors that will be connected
to that board during deployment should be connected. For
example, in lab we calibrated a chloride sensor first with
only the sensor being calibrated connected, and then after
connecting the other 6 sensors that the sensor will be
deployed with. While theR2 for both curves is .99, the slope
increases by 20% and the intercept increases by 4%. Not all
sensors have the same response.

Finally, it is important to test the system exactly as it will
be deployed. After we returned from Bangladesh, the sensor
manufacturer suggested that some of our faulty data could
have resulted from defects in the manufacturing process of
the sensors that only showed up when the sensors were
buried in saturated soil. To confirm this, we fully submerged
some of the sensors in lab and found that there were leaks in
some of the connection joints, visible due to air bubbles that
slowly leaked out. These leaks could result in changes in the
reference voltage or interference in the sensor readings as
other ions seep through the cracks.

5 DEPLOYMENT IN BANGLADESH

Our field site in Bangladesh consists of a series of rice
paddies separated by irrigation troughs built of mud and clay
from the field. A motor-driven pump ran for several hours
each day to irrigate the fields. Farmers who wanted their
fields irrigated break the clay wall separating their field from
the bordering irrigation trough, allowing their fields to be
flooded.

Next to the irrigation well was a small field where women
worked and where our tent was situated. The village was
uphill from this field, as were most villages, to minimize
damage caused by flooding from the monsoons.

As we worked, people from the village were always
present, asking questions and offering all forms of help. They
were extremely concerned about the arsenic in the water and
curious about the sensor network. Skin lesions on some of
the children were a grim reminder that we were working
in this region specifically because the arsenic content in the
groundwater was extremely high.

Data collected The data collected are shown in Figure 5.
We deployed 3 pylons containing 48 sensors in a rice
field in Bangladesh over a period of 12 days, collecting
approximately 25,000 measurements of data, about 76% of
the expected data. We deployed one fully-equipped pylon
consisting of 3 suites of sensors at 1, 3, and 5 feet, and two
partially equipped pylons with one and two suites of sensors
(as shown in Figure 3). The main challenges consisted

of performing operations such as testing, calibrating and
identifying broken hardware real-time while working in a
muddy field environment.

Continuous testing Deploying a pylon involves multiple
steps. In order to identify and fix failures at each step we
continuously tested the system end-to-end – not just the
sensors, and not just the networking hardware.

One pylon includes 27 sensors, and ensuring that all
sensors are connected to their correct ports (e.g. if the
moisture sensor does not receive an excitation voltage, it will
not provide readings) and operational is essential.

We began by calibrating the sensors in a mobile chemistry
lab we set up in a tent to identify faulty sensors. We then
constructed the pylon and did a 1-point calibration of each
sensor in the pylon to identify issues occurring during the
construction process.

We needed a way to test the sensors once they had been
buried in the ground to ensure that a membrane had not
been displaced or a connection had not gone bad during
the burying of the sensors in the mud. So, we dipped the
sensors in the surface water of the field, took a reading,
and compared this to the reading we took immediately after
burying the sensor in the ground. Because surface water
gathers in the hole immediately before burying the sensor,
we assume the reading should be similar.

6 FAULT DETECTION SYSTEM

Upon returning from Bangladesh, we found that a significant
amount of the data collected by the network was
uninterpretable by the scientists due to the prevalence of
anomalous patterns in the data. A goal of sensor networks
is to collect sufficient data to provide a detailed picture of
a phenomena. But as a result, there is often too much data
for a user to monitor manually in the field. While a tool that
can detect and notify a user of faulty data can be helpful, we
designed a tool that can also suggest actions a user can take
in order to remediate or validate data that appears faulty.

This section describes the rule-based system we designed
based on our experience and data from Bangladesh. We
developed the system for online use during a rapid
deployment. Thus the design relies on the assumption that
users will be in or close to the field for short deployments
and will be willing to tradeoff their labor and time in order
to increase confidence in the data quality.

The system design is based on the end-to-end
principle [10, 16]. More specifically, there are many
things that can go wrong in the data path, but instead of
trying to identify all of these things the system focuses
on identifying bad outcomes, represented by anomalous
patterns in the data. The system first uses a small set of rules
to identify these data patterns. Then, using an associated set
of root causes, it suggests actions a user can take to remedy
or validate the data.

