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The effect of bandwidth and buffer pricing on

resource allocation and QoS ?

Nan Jin and Scott Jordan

University of California, Dept. EECS
Irvine, CA 92697-2625

Abstract

Congestion-based pricing of network resources is a common approach in evolving
network architectures that support Quality of Service (QoS). Resource usage and
QoS will thus fluctuate in response to changes in price, which must be dynami-
cally controlled through feedback. Such feedback algorithms typically assume that
network resources behave as Normal goods, i.e. that an increase in the price of
a resource results in a decreased demand for that resource. Here, we investigate
the sensitivity of resource allocation and the resulting QoS to resource prices in a
reservation-based QoS architecture that provides guaranteed bounds on packet loss
and end-to-end delay for real-time applications.

We derive necessary and sufficient conditions for bandwidth and buffer to act
as Normal goods, showing that this depends on the shapes of the utility and QoS
functions. We then show that the minimum total cost is a decreasing convex function
of loss. When the delay constraints are absent or not binding, we prove that if a
resource is a Normal good, then an increase in the price of that resource causes the
loss on that link to increase, the loss on all other links to decrease, and the total loss
to increase. We also give sufficient conditions to establish that an increase in the
price for a resource results in a decreased demand for that resource, an increased
demand for the other resource at that node, and an increased demand for resources
at all other hops. Finally, when the delay constraint is binding, we give sufficient
conditions to establish that an increase in the price of bandwidth at one node results
in increased loss and delay at that node, and decreased loss and delay at all other
nodes.
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1 Introduction

Evolving network architectures that support Quality of Service (QoS) rely
on mechanisms to dynamically allocate network resources. Many papers in
the literature have proposed policies for resource allocation, including a large
number of proposals using pricing, c.f. [1–14]. While they often differ in de-
tail, many pricing methodologies set prices based upon network congestion.
Resource usage and QoS will thus fluctuate in response to changes in price,
which must be dynamically controlled through feedback.

In this paper, we investigate the sensitivity of resource allocation and QoS to
resource prices in a reservation-based QoS architecture. Such sensitivities are
crucial to guide development of price adjustment algorithms. Intuition would
lead one to believe that a increase in QoS would be paired with increases in
all network resources, i.e. that network resources act as Normal goods. One
would also expect that an increase in the price of network resources would
result in a decrease in QoS. Our principal finding is that these relationships
may not hold; indeed we derive their necessary and sufficient conditions.

As a platform for this work, we consider congestion-based pricing for real-
time applications in a network with a reservation-based QoS architecture. By
”reservation-based QoS architecture”, we include any network architecture
that can reserve bandwidth and buffer, whether for a single flow or an ag-
gregate of flows, for the purpose of QoS. Such architectures could potentially
include RSVP, MPLS, and ATM. By ”real-time applications”, we include any
applications whose QoS depends on the amount of reserved bandwidth and
buffer. In this paper, we consider packet loss probability and maximum end-
to-end delay as the QoS measures.

Common network mechanisms to ensure QoS for real-time applications in a
reservation-based QoS architecture include flow control, connection admission
control (CAC), and dimensioning. Flow control is usually applied on a time-
scale less than or equal to a round trip time, CAC on a time scale greater
than a round trip time, and dimensioning on a relatively long time scale. Any
such QoS architecture would also include many other elements, potentially
including traffic characterization, traffic measurement, application-level QoS
characterization, scheduling policies, dropping policies, and traffic smoothing.

We focus here on congestion-based pricing that addresses the CAC time-scale
and accomplishes resource reservation and admission control. Such pricing
policies typically decide what network resources to reserve for each flow (or
aggregation of flows) on the basis of how the application values QoS (com-
monly called utility) and on congestion in the network. Prices can be used to
provide a mechanism in which a minimal amount of information is exchanged
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between applications and the network in a distributed fashion.

