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Abstract

The ability to detect and analyze a human figure is key to our
survival and social interactions. Efficient and robust identifi-
cation of body parts can help to interpret images when bodies
are partially occluded. While previous studies emphasized the
configural processing of whole bodies using simplified stimuli,
it still remains unclear how spatial contexts about body parts
are integrated to resolve ambiguities (e.g., from occlusion) re-
garding the identities of or spatial relations among body parts.
In a series of online experiments, we asked human observers
to identify an ambiguous target body part in the presence of
another “context” part. Our results showed that humans can
use various amounts of spatial context to discount local ambi-
guities in natural images of pairs of parts, and are sensitive to
low- and mid-level cues such as alignment and connectedness.
Further simulations using deep convolutional neural networks
(DCNNs) exhibited comparable similar sensitivity to spatial
context variations, despite being trained solely on local part
appearances without explicit prior knowledge of body struc-
ture. However, discrepancies between human and model per-
formance were also observed, with humans showing greater
sensitivity to spatial relations compared to the models. Our
findings suggest that while both humans and models utilize
low- and mid-level features for body part recognition, humans
possess a stronger prior knowledge of body structure that in-
fluences their perception. These results contribute to our un-
derstanding of how humans integrate spatial context to resolve
ambiguities and provide insights into the computational mech-
anisms underlying body perception.

Keywords: human body parts; spatial relations; natural im-
ages; psychophysics; model simulation

Introduction

Recognizing and interpreting the rich visual information con-
veyed by human bodies is a computationally demanding task
that is crucial for human survival and daily social interactions.
This task involves dealing with substantial appearance varia-
tions caused by factors such as clothing, viewpoint, lighting,
poses, and occlusion. To accomplish this, the human brain
must engage in complex computations to extract meaningful
features and integrate them into coherent representations of
the body. Previous research has primarily focused on config-
ural processing of bodies, which proposes that the human vi-
sual system integrates information from multiple body parts
to form a coherent whole-body representation (Reed et al.,
2003, 2006; Stekelenburg & de Gelder, 2004). The human
visual system relies on specific configural information, such
as relative positions and distances among body parts, to form
a complete global representation of a body, especially in sim-
plified stimuli such as stick figures and point-light walkers

(Johansson, 1973). However, an open question remains as to
how local information extracted across different body parts
can be integrated and utilized to resolve local ambiguities in
body figures, which could facilitate establishing a configu-
ral representation of whole bodies, particularly in scenarios
where only limited visible parts are available due to partial or
heavy occlusion.

Despite limited spatial context, previous research has
demonstrated that the human visual system is capable of ef-
fectively utilizing local information in natural images to con-
sistently recognize partially visible objects and object parts,
even when they are severely reduced in size or resolution
(McDermott, 2004; Ullman et al., 2016). This capability ex-
tends to body perception, with recent research showing that
humans can identify body parts with above-chance-level ac-
curacy, even when only 40% of the part is visible in an im-
age patch (Liu & Kersten, 2022). In fact, in natural images,
views of only a limited number of parts can be sufficient to
constrain the localization and interpret the identities of other
hidden parts as well as the configuration of a full body pos-
ture. In contrast to relying on whole body structures or mo-
tions for part identification in context-free body figures (e.g.,
point-light walkers and stick figures), each sub-region of a
static natural image offer a wealth of spatial contextual cues
necessary for interpreting complex everyday scenes. How-
ever, it is currently not well understood how the spatial con-
text of body parts in natural images contribute to resolving
local ambiguities (e.g., from occlusion) and facilitating the
recognition of identities or spatial relationships among body
parts. Computational studies have demonstrated that by rec-
ognizing individual parts and their spatial relationships with
only one nearby part, it is possible to reconstruct whole 2D
poses from natural images without the need for a whole-body
prior model (Chen & Yuille, 2014). In order to investigate this
question in humans, we examined human ability to identify
natural image patches of pairs of body parts with varying spa-
tial contexts. The utilization of natural images allowed us to
encompass the real-world complexity and variations in body
part appearance and context. By incorporating rich low- (e.g.,
edge, color, brightness) and mid-level (e.g., contour, shape,
texture) features inherent in these natural images, we could
explore the role and importance of these features in body per-
ception in a more ecologically valid manner. Moreover, by

5focusing on pairs of body parts, we are able to investigate
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Figure 1: Illustration of stimuli generation (left) and experimental procedures (right).

local-to-local interactions between body parts with system-
atically varied contextual information, while minimizing po-
tential confounds from global configural processing.