We separate this process of identifying anomalous data
and associating actions into two steps because the first step
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Position Ammonium Chloride Carbonate Calcium Nitrate pH

P1-2ft

P2-1ft-A

P2-1ft-B

P3-3ft

P3-1ft

P3-5ft

Figure 5: Time-series graphs of concentrations reported by 36 of the42 ion-selective electrodes we deployed. Each row corresponds to one mote deployed
at the specified pylon and depth, each column corresponds to asensor type. Due to space constraints we did not plot data from any of the redox ion-selective
electrodes, or from the temperature, moisture, or pressuresensors. Horizontal lines show the limits of the total detection range; the extent of the vertical lines
delimit the linear detection range. There is one vertical line per day. The pH graphs have no horizontal lines as every possible sample point is within their TDR.

can be generalized to other systems with site- and system-
specific adjustment to the parameters. The final step of
associating actions with these rules, however, is likely tobe
much more hardware or application specific.

While there are many approaches for detecting faults, we
chose this rule-based system as an expedient first step. This
initial design framework allows us to do more than just
outlier detection. Within the rules, we can aggregate data
in particular ways that clearly reveal faults. Additionally,
this design framework facilitates later incorporating other
specific techniques, such as filtering or machine learning
algorithms, as additional rules to the system.

6.1 Rules

Upon receiving a data point, the system applies the set of
rules developed to recognize anomalous data. We wanted
to avoid a fault-tree approach due to the dependence on
ordering of rules often resulting in an artificially imposed
hierarchy. Thus all rules are applied to all data points. Each
data point receives a vector of bits corresponding to the rules;
if a data point meets the criteria specified by a rule, then it
receives a 1 in the corresponding bit location of the vector.

There are 5 rules. Several of the rules require setting a
parameter - which we discuss below. Some rules are run
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Figure 6: Samples taken from a nitrate sensor with a bad battery and a new
battery. An old battery can result in significantly noisier data, demonstrating
one instance of a NOISE fault; standard deviation of data within a noise
window decreases more than 3X when an old battery is replaced.

directly on the raw millivolt data collected from the sensors,
and others are run on the concentration converted from the
average of the millivolts in a noise window.

NOISE This rule applied to 1% of all points.Because
there is always some amount of noise in the measurements,
we take the average of readings in the noise window. If
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 12 10 8 6 4 2Day 0

Calcium (P2-1ft)

Figure 7: Calcium data from pylon 2 (1 ft)(A). All data are below the linear
detection range, indicated by the horizontal line. Graph demonstrating a
sensor that falls under the BROKEN sensor rule.
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Figure 8: Regression lines for calibration curve taken when ammonium
calibrated with all sensors connected, calibrated when thechloride port was
reading a short, and calibrated when the chloride port was reading a short
and the chloride was connected (for which the points are shown). R2 for all
calibration curves is>= .97.

the standard deviation of points within the noise window is
greater than some threshold specified by thenoiseparameter,
then the points fail this rule.

In lab we found that the standard-deviation of samples
within a noise window increases more than 3x when used
with a lower voltage battery. Figure 6 is a graph of the
samples with the old and new battery. While identifying
a limit for an acceptable battery voltage is also another
option, it would be inconsistent with our design philosophy
of identifying the smaller set of bad outcomes instead of the
larger set of bad scenarios that may or may not lead to a
negative result.

An instance of a NOISE rule violation in the deployment
occurred on the middle of the 5th day of the deployment.
The cable for the redox sensor became disconnected from
the connector resulting in readings with standard-deviations
as high as 60 times the standard-deviation for most readings.

This rule is designed to identify large standard deviations
over a small time scale, but very small (or 0) standard
deviations over a larger time scale can also indicate fault.A
low threshold on the data over long periods of time could also
be implemented. However, more careful parameter choice
is necessary for differentiating between these stuck-at faults

and a truly steady phenomena, and we leave this case for
future work.

If measurements from a sensor are identified as noisy,
either check the battery or the connectors on the sensor and
to the sensor-board.

