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Efficiency in a Repeated Prisoners’ Dilemma with
Imperfect Private Monitoring.

Kyna Fong∗ Yuliy Sannikov†

February 28, 2007

Abstract

We study the repeated two-player Prisoners’ Dilemma with imperfect private mon-
itoring and no communication. Letting the discount factor go to one and holding the
monitoring structure fixed, we achieve asymptotic efficiency. Unlike previous works
on private monitoring, which have confined attention to signals that are either almost
perfect or conditionally independent, we allow for both imperfect and correlated sig-
nals but assume that they are sufficiently private, i.e. private actions are more infor-
mative than private signals about the opponent’s signals. Interestingly, for the game
we study, even the existing literature that allows communication has not yet yielded
efficiency.

1 Introduction.

A central motivation in the study of infinitely repeated games is to explore the possibility
of cooperation in long-term relationships. Cooperation is difficult to achieve when each
player can only observe other players’ actions with noise. For example, the classical work
of Stigler (1964) points out this difficulty in an oligopoly with “secret price cutting.” After
announcing a posted price, each firm may offer secret discounts to clients. Although those
actual prices are not observable, each firm may use its own sales level as a private (but
imperfect) signal of other firms’ pricing behavior, because sales depend on both actual prices

∗Stanford GSB, contact: fong kyna at gsb.stanford.edu.
†UC Berkeley, contact: sannikov at econ.berkeley.edu.
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and unobservable random shocks to demand. For such games, in which players observe
imperfect private signals about the actions of other players, the possibility of cooperation
has remained an open question.

An extensive literature has established Folk Theorems under special assumptions. Fuden-
berg, Levine and Maskin (1994) provide an extremely clear answer for games with public
monitoring, in which players’ signals are common knowledge. Horner and Olszewski (2006a)
tackle the case of private monitoring where observations are nearly perfect. Matushima
(2004) establishes the result for imperfect private monitoring assuming that players’ signals
are conditionally independent.1

This paper is the first to establish the possibility of cooperation without narrowing attention
to public, almost perfect, or conditionally independent signals. We prove that efficiency is
attainable in the repeated two-player Prisoners’ Dilemma with private monitoring, where
we allow for truly imperfect, truly correlated private signals and assume that there is
no communication. Our construction relies on two fairly mild assumptions. First, we
assume that when a player is cooperating, his signals about the actions of his opponent
are sufficiently private. That is, the arrival of each signal depends more strongly on the
opponent’s action than on the opponent’s private signal. Second, we assume that when a
player is defecting, at least one signal has a sufficiently high likelihood ratio for a test of
his opponent’s cooperation.

That such a result has remained inaccessible so far is not surprising. Unlike public monitor-
ing, private monitoring eliminates common information that allows players to coordinate
actions; as a result, cooperation becomes significantly harder. Players have to draw com-
plex statistical inferences about other players’ private histories to anticipate behavior. See
Kandori (2002) or the excellent book of Mailath and Samuelson (2006) for a survey of the
issues surrounding private monitoring.

In dealing with private monitoring that is almost perfect, the belief-free approach has been
effective (Piccione (2002), Ely and Valimaki (2002), and Ely, Horner and Olszewski (2005)).
By setting continuation payoffs so that players are indifferent between their actions in
every period, belief-free equilibria make inference about the past history of play completely
irrelevant. Such a construction establishes the Folk Theorem for the repeated Prisoners’
Dilemma with almost-perfect private monitoring (Ely and Valimaki (2002)). Horner and
Olszewski (2006a) extend the result to general games with almost perfect monitoring using
equilibria that are belief-free over multi-period review phases.

When private monitoring is imperfect, efficient equilibria require aggregation of informa-
tion across periods to minimize the probability of punishments on the equilibrium path.

1Recent work by Horner and Olszewski (2006b) shows that the Folk Theorem is robust also to imperfect
private monitoring that is almost public.
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Matsushima (2004) overcomes this challenge for games in which signals are independent
across players. In his construction, players aggregate information about the behavior of
their opponents over T -period review phases. The equilibrium is belief-free across review
phases. At the end of every phase, each player performs a statistical test of the signals
observed during that review phase to see whether his opponent has cooperated or defected
. Information indicating cooperative behavior leads to expected rewards, while information
indicating defective behavior leads to expected punishments. Matsushima’s technique is in
the spirit of Abreu, Milgrom and Pearce (1991), who use statistical discrimination through
delayed information release to achieve efficiency in repeated interactions.

Matsushima’s construction, however, falls prey to a significant difficulty, which he averts
by requiring signals to be conditionally independent. When signals are independent across
players, a player receives no feedback during a review phase about how well he is doing
(besides knowing his own history of actions); in other words, his incentives are not altered
by the information he receives during the review phase.

In our game, however, we allow signals to be correlated. So each player receives private
feedback during a review phase not only about what actions his opponent has taken but
also about what signals his opponent has received. The player uses that feedback to draw
private inferences about the recent history. What becomes important then is not only
creating incentives for a player to choose a specific strategy at the beginning of a review
phase but also creating incentives for him to continue following that strategy during a
review phase.

Here is precisely where our paper takes a significant step forward from the existing lit-
erature: our equilibrium sustains incentives for players to cooperate even when they are
receiving private, imperfect and correlated signals. A key novelty lies in the specification
of “reward functions” or promised future payoffs. Those are constructed so that, in equi-
librium, when review phases are long enough, all the way until a player’s own incentives to
cooperate break down (which itself is unlikely to happen), he places a very low probability
on the breakdown of the other player’s incentives to cooperate.

In each T -period review phase of our equilibrium, players maintain private counts of the
number of “good” signals received, i.e. signals indicating cooperative behavior. Let these
private counts have positive correlation ρ ∈ (0, 1). When both players are cooperating, a
player’s reward is strictly increasing in his opponent’s private count until that count reaches
some unexpectedly high level; at that point, the player obtains his maximum reward. So if a
player observes a high enough private count to suggest that his maximum reward has been
reached (an event that occurs ex ante with low probability), his incentives to cooperate
break down.

A critical insight in this paper is that when one player observes an exceptionally high
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private count of good signals, say n standard deviations above the mean, he expects that
his opponent’s private count is only ρn standard deviations above the mean. Therefore,
the fact that the opponent may defect when he sees enough good signals does not cause a
player to stop cooperating, even with imperfect signals. So long as a player’s own private
count tells him to continue cooperating, he places a very low probability on his opponent’s
private count being so high as to induce defection; therefore, the player’s incentives to
cooperate are maintained.

We finish the introduction by reviewing other approaches to attaining efficiency in games
with private monitoring. Several papers have focused on belief-based, rather than belief-
free, techniques. In such equilibria, players’ strategies involve statistical inference about
the past history of play (see Sekiguchi (1997), Bhaskar and Obara (2002), and Mailath
and Morris (2002)). Results in those papers are limited to almost perfect or almost public
monitoring.

Another closely related literature has been fairly successful in analyzing repeated games
with private imperfect monitoring by introducing communication. Versions of the Folk
Theorem have been proven (see Compte (1998), Kandori and Matsushima (1998), Aoyagi
(2002), Fudenberg and Levine (2002), and Obara (2007)). Introducing a public element
allows these papers to sidestep the inherent issues unresolved in games with private mon-
itoring. However, the analyses do not apply to some practical economic settings in which
communication is not possible - for example, in Stigler’s oligopoly example above, anti-trust
laws make communication illegal.

Interestingly, in the game we study, the two-player repeated Prisoners’ Dilemma with
imperfect, correlated, private signals, efficiency has not yet been established even when
communication is allowed. So ours is the first work to establish efficiency, with or without
communication.

We organize the paper as follows. Section 2 introduces the model and states the main result.
Section 3 presents a brief overview of our argument, and readers are encouraged to read
this section to understand the basic theoretical ideas behind the equilibrium construction.
Section 4 presents the formal proofs. Section 5 discusses how the methods of this paper
extend to general games.

2 The Model.

We consider an infinitely repeated Prisoners’ Dilemma with private monitoring and no
communication. Each player i = 1, 2 chooses an action ai

t ∈ Ai = {Di, Ci} in every period
t ≥ 0. Players do not observe each other’s actions directly. Instead, at the end of each
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period, player i observes a private signal yi
t ∈ Y i.

For each action profile, every profile of private signals realizes with a strictly positive joint
probability, which we denote by π(yi, yj|aiaj).2 We use π(yi|aiaj) to denote the marginal
probability that player i receives signal yi, and π(yi|aiaj, yj) to denote the conditional
probability that player i receives signal yi given that player j receives signal yj.