In a series of online experiments, we presented human ob-
servers with pairs of body parts and asked them to identify an
ambiguous partially visible target body part in the presence
of another “context” part (Figure 1). In Experiment 1, we
varied the spatial relations (proper or improper) between the
target parts and the context parts, and included image patches
of different sizes to examine the effect of varying amounts
of spatial context on the informativeness of the context parts
(Figure 2a and 2b). In Experiment 2, we investigated the in-
fluence of local feature congruency between target and con-
text parts. Specifically, we rotated the context parts at relative
angles ranging from 0 to 180 degrees while maintaining their
size constant (Figure 2c). In this way, we introduced “align-
ment” as another important type of spatial relation between
body parts, where alignment was gradually disrupted from O
to 90 degrees and recovered from 90 to 180 degrees in a re-
versed direction. We also considered spatial relations of ad-
jacency, and specifically examined the factor of “connected-
ness” between two body parts. Different pairs of parts were
divided into groups of skeletally connected or unconnected
pairs (Figure 2a) for data analysis in both experiments. Re-
search has shown that humans are sensitive to proper spatial
context and congruency of features among local regions and
parts in general scenes (Bar & Ullman, 1996; Mannion et al.,
2015; Kaiser & Peelen, 2018). In this study, we hypothesized
that improper spatial relations or incongruent contextual cues
between body parts would disrupt the identification of an am-
biguous body part, whereas proper spatial relations and con-
gruent cues would facilitate the disambiguation of body parts.

To gain further insights, we contrasted human behav-
ior with computational models on the same tasks to assess
their sensitivity to spatial context in pairwise part relations.
Specifically, we fine-tuned two widely-used feedforward DC-
NNs, VGG-19 and ResNet-50, by training both models us-
ing pairs of intact body part image patches with proper spa-
tial relations. The VGG-Networks (Simonyan & Zisserman,
2014) are renowned for their simplest feedforward architec-
ture that closely resemble the primate ventral visual stream
(Tripp, 2017), while the residual neural networks (ResNets)

are known for their faster speed and improved performance
with deeper architecture and more efficient computational
techniques (He et al., 2016). We evaluated the performance
of both models on the same stimuli sets with partially visi-
ble body parts and systematically varied spatial context, as
presented to human observers in Experiments 1 and 2. We
expected to observe similarities and differences in the per-
formance and sensitivity of humans and models to varying
spatial contexts between body parts. Taken together, our re-
sults provided both behavioral and computational evidence in
the human visual representations of various spatial relations
between pairs of body parts. The results could pave the way
for future exploration of finer-grained whole-body represen-
tations and underlying neural mechanisms.

Method
Human Psychophysics

Stimuli Image patches of body parts were generated from
Leeds Sports Pose (LSP) dataset (Johnson & Everingham,
2010), a widely used benchmark human pose dataset com-
posed of 2000 natural images of sportspersons. To ensure
a good resolution, we only used images with a head length
(i.e., the Euclidean distance between the head and neck co-
ordinates) exceeding approximately 60 pixels, which were
then downscaled to have a standard head length of 60 pixels.
We selected a subset of 340 images for stimuli generation,
which included diversified poses from a variety of activities
with relatively balanced viewpoints (i.e., frontal, back, and
side views), pose typicality, and occlusion levels to ensure
the representativeness of the dataset.