INVALID NLDR This rule applied to 11% of all points.
According to our rules, we trust data that occurs in the
linear detection range of the calibration curve. The non-
linear detection range (NLDR) represents the boundary
region of the detection range, thus readings in this range are
subject to further examination. Because points in the NLDR
are close to the boundary, they could either be potentially
faulty, or simply representative of a very low or very high
concentration. We hypothesize that if multiple sensors report
readings in the same NLDR, then it is more likely a result
of a reading in the boundary of the calibration curve and not
indicative of a potential fault in the sensor. We define the
number of sensors that must validate a reading in the NLDR
as thenldr redundancyparameter.

If a sensor reports a reading in the NLDR, and this reading
is not validated bynldr redundancysensors, then this point
fails the rule. In order to determine if two sensors agree,
the base-station must have received the points from the two
sensors within 25 minutes of each other, chosen because the
sampling period is 20 minutes, with an additional buffer.

If a point fails this rule, the associated action is to collect
manual samples to validate the measured concentration with
a more accurate instrument in lab.

BROKEN This rule applied to 12% of all points.We
calibrated many of the sensors in the field immediately
after retrieving them from the ground. When calibrating the
calcium sensor from the second pylon, the mote reported 0
millivolts for all concentrations. Checking with the pH meter
showed the sensor reading -221 millivolts. While not 0, this
reading is still an unexpected reading for a sensor whose
normal operating range is approximately between 200-400
millivolts.

Upon examining the data from this calcium sensor (shown
in Figure 7), we saw that every one of the 471 points
collected from this sensor were below its total detection
range. Ideally this sensor would have been identified and
changed earlier so that we could have gathered some good
data during the 6 days that it was deployed.

A sensor is considered BROKEN if a set of contiguous
points are below the total detection range of the sensor.
The number of contiguous points required to fail this rule
is specified by thebrokenparameter defined below.

If identified as BROKEN, replace the sensor.

SHORT This rule applied to 26% of all points.The data
from many of the sensors exhibited a common pattern
of a sharp change between two successive data points
(as specified by therate of changeparameter) followed or
preceded by a string of 0 millivolt readings. Examples of
SHORT rule violations can be seen repeatedly in the data
from an ammonium sensor in the second pylon in Figure 16.
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There could be many causes for this data pattern. We
propose two potential causes. First, as seen in Figure 14,
a majority of the SHORT violations occur on a subset
of the motes. The sensors connected to these motes were
manufactured with shorter cables (4 feet long) and were
extended with extra wire soldered to a BNC connector. Due
to the cable length, the BNC connectors attached to these
sensors were exposed to the mud because they were not
long enough to reach the housing of the enclosure. This is
unlike our second set of sensors which were manufactured
with 30 feet of cable. Because the internal reference voltage
of the ISE is electrically connected to the BNC connector,
we hypothesize that a short circuit was created between the
probe of the ISE and its reference voltage.

Second, we experienced a violation of the SHORT
rule in lab. A mote started reporting 0 millivolts from a
chloride sensor. Independent testing of the sensor with a
pH meter showed that the sensor itself was not reporting
0 millivolts. Even after disconnecting the sensor, continued
sampling from the port returned 0 millivolts. Under normal
circumstances a port without a sensor connected reports
noise.

This sensor-board behavior occurred just after we had
calibrated the ammonium sensor with the chloride sensor
connected. In order to determine if other ports were impacted
by the shorting port, we then re-calibrated the ammonium
sensor twice more, once with the chloride sensor connected
to the shorting port and once without any sensor connected.
The three calibration curves are seen in Figure 8. When the
ammonium sensor is calibrated with the shorting board, the
curve with no chloride connected is closer to the calibration
curve on a normal board with chloride connected. This
example is important because it demonstrates that in some
instances, when multiple sensors are connected to one board,
a fault on one channel can impact the readings from other
sensors. In cases such as these, remediating faults on one
sensor is not only necessary to address issues on that sensor,
but also to limit the impact of that fault on other potentially
good sensor readings.

Rules like these illustrate the flexibility of the end-to-end
approach. In early deployments we want to treat the system
mostly as a black-box. In future deployments, the pattern
in the data represented by the SHORT rule can be refined
to create several rules to match similar patterns caused by
different electrical components.