For simplicity, we assume that there are two signals Y i = {0i, 1i}, where 1i represents good
news. Furthermore, we assume that the function

π(1i|aiaj, yj)

is strictly increasing in all three of its arguments (where Ci > Di for i ∈ {1, 2}). Therefore,
good signals are positively correlated in our game. In Section 5 we discuss how our analysis
can be extended to other signal structures and general games.

Denote by gi(aiaj) the expected stage-game payoff of player i.3 The stage-game payoffs are
those of a Prisoners’ Dilemma, i.e.

gi(DiCj) > gi(CiCj) > gi(DiDj) > gi(CiDj).

Players discount future payoffs at a common rate δ. So, player i’s expected payoff in the
repeated game is

E

[
∞∑

t=0

δtgi(ai
ta

j
t)

]
. (1)

A t-period private history of player i is a sequence of private actions and private signals,
denoted by hi

t = (ai
0, y

i
0, a

i
1, y

i
1 . . . ai

t−1, y
i
t−1). Let Ht be the set of t-period private histories.

A private strategy of player i is a function αi :
⋃∞

t=0 Ht → [0, 1] that gives the probability
with which player i plays Ci after each private history hi

t ∈ Ht for all t ≥ 0.

A profile of private strategies (α1, α2) forms a Nash equilibrium of the repeated game if each
player’s strategy maximizes his expected payoff (1) given the strategy of his opponent. A
strategy profile (α1, α2) is a Perfect Bayesian Equilibrium of the repeated game if each
player’s strategy maximizes the conditional expectation of his payoff

E

[
∞∑

t=0

δtgi(ai
ta

j
t) | hi

t

]
,

for any private history hi
t. Since our game satisfies the full support assumption (i.e. each

profile of signals realizes with a positive probability for each profile of actions), any Nash

2In this paper, whenever we refer to players i and j, we assume i ∈ {1, 2} and i 6= j.
3As usual, the actual payoff realization of player i in a given period depends on his action and his private

signal.
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equilibrium can be converted to a Perfect Bayesian Equilibrium by modifying the players’
actions after zero-probability private histories.

We construct equilibria that converge to full cooperation as δ → 1. Our proof relies on the
following two assumptions on the information structure of the game.

Assumption 1. When player j is cooperating, signals are sufficiently private, so that

π(1j|CjCi, 0i) > π(1j|CjDi, 1i).

That is, player i’s action matters more than his signal for player j’s signal.

Assumption 2. When player j is defecting, given payoffs gi(·), signal 1j has a sufficiently
high likelihood ratio to test for player i’s cooperation, so that

π(1j|DjCi)

π(1j|DjDi)
>

gi(CiCj)− gi(CiDj)

gi(CiCj)− gi(DiDj)
.

We now state our main result.

Theorem 1. Under Assumptions 1 and 2, there exists a Perfect Bayesian Equilibrium in
which players’ expected payoffs become arbitrarily close to efficient as δ approaches 1.

3 An Overview of the Argument.

This section intuitively explains our construction of equilibria that approach full cooper-
ation as the discount factor goes to 1. While our formal proofs in Section 4 consider an
asymmetric game, it is easier to think of a symmetric game to understand the main logic.

For each δ, the equilibrium is based on review phases of length T. To be specific, we let
T = O((1− δ)−1/2) so that

T →∞ and δT → 1 as δ → 1.

Longer review phases allow for better aggregation of information. Unlike games where
monitoring is almost perfect,4 more general games of imperfect monitoring require infor-
mation aggregation to reduce inefficient punishments that occur on the equilibrium path.
At the same time, it is important that δT converge to 1 as δ → 1 to allow for a wide range
of rewards and punishments at the end of a review phase.

4See, for example, Sekiguchi (1997), Bhaskar and Obara (2002), Ely and Valimaki (2002), Mailath and
Morris (2002), or Horner and Olszewski (2006a).
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Incentives arise from an equilibrium structure, in which at the beginning of every review
phase each player i is indifferent between two payoff-maximizing T -period strategies: Ĉi and
D̂i. Strategy Ĉi involves cooperation in all T periods with probability near 1, and strategy
D̂i consists of defection in all T periods. Player i creates incentives for his opponent
through a transition rule that determines which strategy, D̂i or Ĉi, is chosen in the next
review phase. The transition rule depends on (1) player i’s strategy during the last review
phase, and (2) his private history during the last review phase. Effectively, the transition
rule implements a reward function for the review phase, provided by player i at the end of
each review phase to reward or punish the perceived behavior of his opponent. This reward
function thus creates incentives across review phases.5 Denote by [Gj

D, Gj
C ] the range of

rewards and punishments that can be assigned to player j by player i’s mixing between D̂i

and Ĉi.

To ensure that both Ĉi and D̂i are optimal to choose at the beginning of every review
phase, we construct strategies and transition rules with the following two properties:

1. When the opponent is playing D̂j for sure, player i is indifferent between any sequence
of actions.

2. When the opponent is playing Ĉj for sure, both strategies Ĉi and D̂i are optimal.

Therefore, at the beginning of each review phase, for any belief of player i about the
strategy player j will follow, strategies Ĉi and D̂i are both payoff-maximizing strategies of
player i, between which he is indifferent.6

Players attain payoffs arbitrarily close to full cooperation as δ → 1 because with probability
near 1 the players again play Ĉ1 and Ĉ2 at the end of a review phase in which they have
just played Ĉ1 and Ĉ2. Information aggregation by both players during the review phase
makes this feature possible.

Let us discuss the strategies and reward functions in greater detail, beginning with the
easier one, D̂j. This strategy consists of defection in all T periods. When player j follows
D̂j, he rewards player i with an amount Ki

D for each good signal, which makes i just
indifferent between cooperating and defecting in each period. The value of Ki

D is defined
by

gi(CiDj) + π(1j|DjCi)Ki
D = gi(DiDj) + π(1j|DjDi)Ki

D. (2)

5Note that the construction of reward functions based on aggregated information in a review phase is
similar to the technique used in Matsushima (2004).

6So our construction is belief-free across review phases, as in Horner and Olszewski (2006a) and Mat-
sushima (2004).
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Formally, to take discounting into account, the reward function associated with strategy
D̂j that is awarded at time T is

W j
D(hj

T ) = GD + Ki
D

T−1∑
t=0

δt−T yj
t , (3)

where hj
T is player j’s private history during the review phase.

Proposition 1. Suppose that player j is playing the strategy D̂j of defecting in every period
and assigns to player i the reward function W j

D. Then player i is indifferent between all
T -period strategies. Furthermore, we have

(1− δ)Gi
D = gi(DiDj) + Ki

D π(1j|DjDi) < gi(CiCj)

when Assumption 2 holds.

Proof. See Appendix.

Let us turn our attention to strategy Ĉj and its reward function W j
C . First, define the

discounted sum of good signals that player j has observed at time t by

X(hj
t) =

t−1∑
s=0

δsyj
s. (4)

By the central limit theorem, when both players are cooperating, X(hj
t) is distributed

approximately normally with mean and variance

t−1∑
s=0

δsπ(1j|CjCi) and
t−1∑
s=0

δ2sπ(1j|CjCi)(1− π(1j|CjCi)) (5)

respectively when t is large. Define by Φj
t the event that

X(hj
s) ≤

s−1∑
u=0

δuπ(1j|CjCi) + T 1/6σj
C ∀s ≤ t, (6)

where σj
C = O(T 1/2) is the standard deviation of X(hj

T ) under cooperation by both players
(see (5)). Player j observes a private history hj

t /∈ Φj
t only when X(hj

t) is O(T 1/6) standard
deviations above its mean. Therefore, when T is large the probability of Φj

t is close to 1.

We can now describe the strategy Ĉj together with its reward function W j
C . Strategy

Ĉj prescribes cooperation in period t when hj
t ∈ Φj

t and is determined by a fixed-point
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argument when hj
t /∈ Φj

t . When hj
T ∈ Φj

T , the reward function W j
C is convex and quadratic

in X(hj
T ), satisfying

W j
C(hj

T ) = Gi
C when X(hj

T ) =
T−1∑
t=0

δtπ(1j|CjCi) + T 1/6σj
C . (7)

When hj
T /∈ Φj

T , W j
C is of the form that makes player i indifferent between all actions,

independently of player j’s actions. Section 4 provides that formula for W j
C when hj

T /∈ Φj
T .