We first generated image patches of individual body parts
to acquire the baseline performance on single body part iden-
tification, which were then used to select pairs of target parts
and context parts (see details in “Baseline data” and selection
criteria below). In the experiments, six major joints of a head-
less body: shoulder, elbow, wrist, hip, knee, and ankle, were
tested. The body part categories were not further subdivided
into left and right sides. The image patches were centered on
one of the six body parts (on either side) of the primary per-
son in each image, and were cropped into circular shapes of
three sizes: 36, 48, and 60 pixels in diameter, corresponding
to visual angles of 3 to 5 degrees respectively. The sizes were
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chosen to match the estimated head length (i.e., 60 pixels) of
the primary person in each image after scaling, and to ensure
that a single intact body part with minimal background in-
terference was presented at the largest size (i.e., at 60 pixels
diameter).

After the baseline testing, pairs of target and context parts
were selected for the formal experiments based on the fol-
lowing criteria: (1) target image patches with an average ac-
curacy below 50% at the smallest size (i.e., 36 pixels) were
chosen, while context image patches were selected with an
average accuracy above 80% at the largest size (i.e., 60 pix-
els); (2) both target and context image patches were cropped
from the same person in an image; (3) neither target nor con-
text image patch included any other body parts, i.e., there was
no significant occlusion that could affect the validity of the
ground truth label. This way, for each pair of body parts, the
targets were “hard image patches” that were difficult to rec-
ognize by their own local features, while the context image
patches were reliably recognizable and could provide infor-
mative cues at their full appearance. There were a total of
72 pairs of target and context image patches qualified for the
formal experiments, and another 12 pairs were selected as ex-
ample stimuli for practice trials.

In Experiment 1, we varied the spatial relations between
body parts for each pair of body parts in two conditions:
proper spatial relation, where the relative position was re-
tained as in the original image, and improper spatial relation,
where the body parts were presented side-by-side. We also
varied the sizes of the context image patch, with circles of
36, 48, and 60 pixels in diameter, respectively. In Experi-
ment 2, we manipulated the congruency between two image
patches in each pair by rotating the context image patches,
while maintaining their relative spatial positions. The context
image patches were rotated at 0, 30, 60, 90, 135, and 180 de-
grees. The sizes of the target and context image patches were
fixed at 36 and 60 pixels, respectively.

Data Collection The data was collected online from Pro-
lific.co, an online platform for behavioral studies (Palan &
Schitter, 2018). Prior to both baseline testing and formal
experiments, a “virtual-chinrest” testing procedure (Li et al.,
2020) was adopted. Stimuli were calibrated based on the es-
timated viewing distance and measured monitor size, such
that image patches of the smallest size (i.e., 36 pixels) sub-
tended approximately 3 degrees of visual angle. Abnormal
operations, such as exiting full-screen mode or switching to
other windows during the experiment, were recorded to ex-
clude data from later analysis.

Baseline Data  Sixty-four observers (28 females, 36 males)
were tested on individual image patches of body parts that
were later used as baseline measurements for selecting qual-
ified pairs of image patches in the formal experiments. Each
observer completed 1020 trials of a body part identification
task, where the size of the image patch varied from trial to
trial, with diameters of 36, 48, or 60 pixels. The number of
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Figure 2: Illustration of stimuli generation (left) and experi-
mental procedures (right).

trials was balanced across different levels of sizes and cate-
gories of body parts for each participant. This resulted in an
average of 15 data points for each image patch in the baseline
testing set.

Experiment 1: Spatial Relations

Two groups of 30 participants each were recruited for the
proper and improper spatial relation conditions, respectively.
The task procedure was the same for both conditions, as il-
lustrated in Figure 1. In each trial, participants first fixated
on a cross for 500 ms, after which a pair of image patches
was presented at the center of the screen for 2000 ms. The
target image patch was circled in red. Participants were then
asked to select a label name from the six categories to indicate
which body part they saw in the target aperture. Participants
were encouraged to provide their best guess if they were un-
sure of the answer, and at least one response was required
for each trial. There were no time limits for responses, and
feedback was given after each response. The next trial was
automatically initiated 500 ms after the end of the previous
trial. Each participant completed 72 trials, with each pair of
image patches presented once at a randomly selected size of
the context image patch (Figure 2b). The number of trials for
each level of the size of context parts and categories of tar-
get parts was balanced across all trials for each participant.
In the proper spatial relation condition, pairs of body parts
were presented with proper relative positions as in the orig-
inal image, while in the improper spatial relation condition,
two body parts were presented side by side, as shown in Fig-
ure 2a.