If a short persists, disconnect and check the sensor. Ensure
the connector is not in contact with the phenomena being
measured. Or, if after disconnecting the sensor the mote
continues to report 0 millivolts, change the sensor board.

BAD BATTERY SENSOR Extremely low battery voltage
readings can be indicative of a low battery, but they can
also indicate a broken battery sensor on the mote. In our
deployment we experienced the latter and were forced to
replace the mote to resolve the problem. A working battery
sensor is critical because battery voltage can be a quick and
easy way to diagnose problems in a sensor network [19].
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Figure 9: Histogram of the log of the standard deviation in the noise of the
measurements. The bimodal distribution allowed for a simple choice of the
NOISE parameter.
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Figure 10: Histogram of the log of the gradient of neighboring data points.
The discretization occurs is a result of the resolution of the ADC. Peaks
occur at a change of 1, 2, 3, and 4 mV over a period of approximately 20
minutes. Intermediate points occur because samples do not come strictly
every 20 minutes due to mote clock imprecision.

If a mote reports a very low battery voltage check or
replace the battery or change the mote.

6.2 Assigning an ordered list of actions

Once the rules have been applied to each data-point, the
user is notified of the actions associated with each rule that
applies to that data point. In the simple case when a data
point only fails one rule, the action associated with that rule
is reported for that data point.

If a data point fails multiple rules, then a decision must be
made of which action to apply. A running tally is kept of the
number of contiguous points from an individual sensor that
fails a rule. The system then orders the actions based on this
count. A rule that has applied to the most number of past,
contiguous points will be reported first.
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Figure 11: The top panel shows the number of sensors that agree at any one
time on reading in the non-linear detection range. The bottom panel shows
the empirical cumulative distribution function of the number of contiguous
points that any sensor reports outside the total detection range.

6.3 Setting parameters

The parameters required for the fault rules are:
nldr redundancy, rate of change, broken, and noise.
To set these parameters we got an approximate value from
the scientists we work with based on the calibration, the
dataset, and experiments we have done with the sensors. We
examined a variety of approaches before settling on a set of
several techniques to set a threshold value. The system also
uses thedetection limitsfor the sensor as defined during the
calibration step.

noise This value, the acceptable standard deviation in
millivolt readings within a noise window, is set to 10mV.
We chose this value based on the distribution of noise
in our dataset. Unlike the other parameters, we know
fundamentally that, over short time scales, small noise
variance is good and large noise variance is bad. When we
plotted a histogram of the variance (Figure 9), there were two
clear modes, one clustered less than 10 mV and one clustered
greater than 30 mV.

nldr redundancy The number of sensors that must agree
to validate a reading in the non-linear detection range of a
sensor. This value is set to 3 sensors (Figure 11).

broken Thebrokenparameter represents the threshold for
the number of contiguous points a sensor reports outside of
the TDR before it is deemed BROKEN. Once a sensor is

classified as BROKEN, we do not want it to remain in the
system, as we are doing a rapid deployment and want to get
useful data from all sensors. However, we do not want to
prematurely replace a sensor because replacing a sensor is
disruptive and a significant amount of work. Some functional
sensors may transiently have readings outside their detection
range.

For assigningbrokenwe chose a value of 150 contiguous
points, or approximately 2 days of sampling, as being the
division between most of the points and the smaller set of
outliers. Using the ECDF in Figure 11 we can also see that
these values identify less than 10% of the points on the graph
as being broken.

rate of change The threshold for an acceptable rate of
change between neighboring points. This value is set to
.01 mV/second. As opposed to the histogram for standard
deviation, there is no clear place to draw a threshold line,
as seen in Figure 10. However, in choosing a value for
the rate of changeparameter, the scientists we work with
specified that in our field concentrations in soil should not
change more than one order of magnitude over the course
of an hour without some outside perturbation. Using the
histogram, we found the point where the values flatten out
near this specified value.

detection limits While not strictly variable parameters,
the limits of the linear and total detection ranges for the
sensors were also used in the rules. These were set using
our calibration curves. We did not stress the upper limits of
the detection ranges in the calibration curves, so we used the
reported values in the sensor manual for the upper limit of
the linear and total detection range.