Let us argue informally that such strategies Ĉj and reward functions W j
C

1. attain efficiency as δ → 1 and

2. fit our equilibrium construction for appropriate parameters of the quadratic portion
of W j

C .

To streamline our argument, we introduce the following definition, which we also use in
Section 4.

Definition 1. A T -period strategy of player j is from class Zj if cooperation is always
prescribed in period t in the event Φj

t .

If we ignore the concern of incentives, strategies Ĉj ∈ Zj together with reward functions
W j

C described above attain efficiency as δ → 1 and T →∞ for two reasons. First, the loss
of efficiency due to the possibility of defection within a review phase becomes small, since
the probability of Φj

t is close to 1 when T is large. Second, the loss of efficiency due to
transitions to strategy D̂j at the end of a review phase also becomes very small as T gets
large. Indeed, (7) implies that W j

C(hj
T ) = Gi

C−O(T 2/3) on average, since (a) σj
C = O(T 1/2),

(b)
∑T−1

t=0 δtπ(1j|CjCi) is the mean of X(hj
T ) under cooperation, and (c) the slope of W j

C

is on the order of a constant (see Section 4). Thus, the loss of efficiency is only O(T 2/3)
per T periods.

Now what about incentives? Let us argue informally that it is optimal for player i to
follow either D̂i or a strategy from class Zi in response to any strategy Ĉj ∈ Zj of player
j together with a reward function W j

C as outlined above. Our argument proceeds in three
steps.

First, suppose that player j always cooperates and that W j
C is convex and quadratic in

X(hj
T ) for all histories hj

T . Let us explore player i’s incentives. With a quadratic re-
ward function, player i’s marginal expected reward from cooperating in period t is linearly
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increasing in

E[X(hj
t) | hi

t] =
t−1∑
s=0

δsπ(1j|CjCi, yi
s).

Since Assumption 1 implies that

π(1j|CjCi, yi) > π(1j|CjDi, zi) ∀yi, zi ∈ {0i, 1i},

past cooperation always makes future cooperation more attractive to player i for any se-
quence of private signals. Similarly, past defection makes future defection more attractive.
Therefore, faced with a quadratic reward function W j

C , player i optimally either always
cooperates or always defects, but nothing in between.

Now, second, suppose that player j still always cooperates but that W j
C takes the form

originally specified. So it is only convex and quadratic for histories hj
T ∈ Φj

T . Let us argue
that the amendment of the reward function W j

C for hj
T /∈ Φj

T has only negligible effects on
player i’s incentives when hi

t ∈ Φi
t. This conclusion follows from the following lemma.

Lemma 1. If player j cooperates in every period of the review phase and hi
t ∈ Φi

t, then

Pr[¬Φj
T | h

i
t] ≤ T exp(−KjT

1/3), (8)

where

Kj = −2π(1j|CjCi)[1− π(1j|CjCi)][1− π(1j|CjCi, 1i) + π(1j|CjCi, 0i)]2. (9)

Proof. See Appendix.

Note that T exp(−KjT
1/3) decays exponentially as T goes to infinity. Thus, the probability

that hj
T /∈ Φj

T is negligible when hi
t ∈ Φi

t.

To understand intuitively why Lemma 1 is true, consider player i’s belief about X(hj
t)

conditional on hi
t ∈ Φi

t. For a given time-t history of player i’s private signals, X(hj
t) is

expected to take the largest values when player i cooperates in every period. In that case,
the joint distribution of X(hi

t) and X(hj
t) is approximately normal with some correlation

ρ < 1. When

X(hi
t) =

t−1∑
s=0

δsπ(1i|CiCj) + T 1/6σi
C ,

i’s conditional belief about the mean of X(hj
t) given hi

t is

t−1∑
s=0

δsπ(1j|CjCi) + ρT 1/6σj
C .
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Since the conditional standard deviation of X(hj
t) is less than σj

C , it is extremely unlikely
that

X(hj
t) >

t−1∑
s=0

δsπ(1j|CjCi) + T 1/6σj
C ,

which is O(T 1/6) standard deviations above the conditional mean of X(hj
t). Thus the con-

ditional probability of the event ¬Φj
T is very small.

Finally, as the third step in our argument, suppose that W j
C continues to take the form

originally specified but that player j may now defect after histories hj
t /∈ Φj

t (i.e. he plays a
strategy from class Zj). There arises the concern that player i’s inference about the relative
likelihoods of Φj

t and ¬Φj
t may change. Therefore, Lemma 1 does not have to hold for a

general strategy of player j from class Zj. However, if the reward function that player j
offers when hj

T /∈ Φj
T makes player i just indifferent between all actions, then the possibility

of the event ¬Φj
t is irrelevant for player i’s incentives.7

We conclude that player i has incentives to always defect or to follow a strategy from class
Zi when player j follows a strategy from class Zj and assigns a reward function W j

C , where
W j

C is quadratic and convex if hj
T ∈ Φj

T and makes player i indifferent between all strategies
otherwise.

Section 4 formalizes the logic we have used in this section to motivate the construction of
our equilibria. To complete our proof that efficiency is attainable as δ → 1, we provide a
fixed-point argument to show that there exist strategies Ĉ1 ∈ Z1, Ĉ2 ∈ Z2 and parameters
of the quadratic portions of W 1

C , W 2
C such that for i = 1, 2 both strategies D̂i and Ĉi

maximize player i’s expected payoff in response to Ĉj with the reward function W j
C .

4 Formal Proofs.

In this section, we formally construct Perfect Bayesian Equilibria of the repeated Prisoners’
Dilemma that approach efficiency as δ → 1. As discussed in Section 3, our construction is
based on T -period review phases, where T = O((1 − δ)−1/2). In every review phase each
player i = 1, 2 follows a T -period strategy Ĉi or D̂i. Both of these strategies are optimal
independently of the beliefs about the strategy of the opponent. While D̂i involves defection
in every period, Ĉi ∈ Zi involves cooperation in every period with probability near 1. A
player’s strategy choice creates equilibrium incentives for his opponent.

Proposition 2 shows that, to construct efficient equilibria along these lines, we just need to

7Note that this argument is similar to one made in Horner and Olszewski (2006a).
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find appropriate T -period strategies and reward functions.

Proposition 2. Suppose that for i = 1, 2 and some T ¿ 0, there are T -period strategies Ĉi

and D̂i and reward functions W i
C : HT → [Gj

D, Gj
C ] and W i

D : HT → [Gj
D, Gj

C ] that satisfy
the following conditions.

First, when player j = 1, 2 is following strategy Ĉj, then

Gi
C = max E

[
T−1∑
s=0

δsgi(ai
sa

j
s) + δT W j

C(hj
T )

]
, (10)

where the maximum, taken over all T -period strategies of player i, is achieved by both Ĉi

and D̂i.

Second, when player j is following strategy D̂j, then

Gi
D = max E

[
T−1∑
s=0

δsgi(ai
sa

j
s) + δT W j

D(hj
T )

]
, (11)

where the maximum, taken over all T -period strategies of player i, is again achieved by both
Ĉi and D̂i.

Then any pair of payoffs (w1, w2) ∈ [G1
D, G1

C ]×[G2
D, G2

C ] is achievable by a Perfect Bayesian
Equilibrium of an infinitely repeated game with discount factor δ.8

The proof in the Appendix provides a careful verification of these intuitive claims.

To construct equilibria using Proposition 2, for i = 1, 2, strategies Ĉi and D̂i together with
reward functions W i

C and W i
D have to satisfy two sets of constraints

1. incentive constraints, i.e. both Ĉi and D̂i have to maximize (10) and (11) and

2. feasibility constraints, i.e. the reward functions must take values in the ranges
[Gj

D, Gj
C ], which are defined by (10) and (11).

Patient players can attain efficiency in equilibrium if for i = 1, 2,

(1− δ)Gi
C → gi(CiCj) as δ → 1. (12)

8When we let δ → 1, for simplicity our notation suppresses the dependence of the strategies, reward
functions and bounds Gi

D and Gi
C on δ.
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Strategies D̂j and reward functions W j
D. In Section 3 we show that given the strategy

D̂j of player j together with a linear reward function

W j
D(hj

T ) = Gi
D + δ−T Ki

D X(hj
T ), where (1− δ)Gi

D = gi(DiDj) + Ki
D π(1j|DjDi),

any strategy of player i maximizes (11). This reward function W j
D makes player i indifferent

between all T -period strategies. Moreover, when δ is sufficiently close to 1, so that (1−δ)T
is sufficiently small, Proposition 1 implies that

max (1− δ)W j
D(hj

T ) < (1− δ)(Gi
D + δ−T Ki

DT ) < gi(CiCj)− ki,

for some constant ki > 0. Therefore, if (12) holds, the reward function W j
D also satisfies

the feasibility constraints when T is sufficiently large.