Such pricing approaches therefore typically rely on information from both the
application and the network. In our model, we abstract what we believe are the
key relationships between these entities. On the application side, we presume
the existence of two functions, one which describes each flow (or aggregate of
flows), and one which describes how the flow measures satisfaction with its
QoS. For the flow characterization, we presume the existence of a function
that maps the number of sources in an aggregate and the amount of buffer
and bandwidth reserved at each hop into the loss probability that these flows
experience. Such a function might be derived using the literature on traf-
fic characterization. Some researchers suggest using multi-parameter models
to characterize flows, e.g. Markov-modulated Poisson processes or Markov-
modulated fluid flows (c.f. [15–18]). Many researchers have suggested using
effective bandwidth characterizations (c.f. [19–24]). However, we do not nec-
essarily need to know such a function a-priori, if we can instead measure the
loss experienced, such as often assumed in measurement-based admission con-
trol policies, (c.f. [25–28]). For the QoS satisfaction, we presume the existence
of a function that maps the number of sources in an aggregate and the loss
probability into a utility. This utility can be either interpreted directly as the
amount that these sources would be willing to pay for this level of QoS, or
indirectly interpreted simply as a numerical measure of satisfaction. Unfortu-
nately, there is less work in the literature on deriving such functions, as the
function would likely be application-specific (c.f. [29,30]).

On the network side, we presume the existence of a reservation-based QoS
architecture. In our approach, we assume the network uses some type of route
pinning (i.e. virtual circuit) for real-time applications, e.g. using MPLS or
ATM. We also assume the existence of scheduling policies that are capable
of assigning bandwidth and buffer to aggregates of flows. Such an architec-
ture would likely specify which flows share resources, and thus determine the
multiplexing gains in the network. Research on this topic includes effective
bandwidth results that describe multiplexing gains by sharing of buffer and
bandwidth (c.f. [31,32]). Here we merely presume that such multiplexing gains
are incorporated into the flow characterization, whether known or measured.

The mechanism that decides what network resources to reserve for each aggre-
gate should take into account this information from the applications and the
network. Congestion-based pricing is often used to signal such information in
a distributed fashion with a minimal exchange. There is a significant body of
literature on the use of pricing in network operation, in order to accomplish
a wide variety of goals. Early versions of congestion-dependent pricing con-
sidered charges per packet, c.f. [1–3]. Such approaches often use an auction
to determine the optimal price per packet, resulting in prices that vary with
demand. However, per-packet pricing can not easily address any flow-based
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QoS metrics. The most common version of congestion-based pricing is to set
the price per unit bandwidth according to the marginal cost, c.f. [4–6]. Utility
and pricing has also been used to allocate bandwidth and describe conges-
tion control dynamics. Kelly (c.f. [33]) proposed an optimization framework
in which the objective is to maximize the aggregate source utility over their
transmission rates. The centralized problem is decomposed into a separate
problem for each user, which indicates the willingness-to-pay, and the net-
work, which allocates bandwidths given each user’s willingness-to-pay. Low
(c.f. [34]) considers the same optimization problem, but decomposes it such
that users choose transmission rates given prices and the network determines
the price given the differential between total transmission rate and capacity. In
both approaches, the utility function for each user is thought of as determined
by the flow control algorithm. Such approaches can capture QoS metrics such
as loss, but do not easily capture delay since buffer is not explicitly modelled.
Some congestion-based pricing use both bandwidth and buffer as resources,
c.f. [7–9]. In addition, some pricing algorithms view the price as the result of
a game between users or between the users and the network, c.f. [10–12]. Fi-
nally, experiments with pricing in an ISP are described in [13,14]. While these
congestion-based pricing approaches differ in detail, they generally assume
that resources act as Normal goods.

In this paper, we investigate the ability of such congestion-based pricing
schemes to allocate bandwidth and buffer and achieve desired levels of loss
and delay, with the goal of maximizing the total utility of all users in the net-
work. Our model was set out in [35], which proposed distributed pricing roles
for each user, network node, and an arbitrager layer in between the user and
the network that sells QoS (loss) to the users, and purchases from the network
the least cost bundle of resources (bandwidth and buffer) that achieves the
desired QoS. In contrast to most of the previous work on pricing, we consider
arbitrary utility functions which can be expressed as a function of QoS, e.g.
loss. The QoS is in turn a function of the allocated resources along the route.
Finally, we explicitly model these resources as both bandwidth and buffer at
each router.