Experiment 2: Congruency of Spatial Context

A total of 121 observers participated in Experiment 2. The
experimental procedure was the same as in Experiment 1, ex-
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Figure 3: Illustration of model simulations. Binary masks
were shown for the example image of unconnected pair. See
text for detailed training procedure.

cept that each participant completed 36 formal trials, with a
balanced number of trials at each level of the rotation angle
of the context part (Figure 2c) and the category of the target
body part in a random order.

Model Simulations

Model Training We build our models on top of two state-
of-the-art feedforward deep networks, i.e., VGG-19 and
ResNet-50, both pretrained on the ImageNet classification
(Deng et al., 2009). Using the 1660 held-out images from the
LSP dataset, we created a training set consisting of pairs of
both connected and unconnected parts. To ensure consistency
with human psychophysics, all images were scaled to main-
tain a head length of approximately 60 pixels in the primary
human figure. The models were trained solely on intact body
parts with proper spatial relations, with all target and context
parts cropped at Size 60 without rotation, and presented with
retained relative positions. We included all possible combi-
nations of connected pairs among the six body parts with side
separation (i.e., only connecting the right wrist to the right el-
bow), and to maintain a balance between the number of con-
nected and unconnected pairs, we randomly sampled a subset
from each possible combination of unconnected pairs.

Each pair was centered on a black background image, ad-
justed to a standard size of 300 x 300 pixels based on the fur-
thest distance between all pairs of body parts. During train-
ing, three binary masks were utilized per image to selectively
include different regions of interest: two local masks to local-
ize the target and context parts respectively, and one global
mask that is the union of local masks, which retained infor-
mation of relative positions and global features (Figure 3).
Features extracted from masked local and global regions were
concatenated and used for target and context part classifica-
tion. We applied full-size local masks before the first layer
of the network to filter out information outside the target and
context body parts, and rescaled local and global masks af-
ter the last convolutional layers for feature extraction. The

local features for the target and context parts were directly
extracted from the last convolutional layer with masking and
global average pooling, while the global features were com-
puted by passing the masked features with two additional lay-
ers. The two types of features were concatenated together to
predict the labels for the target and context parts, respectively.

Model Evaluation The models were evaluated on the same
stimulus sets used in human psychophysics experiments.
Specifically, in Experiment 1, the models were tested with
the target parts fixed at Size 36 and evaluated on all three
sizes (36-, 48- or 60-pixel diameter) of context parts. The
context parts were presented in either proper spatial relations
with retained relative positions or improper spatial relations
presented side-by-side, relative to the target part. In Experi-
ment 2, the models were tested on all rotation levels from O
to 180 degrees. Both connected and unconnected pairs were
included. Binary masks were applied to each image, as dur-
ing the training phase, to filter the local or global regions of
interest.

Results
Experiment 1: Effects of Spatial Relations

In Experiment 1 (Figure 4A(a)), we found significant main ef-
fects of both spatial relations between target and context parts
(F(1,58) = 69.49, p < .01) and the size of the context parts
(F(2,116) = 16.17,p < .01), as well as a significant interac-
tion effect between the two variables (F(2,116) =7.68,p <
.01). In both proper and improper spatial relation conditions,
observers performed significantly better when the two body
parts are skeletally connected than with unconnected pairs
(F(1,58) =4.90,p < .05). Specifically, in the proper spa-
tial relation condition, accuracy was consistently enhanced in
identifying ambiguous target parts, compared to the baseline
performance of isolated target parts without the presence of
context parts, for both connected and unconnected pairs. The
accuracy increased linearly as a function of the size of the
context part. Whereas in the improper spatial relation con-
dition, accuracy increased monotonically as the size of the
context part increased in connected pairs, but dropped in un-
connected pairs at the largest context size, suggesting that im-
proper spatial relations caused greater interference.