Strategies Ĉj and reward functions W j
C . To complete the proof that equilibrium ef-

ficiency is attainable in the limit as δ → 1, for each δ and i = 1, 2 we need to construct
strategies Ĉj ∈ Zj and reward functions W j

C that satisfy (10), the feasibility constraints

and (12). This task is significantly more challenging than the construction of D̂j. Since our
goal is to attain efficiency, the reward function W j

C cannot make player i indifferent between
all strategies, or else function W j

C will destroy too much value to create those incentives.9

Also, because player j observes signals that are correlated with player i’s signals, strategy
Ĉj cannot involve cooperation in all periods (unlike in Matsushima (2004)).

Thus, we look for a suitable strategy Ĉj from a whole class of strategies Zj, and consider
reward functions from the following class.

Definition 2. Denote

Xj
C =

T−1∑
t=0

δtπ(1j|CjCi) + T 1/6σj
C .

For a pair of positive constants αj and βj that satisfy αjXj
C < βj, define10

W j
C(hj

T ) = V j(X(hj
T )), where V j(x) = Gi

C − βj(Xj
C − x) + αj(Xj

C − x)2 (13)

when hj
T ∈ Φj

T and

W j
C(hj

T ) = U j(hj
T ), where U j(hj

T ) = Gi
C − δ−T

T−1∑
t=0

δtK(aj
t , y

j
t ) (14)

otherwise, where K(Cj, 1j) = 0 and K(aj, yj) ≥ 0 are such that

gi(aiaj)− π(1j|ajai)K(aj, 1j)− π(0j|ajai)K(aj, 0j)

takes the same value for all a ∈ {D, C}.
9Such an equilibrium would be belief-free. As shown in Ely, Horner and Olszewski (2005), the Folk

Theorem does not hold in belief-free equilibria when monitoring is imperfect.
10When αjXj

C < βj , we have V j(x) ≤ Gi
C for all x ∈ [0, Xi

C ].
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Note that the range of W j
C is O(T ). At the same time, Proposition 1 implies that Gi

C−Gi
D =

O(1/(1 − δ)) = O(T 2) when the efficiency condition (12) holds. Therefore, function W j
C

satisfies the feasibility constraints for sufficiently large T under condition (12). We verify
(12) in Proposition 5.

Proposition 3 shows that, under an additional assumption (15), when player j follows a
strategy Ĉj ∈ Zj and assigns a reward function W j

C , player i has incentives to follow D̂i or
a strategy from class Zi, depending on αj and βj. Assumption (15) is not essential to our
result. A remark at the end of this section argues that Proposition 3 remains valid without
(15) if we implement a slightly more complicated form of W j

C .

Proposition 3. Assume that

π(1j|CjCi, 0i) >
π(1j|CjCi) + π(1j|CjDi)

2
> π(1j|CjDi, 1i). (15)

Suppose that player j is following a strategy Ĉj ∈ Zj and assigns to player i a reward
function W j

C(hj
T ) given by Definition 2, with αj = O(T−2) and βj = O(const). Let

M j(t) = Xj
C −

δt + δT

2(1 + δ)
− βj

2αj
+ δ−T gi(DiCj)− gi(CiCj)

2αj(π(1j|CjCi)− π(1j|CjDi))

− δt+1 − δT

(1− δ)(1 + δ)
(π(1j|CjCi) + π(1j|CjDi)) (16)

Then, when T is sufficiently large, it is optimal for player i to follow strategy D̂i or a
strategy from class Zi. When M j(0) > O(T 4 exp(−KjT

1/3)) then the optimal strategy is

from class Zi; when M j(0) < −O(T 4 exp(−KjT
1/3)) then the optimal strategy is D̂i.

Let us summarize the three-step intuition behind our proof of Proposition 3, which appears
in subsection 4.1. If player j always cooperate and assigns to player i the reward function
V j, then M j(t) is defined in such a way that at time t player i prefers to cooperate in all
future periods if E[X(hj

t)|hi
t] ≥ M j(t), and to defect in all future periods otherwise. If

player j always cooperates but assigns a different reward function U j in the event ¬Φj
T ,

player i’s incentives remain roughly the same when hi
t ∈ Φi

t, because player i assigns a
negligible probability to the event ¬Φj

T . Finally, if player j defects in the event ¬Φj
t , this

may affect player i’s inferences about the relative probabilities of Φj
t and ¬Φj

t , but does not
affect player i’s incentives. The reason is that player i is indifferent between all strategies
conditional on ¬Φj

t . In subsection 4.1 we reach the conclusion that player i prefers to defect
in all periods if 0 = E[X(hj

0)] < M j(0)− O(T 4 exp(−KjT
1/3)) and follow a strategy from

class Zi if 0 = E[X(hj
0)] > M j(0) + O(T 4 exp(−KjT

1/3)).

14



Note that when αj = O(T−2), then M j(0) = 0 when11

βj = Ki
C + O(T−1), where Ki

C =
gi(DiCj)− gi(CiCj)

π(1j|CjCi)− π(1j|CjDi)
. (17)

So, for the class of j’s strategies Zj and reward functions that satisfy Definition 2, player i’s
best response is either to play D̂i or a strategy from class Zi. For some values of αj and βj,
player i is just indifferent between playing D̂i and the best strategy from class Zi, Ĉi. If for
each player j = 1, 2, strategy Ĉj ∈ Zj and reward function W j

C are chosen appropriately so

that the opponent is indifferent between D̂i and Ĉi, then the players’ strategies and reward
functions satisfy the conditions of Proposition 2. Those strategies can then be used to
construct an equilibrium with any value pair from the set [G1

D, G1
C ]× [G2

D, G2
C ].

Proposition 4 shows that there exist T -period strategies Ĉ1, Ĉ2 and positive constants α1, α2

and β1, β2 such that, for i = 1, 2, both D̂i and Ĉi are optimal in response to Ĉj when the
reward function W j

C is given by Definition 2. We verify the existence of such strategies and
reward functions via a fixed-point argument.

Proposition 4. Let α1 = α2 = T−2. Then for all sufficiently large T, there are reward
functions W i

C with βi = Kj
C +O(T−1) and T -period strategies Ĉi from class Zi for i = 1, 2,

such that both D̂1 and Ĉ1 are best responses to Ĉ2 with the reward function W 2
C, and

similarly for D̂2 and Ĉ2.

Proof. See Appendix.

To conclude, we must show that efficiency is attainable as δ → 1.

Proposition 5. Suppose that T = O((1 − δ)−1/2). If player j follows a strategy Ĉj from
class Zj and assigns a reward function W j

C that satisfies Definition 2 with α = O(T−2) and
β = O(const), then

(1− δ)Gi
C → gi(CiCj). (18)

Proof. See Appendix.

11Note the similarity of Ki
C to Ki

D defined in the last section.
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4.1 The Proof of Proposition 3.

We use simplified notation in this proof, denoting

p(ai) = π(1j|Cjai) and

p(ai, yi) = π(1j|Cjai, yi).

So when player j cooperates, p(ai) is the probability that j receives a good signal when
player i chooses action ai, and p(ai, yi) is that probability conditional also on player i
receiving signal yi.

Let us show that for all hi
t ∈ Φi

t, it is optimal for player i to cooperate in period t if
µ(hi

t) > M j(t) + O(T 4 exp(−KjT
1/3)), where we define

µ(hi
t) = E[X(hj

t) | hi
t, Φ

j
t ] and σ2(hi

t) = V ar[X(hj
t) | hi

t, Φ
j
t ].

Consider the case when µ(hi
t) > M j(t) + O(T 4 exp(−KjT

1/3)). Conditional on the event
¬Φj

t , player i’s future expected payoff does not depend on his actions. Therefore, to figure
out his optimal actions, player i need only take into account his expected payoffs conditional
on Φj

t .

Let us derive a lower bound for player i’s expected payoff (conditional on hi
t and Φj

t) if he
cooperates in period t and then acts optimally, and show that it is always greater than an
upper bound for player i’s expected payoff (conditional on hi

t and Φj
t) if he defects in period

t.