In section II, we briefly review our model, two proposed distributed imple-
mentations using pricing, and results concerning optimality. In section III, we
derive necessary and sufficient conditions for resources to act as Normal goods.
We then show that the minimum total cost is a decreasing convex function
of loss. In section IV, we turn to characterizing the sensitivity of the optimal
allocation with respect to changes in resource price, e.g. caused by changes in
demand of other users. We first consider the case when the delay constraints
are absent or not binding. We give sufficient conditions to establish that an
increase in the price for a resource results in an increase in the loss at that
node, a decrease in the loss at all other nodes, and an increase in the total
loss. We also give sufficient conditions to establish that an increase in the price
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for a resource results in a decreased demand for that resource, an increased
demand for the other resource at that node, and an increased demand for
resources at all other hops. Finally in section V, we consider the case in which
the delay constraint is binding, and give sufficient conditions to establish that
an increase in the price of bandwidth at one node results in increased loss and
delay at that node, and decreased loss and delay at all other nodes.

2 The pricing framework

2.1 Network and user models

The complete model consists of a network model, which describes what type
of service the network offers, and a user model, which describes how the user
behaves. We presume the existence of a reservation-based QoS architecture
using virtual circuits for real-time applications and using scheduling policies
that are capable of assigning bandwidth and buffer to aggregates of flows.
Assume the network supports m classes of virtual-circuit real-time traffic.
Assume each class can reserve bandwidth on each link it traverses, and buffer
at each router it passes through. Specifically, we assume class j can reserve
bandwidth BWjl on link l, and buffer BFjl at the router just before link l. If
link l has a total (unidirectional) bandwidth BWl available to real-time traffic,
then the bandwidth reservation allocations must obey

∑m
j=1 BWjl ≤ BWl.

Assume routers are output-buffered and that the total buffer available to real-
time traffic with output link l is BFl. The corresponding buffer constraint
is therefore

∑m
j=1 BFjl ≤ BFl. The maximum delay for class j traffic at link

l is therefore Djl = BFjl/BWjl. Note that we do not consider the actual
queueing delay experienced by the traffic, but rather only a bound on the
delay at each router. The delay bound at each router therefore does not depend
directly on the traffic characteristics, but only upon the allocated bandwidth
and buffer. Each user class can specify a bound on the end-to-end delay, which
is interpreted by the network as a bound on the sum of the delay bounds at
each router along the path,

∑nj

l=1 Djl ≤ Dj, where nj is the number of links
on the virtual path for class j traffic.

We use the term user, or class, to refer to an aggregate of flows with similar
traffic characterizations and similar utility functions. Utility is assumed to be a
function of loss probability, which in turn depends on the reserved bandwidth
and buffer at each node. The user model consists of two functions: a traffic
model, which describes the statistics of each real-time flow aggregate, and a
QoS model, which describes how each user measures satisfaction with its QoS.

The traffic model is a function that maps the number of sources in an aggre-
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gate and the amount of bandwidth and buffer reserved at each hop into the
loss probability that these flows experience. Such a function might be derived
using the literature on traffic characterization or measured. Specifically, as-
sume there are Nj independent and identically distributed flows within class
j. We denote the probability of loss of the multiplexed class on link l, Ljl, as
a function of the bandwidth allocated to the class, BWjl, the buffer allocated
to the class, BFjl, and the number of sources Nj, as Ljl = gj(BWjl, BFjl, Nj).
The loss function for class j traffic, gj, might be given for instance by effec-
tive bandwidth results. We presume that this loss function is independent of
the link number, which is reasonable if the allocated bandwidth and buffer are
sufficient to decouple the effective bandwidths [36]. We also presume that each
source within a class experiences the same loss probability. Finally, we presume
that the loss function is decreasing, differentiable, and jointly strictly convex
in {BWjl, BFjl}. We assume that the loss on each link is small and indepen-
dent of other losses within the path, given bandwidth and buffer allocations.
Therefore the total end-to-end loss probability for class j is Lj =

∑nj

l=1 Ljl.