6.4 Evaluation of Fault Detection

The goal of our system is to associate actions with faulty
data; it is not, however, to identify all unreliable data. More
specifically, data that does not have an associated action is
not necessarily reliable. A complete process may involve
running a system like ours in the field to identify and
remediate faults in the system, and then run a system like that
defined by Bertrand-Krajewski et al. [7] after the deployment
to remove unreliable points from the final data set that could
not be remediated in the field. However, our system’s utility
requires that most unreliable data have an associated action.
We thus validate our system by testing the hypothesis that
it can associate an action with most of the data identified
as unreliable by the BK system [7]. Unfortunately, we are
not able to analyze the data for false positives and false
negatives: deployment conditions made it impractical to
confirm our pylons’ measurements independently.

We ran both systems on the data set from Bangladesh.
Our implementation of the BK system included 3 of its
7 rules, namely physical range, analytical redundancy, and
signal gradient. The BK system designers noted that not all
rules would apply to every deployment [7]; the missing 4
rules did not apply to us—for example, our sensors did not
report status, preventing the use of rule status of sensor. They
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Reliable [7] Unreliable [7]

Not Faulty 12,138 581

Faulty 82 8123

Figure 12: Output comparison between our fault detection system
(Faulty/Not Faulty) and Bertrand-Krajewski’s reliability analysis
(Reliable/Unreliable) [7]. Both systems were ran on 20,924points.
Disagreements between the tests are in boldface.
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Figure 14: Number of occurrences of faults separated by rule-type and
mote.

also state that parameters must be set by gathering data on
the system. We set the parameter for their signal gradient
test to ourrate of changeparameter and the limits of the
physical range rule to our total detection range; we define
their analytical redundancy rule as our INVALID NLDR
rule.

The results of the comparison are summarized in Table 12.
We find that our system identifies actionable causes for 93%
of the data labeled unreliable by the BK system. About
half of the remaining unreliable points fail the BK system’s
physical range rule; our system cannot explain them because
the number of contiguous points is less thanbroken, the
parameter for our BROKEN rule. The other half fail their
signal gradient rule but are not identified by our SHORT rule
because the gradient is not preceded or followed by a series
of 0 millivolt readings.

Our system identified 82 points as having an actionable
cause despite these points being labeled as reliable by the
BK system. This set is also the complete set of points that
only fail our NOISE, and 84% of them were caused by a
redox sensor that became disconnected from a mote; the BK
system was not designed to catch such faults.

6.5 Fault Analysis

We used our system to better understand the faults that
occurred in our Bangladesh experiment in order to improve
the design for our next deployment. While simply identifying
faulty data is helpful, we use the actions suggested by the
system and correlations in the faults in order to analyze the
deployment.

The rules applied to 39% of the data from the ISEs in our
Bangladesh deployment.
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Figure 15: Box plots quantifying the change of slope of calibration curves
for each sensor on each mote before and after deployment. Thebox
represents the middle 50% of the data, with the median at the line. The
range of this box is known as the inter- quartile range. The whiskers extend
to the max and min of the data unless there are outliers, defined as outside
1.5 times the inter-quartile range. Those points are then represented with
dots.

A histogram of each rule violation, divided by mote,
is shown in Figure 14. We show a 2x6 matrix offault
graphs, or graphs of faults identified by the system over
time for individual sensors, in Figure 13. The top row of
Figure 13 is representative of the ISEs connected to 3 motes
that experienced the most faults in the deployment, and the
bottom row is representative of the ISEs connected to the
remaining 3 motes that experienced the fewest faults.

Using this layout we are able to identify correlations. We
describe three of the most useful correlations here.

First, the columns for chloride and nitrate in Figure 13
are a representative cross section of graphs showing the
predominance of the INVALID NLDR rule violation for
those sensors. By looking at the graphs of the data in Figure 5
we can see that nitrate and chloride data from most sensors
tends to be in the lower and upper NLDR, respectively.

The second correlation we found is that the short rule is
isolated predominantly on two motes. As mentioned before,
these sensors had shorter cables, thus many of the sensor
cables connected to these motes were in the mud for the
duration of the deployment– a potential explanation for
violation of the SHORT.