A lower bound. Assume that player i cooperates in all future periods. Then, conditional
on hi

t and Φj
T , player i’s future expected payoff is

δt − δT

1− δ
gi(CiCj) + δT E[V j(X(hj

T )) | hi
t, Φ

j
T ] =

δt − δT

1− δ
gi(CiCj) + δT V j

(
E[X(hj

T ) | hi
t, Φ

j
T ]
)

+ δT αjV ar[X(hj
T ) | hi

t, Φ
j
T ],

since E[V j(x)] = V j(E[x]) + αjV ar(x) for the quadratic function V j. Since both V j and
U j take values between Gi

C and Gi
C −O(T ) for various private histories hj

T of player j, we
can evaluate player i’s expected payoff conditional on hi

t and Φj
t as

δt − δT

1− δ
gi(CiCj)+δT V j

(
E[X(hj

T ) | hi
t, Φ

j
T ]
)
+δT αjV ar[X(hj

T )|hi
t, Φ

j
T ]+Pr[¬Φj

T |h
i
t, Φ

j
t ]O(T ).

Lemma 2 shows the probability of event ¬Φj
T , conditional on hi

t and Φj
t , to be extremely

small and evaluates E[X(hj
T ) | hi

t, Φ
j
T ] and V ar[X(hj

T ) | hi
t, Φ

j
T ].
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Lemma 2. Suppose that player j is following a strategy from class Zj. If hi
t ∈ Φi

t and
player i cooperates in the remaining periods t, . . . T − 1 of the review phase, then

Pr[¬Φj
T | h

i
t, Φ

j
t ] ≤ O(T exp(−KjT

1/3)), (19)

E[X(hj
T ) | hi

t, Φ
j
T ] = µ(hi

t) +
δt − δT

1− δ
p(Ci) + O(T 2 exp(−KjT

1/3)) (20)

and

V ar[X(hj
T ) | hi

t, Φ
j
T ] = σ(hi

t) +
δ2t − δ2T

1− δ2
p(Ci)(1− p(Ci)) + O(T 3 exp(−KjT

1/3)). (21)

Proof. See Appendix.

Therefore, a lower bound on player i’s payoff if he cooperates in period t is

δt − δT

1− δ
gi(CiCj) + δT V j

(
µ(hi

t) +
δt − δT

1− δ
p(Ci)

)
+

δT αj

(
σ2(hi

t) +
δ2t − δ2T

1− δ2
p(Ci)(1− p(Ci))

)
+ O(T 2 exp(−KjT

1/3)), (22)

since αj ≤ O(T−2).

An upper bound. To bound from above player i’s payoff from defecting in period t,
consider the following modification to player j’s strategy and reward function in the event
Φj

t . Suppose that player j

1. cooperates from time t onward and

2. assigns to player i reward V j(X(hj
T )), even in the event ¬Φj

T .12

Note that this modification may only improve player i’s payoff. Lemma 3 evaluates player
i’s payoff with this modification.

Lemma 3. Suppose that at time t player j cooperates in the remaining periods of the review
phase and assigns to player i a convex quadratic reward function V j(X(hj

T )). Then it is

12Such a reward function would violate the feasibility constraint, but we use it only to derive an upper
bound on player i’s payoff if he defects in period t.

17



optimal for player i to cooperate in all remaining periods if µ(hi
t) > M j(t) and to defect in

all remaining periods otherwise. Given this strategy, player i’s future expected payoff is

V̂ i(t, µ(hi
t), σ

2(hi
t)) = max{V̂Ci(t, µ(hi

t), σ
2(hi

t)), V̂Di(t, µ(hi
t), σ

2(hi
t))} (23)

where for a ∈ {Di, Ci}

V̂a(t, µ, σ2) = δT V j

(
µ +

δt − δT

1− δ
p(a)

)
+δT αj

(
σ2 +

δ2t − δ2T

1− δ2
p(a)(1− p(a))

)
+

δt − δT

1− δ
gi(aCj).

Proof. See Appendix.

Lemma 3 implies that conditional on Φi
t, player i’s expected payoff from defecting once and

acting optimally thereafter is bounded from above by

δtgi(DiCj) + π(1j|CjDi)V̂ i(t, µ(hi
t) + δtp(Di, 1i), σ2(hi

t) + δ2tp(Di, 1i)(1− p(Di, 1i)))+

π(0j|CjDi)V̂ i(t, µ(hi
t) + δtp(Di, 0i), σ2(hi

t) + δ2tp(Di, 0i)(1− p(Di, 0i))). (24)

Comparing payoffs from cooperating and defecting in period t. By Lemma 5 in
the Appendix, payoff (24) is smaller than our lower bound

V̂Ci(t, µ(hi
t), σ

2(hi
t)) + O(T 2 exp(KjT

1/3)) (25)

(see (22)) when

δT αj(µ(hi
t)−M j(t))(p(Ci)− p(Di)) ≥ O(T 2 exp(−KjT

1/3)). (26)

Inequality (26) holds when µ(hi
t) − M j(t) > O(T 4 exp(−KjT

1
3 )), since α = O(T−2) and

δT = O(1). We conclude that when µ(hi
t) > M j(t) + O(T 4 exp(−KjT

1
3 )), it is optimal for

player i to cooperate in period t.

Assumption (15), i.e. (p(Di) + p(Ci))/2 ∈ (p(Di, 1i), p(Ci, 0i)) is required to show that

for all δ sufficiently close to 1, if µ(hi
t) > M j(t) + O(T 4 exp(−KjT

1
3 )) then player i has

incentives to cooperate in all future periods in the event Φi
T . Indeed, note that

M j(t + 1)−M j(t) = δt δ

1 + δ
(p(Di) + p(Ci)) + δt 1− δ

1 + δ
∈ (δtp(Di, 1i), δtp(Ci, 0i))

when δ is sufficiently close to 1 and T = O((1− δ)−1/2). By Lemma 6 in the Appendix,

µ(hi
t) =

t−1∑
s=0

δsp(ai
s, y

i
s) + O(T 2 exp(−KjT

1/3)).
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Now, if µ(hi
t) > M j(t) + O(T 4 exp(−KjT

1
3 )) and player i cooperates in period t, then

µ(hi
t+1) = µ(hi

t) + δtp(Ci, yi) + O(T 2 exp(−KjT
1/3)) > M j(t + 1) + O(T 4 exp(−KjT

1
3 ))

when δ is sufficiently close to 1. Therefore, if M j(0) < −O(T 4 exp(−KjT
1
3 )) it is optimal

for player i to follow a strategy from class Zi, i.e. cooperate in all future periods as long
as hi

t ∈ Φi
t.

Similarly, we can show that if M j(0) > O(T 4 exp(−KjT
1
3 )), then it is optimal for player

i to defect in all future periods. The central claim to reach this conclusion is that for all
hi

t such that player i has defected in the past, if µ(hi
t) < M j(t) − O(T 4 exp(−KjT

1/3)),
then it is optimal for player i to defect in period t. To justify this claim, we can derive an
upper bound on player i’s expected payoff if he cooperates in period t using Lemma 3, and
a lower bound if i defects in period t using an analogue of Lemma 2:

Lemma 4. Suppose that player j is following a strategy from class Zj. If hi
t involves

defection in all past periods and player i defects in the remaining periods t, . . . T − 1 of the
review phase, then

Pr[¬Φj
T | h

i
t, Φ

j
t ] ≤ O(T exp(−KjT

1/3)), (27)

E[X(hj
T ) | hi

t, Φ
j
T ] = µ(hi

t) +
δt − δT

1− δ
p(Di) + O(T 2 exp(−KjT

1/3)) (28)

and

V ar[X(hj
T ) | hi

t, Φ
j
T ] = σ(hi

t) +
δ2t − δ2T

1− δ2
p(Di)(1− p(Di)) + O(T 3 exp(−KjT

1/3)). (29)

Proof. See Appendix.

This completes the proof of Proposition 3.

Remark. If assumption (15) fails, then Proposition 3 holds with a modified version of the
reward function W j

C . Specifically, in the event Φj
T we let

W j
C(hj

T ) = V j(X(hj
T ))−Lj −

T−1∑
s=0

ljsy
j
s, where V j(x) = Gi

C − βj(Xj
C − x) + αj(Xj

C − x)2

as before. Then

M j(t+1)−M j(t) =
δt+1

(1 + δ)
(p(Di)+ p(Ci))+

1− δ

2αj

(∑T−1
s=t+1 ljs

δt+1 − δT
−
∑T−1

s=t ljs
δt − δT

)
+ δt 1− δ

2(1 + δ)
.
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We can ensure that

M j(t + 1)−M j(t) = δt p(Di, 1i) + p(Ci, 0i)

2
∈ (δtp(Di, 1i), δtp(Ci, 0i))

by choosing Lj = O(const) and ljs = O(T−1) appropriately.