Experiment 2: Effects of Spatial Context
Congruency

In Experiment 2 (Figure 4B(a)), we observed a significant
effect of the congruency of spatial context (F(5,600) =
30.81,p < .01) and connectedness between pairs of parts
(F(1,120) = 64.17,p < .01), as well as a significant interac-
tion effect between the two variables (F(5,600) = 7.08, p <
.01). Similarly, observers performed better in connected pairs
than in unconnected pairs across all rotation angles. Specifi-
cally, in unconnected pairs, identification accuracy decreased
monotonically as the rotation angle increased from 0 to 180
degrees. Whereas for skeletally connected pairs, the identi-
fication accuracy stopped dropping after 90 degrees, where
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interval.

there was maximum disruption of alignment between two
connected parts. There was an insignificant but slight in-
crease from 90 to 180 degrees, where the alignment gradually
recovered in the reversed direction, suggesting human sensi-
tivity to alignment cues regardless of direction between two
connected parts.

Model Simulations

In Experiment 1 (Figure 4A(b)), we observed that the accu-
racy of both models increased as the diameter of the context
parts increased from 36 to 48 pixels, but started to saturate or
slightly drop as it extended to 60 pixels. Moreover, our re-
sults revealed that, unlike human observers, the models were
more influenced by the connectedness of pairs of body parts
than their spatial relations, particularly in the case of ResNet-
50. Specifically, both models showed better performance on
connected pairs than unconnected pairs, irrespective of the
spatial relations between the target and context parts. How-
ever, it is noteworthy that both models still exhibited better
performance when body parts were presented in proper spa-
tial relations compared to improper ones, which is consistent
with human observers.

In Experiment 2 (Figure 4B(b)), both models exhibited a
general decrease in accuracy as the rotation angle increased
from 0 to 90 degrees for both connected and unconnected
pairs. Mixed patterns were observed after 90 degrees. Specif-
ically, ResNet-50 showed increased accuracy from 90 to 180

degrees, while VGG-19 did not show a clear pattern of ac-
curacy change in this range. Similarly, ResNet-50 was more
influenced by the connectedness of pairs than VGG-19, espe-
cially after 90 degrees of rotation.

Discussion

Our study aimed to explore the extent to which humans are
sensitive to and able to utilize local spatial context in order to
resolve local ambiguities in the identity and spatial relations
of body parts. Using natural image patches of pairs of body
parts, we were able to systematically vary the spatial con-
text between parts, allowing us to quantitatively measure hu-
man behavioral performance as functions of different spatial
relations. We specifically examined several types of spatial
relations relevant to human body and body part perception,
including relative positions, connectedness, and congruency
between local features such as alignment and direction. In
Experiment 1, we found that the proper relative positions be-
tween body parts significantly facilitated identification per-
formance, whereas disrupted relative positions caused inter-
ference in identification. Additionally, participants performed
better in both conditions when two parts were skeletally con-
nected. In Experiment 2, we observed that increasing incon-
gruence between the local features of body parts led to de-
creased identification performance. However, cues of align-
ment between the parts mitigated the effect, even when the
parts were aligned in a reversed direction. Our results provide
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behavioral evidence for human visual representations of var-
ious spatial relations between pairs of body parts. It is worth
noting that such representation is beyond merely semantic as-
sociations between pairs of parts based on their identities re-
gardless of image-dependent local part appearances. We re-
vealed the crucial role of low-level and mid-level represen-
tations in the integration of local spatial context, including
connectedness and alignment between body parts. However,
despite these observations, it remains unclear which specific
low- or mid-level image features, such as local evidence of
contour alignment, boundary ownership, or medial axis (i.e.,
the central line connecting joints) of body parts, contribute
to this phenomenon. Further research utilizing quantitative
measurements of various image features is necessary to fully
understand the underlying mechanisms of the visual repre-
sentation of spatial relations between body parts.