Third, most often a BROKEN violation is preceded by a
SHORT violation. A short that extends forbrokencontiguous
points will look like a broken sensor, as in the three top right
fault graphs in the matrix. Our system does not distinguish
between the two at this point.

7 DISCUSSION AND FUTURE WORK

In this section we discuss three ideas relating to data
integrity in sensor network deployments based on our
experience in Bangladesh: calibration that changes with time
and exposure to the environment, in-situ calibration and
validation techniques, and meta-data storage issues.

Calibration Scheduling Sensors such as ISEs require
considerable maintenance and calibration. The calibration
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Position Ammonium Chloride Carbonate Calcium Nitrate pH
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Figure 13: Matrix of fault graphs for individual sensors. Rows in the matrix correspond to motes, columns correspond to sensors. Within each graph, the tics
on the x-axis correspond to days in the deployment, and tics on the y-axis correspond to one of the 4 fault rules that applied to the ISE data from Bangladesh.
From the top the order is: NOISE, BROKEN, SHORT, INVALID NLDR. Due to space limitations we could not include the graphs forthe remaining 30 ISEs.
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Ammonium Pylon 2 (1 foot) A

Figure 16: Data from the ammonium sensor in pylon 2 at a depth of
1 foot. Top curve on the graph corresponds to data translatedusing the
pre-calibration equation, and bottom curve corresponds todata translated
using the post-calibration equation. Data that may be in-range using one
equation, may not be in-range using another equation. Further motivation
for calibration scheduling.

equation for these sensors changes over time and with
exposure to harsh environment. Figure 15 is a box
plot quantifying the changes in our calibration equation
parameters between pre- and post-deployment calibrations.
Many of the parameters changed significantly over the
course of the deployment.

As a result, data that may be in the LDR of a sensor using
calibration equations calculated at pre-deployment may no
longer be in the LDR of the sensor using the calibration
equation from post-deployment and vice-versa. Figure 16
is a graph of ammonium data from Pylon 2; the two
lines correspond to data translated using the pre-deployment
(top line) and post-deployment (bottom line) calibration
equations. Data using the post-deployment equation is more
likely to be outside of the LDR than data using the pre-
deployment equation. Thus, as the calibration equation
parameters change over time, the number of points that apply
to a rule may vary, in turn impacting the actions a user
should take. For example, using the pre-deployment equation
to translate data, a sensor may seem fine because all data
is within the TDR, but may appear broken using the post-
deployment equation.

We are interested to find if the change in calibration
parameters can be predicted even with loose accuracy using

time, moisture and temperature of the soil, and the chemical
measurements themselves as predictors. If so, we can use this
information to predict confidence intervals for the sensor’s
measurements. The fault detection system can take this
into consideration when choosing the appropriate action to
remedy fault. A user should remove and calibrate sensors
that may have had a large change in calibration parameters.

In-Situ Validation In order to use sensors whose
calibration changes cannot be easily predicted, in-situ
calibration and validation techniques must be developed.
Manual samples can always support environmental
measurements on soil and water. Additionally, we
have briefly experimented with deploying our sensors
underground with a small plastic tube tied near the tip of the
sensor. A known concentration can then be injected from
the surface down to the sensor to validate that the sensor is
responding appropriately.

Meta-Data Storage In order to understand the temporal
dynamics of the system and the data, annotation of the data is
important. Many important meta-data need to be associated
with the data, such as what calibration equation should be
used in between calibrations, what faults have been seen, and
what actions have been taken. For example, if a user changes
some hardware or calibrates a sensor, the data should be
annotated with this information. More importantly, when
translating the data from millivolts to concentration, given
multiple calibration events, the correct calibration equation
varies over time. Events in the field should also be associated
with the data. For example in our deployment it would
be important to know times and durations of rainfall or
irrigation events.

8 CONCLUSION

Rapid deployments are a useful model for environmental
monitoring. However, in order to ensure confidence in
the relatively small quantity of data, fault detection and
remediation is necessary.

Our sensor network was rapidly deployed, and so there
was little time to deal with those faults during the
deployment. The in-field tools we subsequently designed
will allow us to interact with future deployments and greatly
improve our confidence in the quality of data collected.
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