5 Conclusions.

We show that patient players can attain efficiency in games with private monitoring even
when signals are imperfect and correlated among players. Existing literature has found
efficient equilibria only under the limiting assumptions of almost perfect, almost public or
conditionally independent signals.

Let us summarize the main elements of our construction. Along the way, we comment on
how our methods extend to general games and signal structures.

In our equilibrium, each player i is indifferent between two strategies D̂i and Ĉi in every
review phase, independently of the beliefs about his opponent’s strategy. The indifference
condition holds because of a reward function at the end of each review phase, implemented
by the opponent’s mixing between D̂i and Ĉi.

Strategy D̂i involves defection in every period. When player i follows D̂i, he implements
a reward function that is linear in the discounted count of good signals he receives during
the review phase. This reward function makes player j indifferent between all strategies.
This property is convenient, because at this point we have not constructed strategy Ĉi yet.

A linear reward function rewards player j even if j defects in all periods of the review
phase. Assumption 2 makes sure that such a function does not create too much value. For
a general game, in which we attempt to sustain an efficient action profile (Ci, Cj) with the
threat of a static Nash equilibrium (Di, Dj), there is a linear reward function that makes
player j weakly prefer both Dj and Cj to all other actions during the review phase if j’s
actions are identifiable through i’s signals. We need an analogue of Assumption 2 for a
general game to make sure that the strategy D̂i destroys enough value.

Strategy Ĉi involves cooperation in all periods in the event Φi
T , which occurs with prob-

ability nearly 1. In the event Φi
T , player i assigns a linear reward function V perturbed

by a small quadratic term. The quadratic term ensures that player j prefers to continue
defecting if he has defected once, and to continue cooperating if he has cooperated once
(in the event Φj

T ). With a general signal structure, such a construction is possible, for
example, if player i has a sufficiently private signal yi about j’s cooperation or defection,
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such that
π(yi|Ci, Dj, yj) < π(yi|Ci, Cj, ỹj)

for any two signals yj, ỹj of player j. Then, if player j always cooperates, his beliefs about
the discounted counts of i’s signals do not overlap with his beliefs if he always defects,
independently of the private signals that i receives.

The event ¬Φi
T includes histories for which the reward function V exceeds the upper bound

Gj
C on rewards that player i can assign. In the event ¬Φi

T we can define player i’s reward
function in such a way that makes player j indifferent between all strategies, independently
of the actions of player i. Then only rewards and punishments in the event Φi

T are relevant
for the incentives of player j. To prevent the unraveling of incentives, player j must assign
a very small probability to the event ¬Φi

T in the event Φj
T , when player i is cooperating in

every period. Such a conclusion requires an additional assumption for general games. For
our Prisoners’ Dilemma, we can construct the events Φi

T and Φj
T appropriately because the

good signals received by each player are positively correlated.

We conclude that the ideas of this paper extend directly to general games with private
monitoring under appropriate assumptions. In fact, although the construction of efficient
equilibria can be quite complex, attaining efficiency under weaker assumptions seems fea-
sible since the ingredients of the construction are quite amenable to adjustments. We
conjecture that the Folk Theorem holds for general games with imperfect private monitor-
ing with full support, under only one assumption that each player can identify the actions
of his opponent from his private signal.13

A Appendix.

A.1 Proof of Proposition 1.

Proof. For any T -period strategy of player i, his expected total payoff is

E

[
T−1∑
s=0

δsgi(ai
sD

j) + δT W j
D(hj

T )

]
= E

[
T−1∑
s=0

δs(gi(ai
sD

j) + Ki
D yj

s)

]
+ δT Gi

D

=
T−1∑
s=0

δs(gi(DiDj) + Ki
D π(1j|DiDj)) + δT Gi

D = Gi
D,

13We say that signals have full support if each profile of private signals realizes with positive probability
given any action profile.
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since the expectation of gi(ai
sD

j) + Ki
D yj

s is the same regardless of whether player i coop-
erates or defects in period s (by the definition of Ki

D). Therefore, any T -period strategy of
player i is an optimal response. Notice that

Gi
D =

gi(DiDj) + Ki
D π(1j|DjDi)

1− δ
.

Now, from Assumption 2, we have the following:

π(1j|DjDi)(gi(CiCj)− gi(CiDj)) < π(1j|DjCi)(gi(CiCj)− gi(DiDj)) ⇒

gi(DiDj)π(1j|DjCi)− gi(CiDj)π(1j|DjDi) < gi(CiCj)(π(1j|DjCi)− π(1j|DjDi)) ⇒

Gi
D =

gi(DiDj) + Ki
Dπ(1j|DjDi)

1− δ
=

gi(DiDj)π(1j|DjCi)− gi(CiDj)π(1j|DjDi)

(1− δ)(π(1j|DjCi)− π(1j|DjDi))
<

gi(CiCj)

1− δ
.

A.2 Proof of Lemma 1.

Proof. In this proof, we use simplified notation

p(ai) = π(1j|Cjai) and p(ai, yi) = π(1j|Cjai, yi).

We assume that player i cooperates in all remaining periods to bound Pr[¬Φi
s | hi

t] from
above, since cooperation by player i only increases this probability. Then, conditional on
hi

t, yj
u for u = 0, . . . T − 1 are independent. We have yj

u = 1 with probability p(ai
u, y

i
u) for

u < t and with probability p(Ci) for u ≥ t. When s ≤ t, the mean of X(hj
s) conditional on

hi
t is

s−1∑
u=0

δup(ai
u, y

i
u) ≤

s−1∑
u=0

δup(Ci, yi
u) = X(hi

s)(p(Ci, 1i)− p(Ci, 0i)) +
1− δs

1− δ
p(Ci, 0i) ≤

(
1− δs

1− δ
π(1i|CiCj) + T 1/6σj

C

)
(p(Ci, 1i)− p(Ci, 0i)) +

1− δs

1− δ
p(Ci, 0i) =

T 1/6σj
C(p(Ci, 1i)− p(Ci, 0i)) +

1− δs

1− δ
p(Ci),

since π(1i|CiCj)(p(Ci, 1i)− p(Ci, 0i)) + p(Ci, 0i) = p(Ci). Similarly, when s > t, the mean
of X(hj

s) conditional on hi
t is also less than or equal to

T 1/6σj
C(p(Ci, 1i)− p(Ci, 0i)) +

1− δs

1− δ
p(Ci).
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By Hoeffding’s inequality (see Hoeffding (1963))14

Pr

[
X(hj

s) ≥
1− δs

1− δ
p(Ci) + T 1/6σj

C | h
i
t

]
≤

exp

(
−2(T 1/6σj

C(1− p(Ci, 1i) + p(Ci, 0i)))2∑s−1
u=0 δ2u

)
≤ exp(−KjT

1/3),

since (σj
C)2 =

∑T−1
u=0 δ2up(Ci)(1− p(Ci)).

Therefore, for any s = 1, . . . T,

Pr
[
¬Φj

s | hi
t

]
≤

s−1∑
u=0

Pr

[
X(hj

u) ≥
1− δu

1− δ
p(Ci) + T 1/6σj

C | h
i
t

]
≤ T exp(−KjT

1/3) (30)

when player j cooperates in every period of the review phase.

A.3 Proof of Proposition 2.

Proof. For players i = 1, 2, define recursive strategies C̄i and D̄i of the infinitely repeated
game as follows. Let us divide the timeline into T -period review phases. Strategy C̄i starts
with the T -period substrategy Ĉi, and D̄i starts with D̂i. In all but the initial review phase,
the player’s T -period strategy depends on his private history and strategy in the previous
review phase. If player i has played Ĉi in the previous review phase and has observed
private history hi

T , then in the new review phase he follows the strategy{
Ĉi with probability (W i

C(hi
T )−Gj

D)/(Gj
C −Gj

D)

D̂i with probability (Gj
C −W i

C(hi
T ))/(Gj

C −Gj
D),

thereby assigning to the opponent an expected payoff of W i
C(hi

T ). Similarly, if player i
has followed D̂i in the previous review phase and has observed private history hi

T , then
in the new review phase player i mixes between D̂i and Ĉi to deliver to his opponent a
continuation payoff of W i

D(hi
T ).