In addition to investigating human psychophysics, we con-
ducted model comparisons that exposed both similarities and
differences in the way humans and models represent pair-
wise part relations. By fine-tuning two DCNNs, we showed
that both models gained comparable benefits to humans from
proper spatial relations, connectedness, and local congruency
between pairs of parts, as well as an increase in the size of
contextual parts. Remarkably, despite being trained solely on
local part appearances from natural image patches of body
parts, without any explicit prior structural knowledge of bod-
ies or excessive architecture engineering, both models exhib-
ited sensitivity to various relational properties between body
parts, such as the level of connectedness and alignment. This
provided computational evidence that the utilization of low-
and mid-level features is crucial in both body part recognition
and the representation of pairwise part relations, and that mid-
level representational features, such as contour alignment and
connectivity, could be efficiently learned from pixel-based
low-level features. However, the comparison with human
performance also revealed several disparities. Firstly, mod-
els showed less sensitivity to spatial relations compared to
connectedness between parts, while humans demonstrated a
greater susceptibility to disruptions in spatial relations. We
speculate the discrepancy stems from the strong prior knowl-
edge of human body structure that humans possess, which
imposes stricter constraints on human perception. Secondly,
mixed patterns of performance were observed between the
two models, with VGG-19 exhibiting higher levels of transla-
tional and rotational invariance in terms of the relative po-
sitions and degree of rotation angles between parts. We
speculate that the discrepancies may be attributed to differ-
ent downsampling strategies employed by the models, as the
max-pooling layers utilized in VGG-19 focus primarily on
the maximum value within a local region and thus is less sen-
sitive to spatial variations.

Lastly, there are some limitations to consider and poten-
tial avenues for future research in addressing these findings.
Firstly, we did not explicitly differentiate between the fac-
tors of “connectedness” and “’proximity,” which are closely

related in the spatial relations of body parts. Future investi-
gations on the influence of relational knowledge about prox-
imity on body part perception would be valuable. This explo-
ration could involve exploring whether proximity is based on
the inherent body structure, following proximity along body
skeletons, or characterized by the frequency of co-occurrence
and proximity in relation to the relative positions between
parts in natural images. For instance, certain body parts like
the "hip” and ”wrist” may not be skeletally adjacent but could
exhibit frequent spatial proximity in natural occurrences. Pre-
vious research has suggested the existence of a distinct repre-
sentation system in human perception that captures the sta-
tistical distributions of typical spatial relations among ob-
jects and object parts in the natural world (Bonner & Epstein,
2021; Kaiser et al., 2014, 2019). However, it remains un-
clear whether such a system extends to body perception and
how the brain forms and represents such relational knowledge
about body structures. Secondly, while our study primarily
investigated pairwise relations between body parts, further
research on the integration of multiple body parts would of-
fer a more comprehensive understanding of how local con-
textual information can be effectively integrated to resolve
global ambiguities related to whole-body structure and pose
estimation. Moreover, our results have provided empirical
support for brain imaging studies on body part representa-
tion. Previous studies have identified two sub-areas in the
body selective region, the fusiform and extrastriate body ar-
eas (EBA and FBA), that exhibit distinct responses to images
of whole bodies or body parts (Urgesi et al., 2004, 2007; Tay-
lor et al., 2007). Spatial relation representations of body parts
may serve as an important intermediary link between the two
sub-areas of the body selective region. Future brain imag-
ing studies that investigate the spatial representation of body
parts in these regions are necessary, as they can provide a
finer-grained characterization of the hierarchical structure of
the body representation.

Conclusion

In summary, the current study provides novel insights into
the mechanisms by which humans visually represent vari-
ous spatial relations between body parts during natural im-
age processing, both behaviorally and computationally. The
results highlight the significance of low- and mid-level con-
textual features employed by human observers, which aid
in resolving local ambiguities, in conjunction with higher-
level structural knowledge and semantic-level associations
between body parts.
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