Notice that the strategies C̄i and D̄i have different starting regimes but the same transition
rule between review phases (depending on the previous-phase strategy and private history).

14Hoeffding’s inequality implies that whenever δsSj
s ∈ [0, δs] are independent random variables (condi-

tionally on hi
t), we have

Pr
[
X(hj

s)− E[X(hj
s)|hi

t] ≥ M |hi
t

]
≤ exp

(
− 2M2∑s−1

u=0 δ2s

)
.
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Let us show that both C̄i and D̄i are best responses to C̄j and D̄j. From the properties of
these strategies outlined in the statement of the proposition, it follows immediately that
Gi

C is the payoff in response to C̄j from any strategy that involves Ĉi or D̂i in each review
phase, and in particular strategies C̄i and D̄i. Similarly, Gi

D is the payoff in response to D̄j

from any of those strategies.

Let us show that Gi
C and Gi

D are the maximal expected payoffs that player i can achieve
in response to C̄j and D̄j. If not, let ĀC and ĀD be strategies that achieve the maximal
expected payoffs of F i

C ≥ Gi
C and F i

D ≥ Gi
D (with at least one strict inequality) in response

to C̄j and D̄j, respectively. Without loss of generality, assume that F i
C −Gi

C ≥ F i
D −Gi

D.

Consider player i playing ĀC in response to C̄j. At the end of the first review phase,
conditional on hi

T and hj
T , player i’s expected payoff from the rest of the game cannot be

greater than

δT W j
C(hj

T )−Gi
D

Gi
C −Gi

D

F i
C + δT Gi

C −W j
C(hj

T )

Gi
C −Gi

D

F i
D ≤

δT (F i
C −Gi

C) + δT W j
C(hj

T )−Gi
D

Gi
C −Gi

D

Gi
C + δT Gi

C −W j
C(hj

T )

Gi
C −Gi

D

Gi
D = δT (F i

C −Gi
C + W j

C(hj
T )).

Then, player i’s expected payoff at time 0 cannot be greater than

E

[
T−1∑
s=0

δsgi(ai
sa

j
s) + δT (F i

C −Gi
C + W j

C(hj
T )) | ĀC , Ĉj

]
≤ δT (F i

C −Gi
C) + Gi

C

by (10). This is less than F i
C , a contradiction. We conclude that both C̄i and D̄i are best

responses to C̄j and D̄j.

Now, for any pair of payoffs (w1, w2) ∈ [G1
D, G1

C ] × [G2
D, G2

C ], one Nash equilibrium that
achieves it is (

w1 −G2
D

G2
C −G2

D

C̄1 +
G2

C − w1

G2
C −G2

D

D̄1,
w2 −G1

D

G1
C −G1

D

C̄2 +
G1

C − w2

G1
C −G1

D

D̄2

)
.

This Nash equilibrium can be made into a Perfect Bayesian Equilibrium by defining the
players’ actions appropriately after off-equilibrium path private histories.

A.4 Proof of Lemma 2.

Proof. Let us alter player j’s strategy to let him cooperate in all periods. Then for all
s = 1 . . . T, the entire joint distribution of s-period private histories in the event Φj

s remains
unaffected, since j’s strategy has been altered only outside the event Φj

s. Both (20) and
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(21) are unaffected by this change because they are conditioned on Φj
T (so Φj

s is true for
any s). The probabilities (19) are also unaffected because once ¬Φj

s is true for some s, then
¬Φj

u is true for all u > s and therefore the actions that are taken in the event ¬Φj
s do not

affect the probabilities of ¬Φj
u for u > s. Therefore, throughout the proof, without loss of

generality we assume player j is cooperating in all periods.

Fix a history hi
t ∈ Φi

t. Then, by Lemma 1,

Pr
[
¬Φt

T | hi
t

]
≤ exp(−KjT

1/3). (31)

We can immediately justify (19):

Pr
[
¬Φj

T | h
i
t, Φ

j
t

]
=

Pr
[
¬Φj

T | hi
t

]
− Pr

[
¬Φj

t | hi
t

]
1− Pr

[
¬Φj

t | hi
t

] ≤ Pr
[
¬Φj

T | h
i
t

]
≤ T exp(−KjT

1/3)).

For the estimates (20) and (21), we assume that player i cooperates in all remaining periods
s = t, . . . T − 1. Observe that X(hj

T ) ∈ [0, T ), and that E[X(hj
T )|hi

t, Φ
j
T ] is between

E[X(hj
T )|hi

t, Φ
j
t ]− TPr[¬Φj

T | hi
t, Φ

j
t ]

1− Pr[¬Φj
T | hi

t, Φ
j
t ]

and
E[X(hj

T )|hi
t, Φ

j
t ]

1− Pr[¬Φj
T | hi

t, Φ
j
t ]

.

Since Pr[¬Φj
T | hi

t, Φ
j
t ] ≤ T exp(−KjT

1/3) by Lemma 1 and E[X(hj
T )|hi

t] = O(T ), we have

E[X(hj
T )|hi

t, Φ
j
T ] = E[X(hj

T )|hi
t, Φ

j
t ] + O(T 2 exp(−KjT

1/3))

and also
E[X(hj

T )|hi
t, Φ

j
T ]2 = E[X(hj

T )|hi
t, Φ

j
t ]

2 + O(T 3 exp(−KjT
1/3)).

Similarly, E[X(hj
T )2 | hi

t, Φ
j
T ] is between

E[X(hj
T )2|hi

t, Φ
j
t ]− T 2 Pr[¬Φj

T | hi
t, Φ

j
t ]

1− Pr[¬Φj
T | hi

t, Φ
j
t ]

and
E[X(hj

T )2|hi
t]

1− Pr[¬Φj
T | hi

t, Φ
j
t ]

.

Thus,
E[X(hj

T )2 | hi
t, Φ

j
T ] = E[X(hj

T )2|hi
t, Φ

j
t ] + O(T 3 exp(−KjT

1/3)).

It follows that

V ar[X(hj
T )2 | hi

t, Φ
j
T ] = E[X(hj

T )2 | hi
t, Φ

j
T ]− E[X(hj

T ) | hi
t, Φ

j
T ]2 =
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E[X(hj
T )2 | hi

t, Φ
j
t ]− E[X(hj

T ) | hi
t, Φ

j
t ]

2 + O(T 3 exp(−KjT
1/3)) =

V ar[X(hj
T ) | hi

t, Φ
j
t ] + O(T 3 exp(−KjT

1/3)).

Equations (20) and (21) follow, because when player i chooses the same action ai from
period t onwards, then

E[X(hj
T ) | hi

t, Φ
j
t ] = µ(hi

t) +
δt − δT

1− δ
p(Ci) and (32)

V ar[X(hj
T ) | hi

t, Φ
j
t ] = σ2(hi

t) +
δ2t − δ2T

1− δ2
p(Ci)(1− p(Ci)). (33)

A.5 Proof of Lemma 3.

Proof. Suppose at time t player i believes that Xj
t has mean and variance µ and σ2. Then

V̂ai(t, µ, σ2) is player i’s expected payoff from choosing action ai ∈ {Ci, Di} in the remaining
periods of the review phase, since i’s beliefs about X(hj

T ) have mean and variance

µ +
δt − δT

1− δ
p(ai) and σ2 +

δ2t − δ2T

1− δ2
p(ai)(1− p(ai))

respectively, and E[V j(x)] = V j(E[x]) + αjV ar[x] for the quadratic function V j. M j(t) is
defined so that V̂Ci(t, µ, σ2) = V̂Di(t, µ, σ2) when µ = M j(t). Since

d

dµ
V̂Ci(t, µ, σ2) >

d

dµ
V̂Di(t, µ, σ2),

for all t, µ and σ, it follows that V̂Ci(t, µ, σ2) ≥ V̂Di(t, µ, σ2) if and only if µ ≥ M j(t).
Therefore, the conclusion of Lemma 3 follows if we show that V̂ i(t, µ, σ2) is player i’s
expected payoff from the optimal strategy.

Let us prove this game by backward induction on t. Trivially, it holds for t = T. Assuming
that it holds for time t + 1, let us prove it for time t.

Suppose that µ ≥ M j(t). If player i cooperates once, he prefers to cooperate in all future
periods and gains the payoff of V̂Ci(t, µ, σ2), because

µ + δtp(Ci, 1i) > µ + δtp(Ci, 0i) ≥ µ + δt p(Ci) + p(Di)

2
≥ M j(t + 1).
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This payoff exceeds player i’s payoff from defecting once and acting optimally in all remain-
ing periods by Lemma 5 below. Therefore, V̂Ci(t, µ, σ2) is the maximal expected payoff that
player i can achieve at time t if µ ≥ M j(t). A similar argument implies that V̂Di(t, µ, σ2)
is player i’s maximal expected payoff if µ ≤ M j(t).

Lemma 5. When µ ≥ M j(t), then

V̂Ci(t, µ, σ2) ≥ 2δT αj(µ−M j(t))(p(Ci)− p(Di))+

π(1j|CjDi)V̂ i(t + 1, µ + δtp(Di, 1i), σ2 + δ2tp(Di, 1i)(1− p(Di, 1i)))

+π(0j|CjDi)V̂ i(t + 1, µ + δtp(Di, 0i), σ2 + δ2tp(Di, 0i)(1− p(Di, 0i))) + δtgi(DiCj). (34)

Proof. Note that (34) holds with equality at µ = M j(t) by the definition of M j(t). To
prove (34) for µ > M j(t) let us show that the derivative of the left hand side with respect
to µ exceeds the derivative of the right hand side by at least 2δT αj(p(Ci)− p(Di)).15 The
derivative of the left hand side with respect to µ is

δT (V j)′(µ +
δt − δT

1− δ
p(Ci)) = 2δT αj(µ + δtp(Ci) +

δt+1 − δT

1− δ
p(Ci)−Xj

C) + δT βj. (35)

The derivative of the right hand side is

π(1j|CjDi)(V j)′(µ + δtp(Di, 1i) +
δt+1 − δT

1− δ
p(ai(1)))+

π(0j|CjDi)(V j)′(µ + δtp(Di, 0i) +
δt+1 − δT

1− δ
p(ai(0))) ≤

π(1j|CjDi)(V j)′(µ + δtp(Di, 1i) +
δt+1 − δT

1− δ
p(Ci))+

π(0j|CjDi)(V j)′(µ + δtp(Di, 0i) +
δt+1 − δT

1− δ
p(Ci)) =

2δT αj(µ + δtp(Di) +
δt+1 − δT

1− δ
p(Ci)−Xj

C) + δT βj, (36)

where ai(1) and ai(0) are the actions player i chooses to follow in all remaining periods
after he defects once and observes signal 1i or 0i. The difference between (35) and (36) is
2δT αj(p(Ci)− p(Di)).

15The derivative of the right hand side exists everywhere except for two kink points.
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A.6 Proof of Lemma 4.

By an argument analogous to Lemma 1, we can conclude that if player j cooperates in
every period and hi

t involves only defection by player i, then

Pr[¬Φj
T | h

i
t] ≤ exp(−KjT

1/3).

To see that this argument goes through, the key observation is that the mean of X(hj
s)

conditional on hi
t is

s−1∑
u=0

δup(Di, yi
u) ≤

s−1∑
u=0

δup(Di, 1i) < T 1/6σj
C(p(Ci, 1i)− p(Ci, 0i)) +

1− δs

1− δ
p(Ci).

Estimates (27), (28) and (29) follow from an argument identical to Lemma 2, with Ci

replaced by Di in (32) and (33).

A.7 Lemma 6.

Lemma 6. Suppose that player j is following a strategy from class Zj. If hi
t ∈ Φi

t, then

E[X(hj
t) | hi

t, Φ
j
t ] =

t−1∑
s=0

δsp(ai
s, y

i
s) + O(T 2 exp(−KjT

1/3)) (37)

Proof. As in the proof of Lemma 2, we can assume that player j is cooperating in all
periods to evaluate E[X(hj

t) |hi
t, Φ

j
t ]. Observe that X(hj

t) ∈ [0, t), and that E[X(hj
t)|hi

t, Φ
j
t ]

is between
E[X(hj

t)|hi
t]− tPr[¬Φj

t | hi
t]

1− Pr[¬Φj
t | hi

t]
and

E[X(hj
T )|hi

t]

1− Pr[¬Φj
t | hi

t]
.

Since E[X(hj
t)|hi

t] = O(t) and Pr[¬Φj
t | hi

t] ≤ T exp(−KjT
1/3) by Lemma 1, we have

E[X(hj
t)|hi

t, Φ
j
t ] = E[X(hj

t)|hi
t]+O(T 2 exp(−KjT

1/3)) =
t−1∑
s=0

p(ai
s, y

i
s)+O(T 2 exp(−KjT

1/3)).
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A.8 Proof of Proposition 4.

Proof. We will use Kakutani’s fixed point theorem to prove Proposition 4.

Consider player i’s best response strategies Ĉj ∈ Zj with reward functions W j
C given by

Definition 2 for αj = T−2 and some βj = Ki
C + O(T−1). Proposition 3 implies that there

exists a constant L > 0 such that i’s best response is D̂i whenever βj ≤ Ki
C −L, and some

Ĉi ∈ Zi whenever βj ≥ Ki
C + L, for all sufficiently large T.

Consider the lowest value of βj for which at least one strategy from class Zi is at least as
good as D̂i in response to a given strategy Ĉj ∈ Zj. For that value of βj, denote by Φi(Ĉj)
the set of all such strategies from class Zi. By continuity of payoffs in strategies, Φi(Ĉj) is
nonempty and player i is indifferent between any strategy in Φi(Ĉj) and D̂i. By linearity
of payoffs in mixed strategies (here we think about mixtures over pure strategies from Zi),
the set Φi(Ĉj) is convex.

Let us prove that the correspondence Φi is upper semi-continuous. Consider sequences
Ĉi

n → Ĉi and Ĉj
n → Ĉj such that Ĉi

n ∈ Φi(Ĉj
n) for all n. Let us show that Ĉi ∈ Φi(Ĉj).

Denote by βj
n the lowest value of βj for which Ĉi

n is at least as good as D̂i in response to
Ĉj

n. Without loss of generality, assume that βj
n → β̃j (otherwise we can take a convergent

subsequence). Then, by continuity, among all strategies from Zi, Ĉi gives player i the
highest payoff in response to Ĉj when βj = β̃j. This payoff equals player i’s payoff from
D̂i. It follows that Ĉi ∈ Φi(Ĉj) if we show that for any βj < β̃j, D̂i is strictly better than
any strategy from Zi in response to Ĉj. Suppose not, i.e. Ĉ′ ∈ Zi is better than D̂i for
some β′ < β̃j. Since player i’s payoff is linear in βj and D̂i is his strict best response for
all sufficiently small βj by Proposition 3, it follows that Ĉ′ is strictly better than D̂i in
response to Ĉj for βj = β̃j > β′, a contradiction.

We conclude that the correspondence (Ĉ1, Ĉ2) → (Φ1(Ĉ2), Φ2(Ĉ1)) from Z1×Z2 to itself is
convex-valued, nonempty-valued, and upper hemi-continuous. By Kakutani’s fixed point
theorem, there are strategies Ĉ1 and Ĉ2 such that Ĉ1 ∈ Φ1(Ĉ2) and Ĉ2 ∈ Φ2(Ĉ1). Then for
i = 1, 2 in response to Ĉj, a player i is indifferent between Ĉi and D̂i for W j

C defined by an
appropriate value of βj = Ki

C + O(T−1). This completes the proof of Proposition 4, since
by Proposition 3, it is always optimal to follow D̂i or a strategy from Zi in response to any
strategy from Zj with a reward function W j

C given by Definition 2.

29



A.9 Proof of Proposition 5.

Proof. We rely on our derivations and notation from the proof of Proposition 3. Using the
lower bound (25) on player i’s payoff,

Gi
C ≥ V̂Ci(0, 0, 0) + O(T 2 exp(−KjT

1/3)) =

1− δT

1− δ
gi(CiCj)+δT V j

(
1− δT

1− δ
p(Ci)

)
+δT αj

(
1− δ2T

1− δ2
p(Ci)(1− p(Ci))

)
+O(T 2 exp(−KjT

1/6)) >

1− δT

1− δ
gi(CiCj) + δT (Gi

C − βjT 1/6σj
C) + δT αj(σj

C)2 + O(T 2 exp(−KjT
1/6)) ⇒

(1− δT )Gi
C >

1− δT

1− δ
gi(CiCj)− δT βjT 1/6σj

C + O(T 2 exp(−KjT
1/3)) ⇒

(1− δ)Gi
C > gi(CiCj)− βjO(T−1/3).
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