The QoS model is a function that maps the number of sources in an aggregate
and the loss probability into a utility. This utility can be either interpreted
directly as the amount that these sources would be willing to pay for this
level of QoS, or indirectly interpreted simply as a numerical measure of satis-
faction. Specifically, we assume class j derives a satisfaction Uj(Lj, Nj) from
supporting Nj sources with a probability of loss of Lj. In this paper, we will
assume that Uj(Lj, Nj) is decreasing, differentiable, and strictly concave in
Lj. The utility can also be thought of directly as a function of reserved band-
width and buffer, in which case it can be shown that Uj(Lj, Nj) is strictly
concave in {BWjl, BFjl}. We will also assume that marginal utilities with re-
spect to bandwidth and buffer are each infinite when these resources are zero,
so that infinite resource prices imply zero demand. We note that many appli-
cation’s utility curves may not be strictly concave with respect to bandwidth
and buffer. Researchers have often argued that the utility function of elastic
applications is usually strictly concave everywhere with respect to bandwidth,
but the utility function of delay-adaptive audio and video applications is usu-
ally S-shaped and convex in a region of small bandwidths, c.f. [37]. Rationale
users, however, either operate in the concave region or drop out. We do not
consider this case in this paper, but leave the issue to the admission control
policy.

2.2 Distributed resource allocation using pricing

We now pose our network resource allocation problem. We assume that the
network attempts to maximize total utility of all active users, by choosing
bandwidth and buffer allocations on each link and at each router. The corre-
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sponding problem is Problem U:

max
BWjl,BFjl

m∑

j=1

Uj(Lj, Nj)

s.t.
m∑

j=1

BWjl ≤ BWl,
m∑

j=1

BFjl ≤ BFl

nj∑

l=1

Djl ≤ Dj, BWjl ≥ 0, BFjl ≥ 0

We show in [38] that this is a concave program, the solution is unique, and
that it can be characterized using shadow costs corresponding to each of the
constraints:
Theorem 1. The resource allocation {BWjl, BFjl} solves Problem U if and
only if there exists a set of nonnegative shadow costs {αj, βl, γl} such that:

∂Uj

∂BWjl

= βl + αj
∂Djl

∂BWjl

,
∂Uj

∂BFjl

= γl + αj
∂Djl

∂BFjl

βl(
m∑

j=1

BWjl −BWl) = 0, γl(
m∑

j=1

BFjl −BFl) = 0

αj(
nj∑

l=1

Djl −Dj) = 0 (1)

We interpret βl and γl as prices for bandwidth and buffer, respectively, on
link l. We also interpret αj

∂Djl

∂BWjl
and αj

∂Djl

∂BFjl
as surcharges for bandwidth and

buffer, respectively, to class j traffic on link l if the delay constraint for that
class is binding. This pricing model suggests that the resource allocation can
be implemented as a distributed optimization. Suppose the network and users
follow the following strategies:

Network Algorithm N1: Update the prices from {αj, βl, γl} to {α′j, β′l, γ′l}
as follows: α′j = max(αj + ∆αj, 0), β′l = max(βl + ∆βl, 0), and γ′l = max(γl +
∆γl, 0) where the feedback algorithms are designed so that sgn(∆αj) = sgn(

∑nj

l=1 Djl−
Dj), sgn(∆βl) = sgn(

∑m
j=1 BWjl − BWl), and sgn(∆γl) = sgn(

∑m
j=1 BFjl −

BFl).

User Algorithm U1: In each class j, choose bandwidth and buffer alloca-
tions that maximize surplus, where surplus is defined as utility minus cost:

max
BWjl,BFjl

Uj(Lj, Nj)−
nj∑

l=1

αj
BFjl

BWjl

−
nj∑

l=1

βlBWjl −
nj∑

l=1

γlBFjl
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Fig. 1. Communication between user, arbitrager, and network

A few caveats are in order here. We are not suggesting that these algorithms
should be implemented in the Internet as written, but only mean to demon-
strate what a pricing approach might attempt to accomplish. Any user re-
sponse would undoubtedly have to be done via a user agent to automate
the response, the time scales for each iteration would have to be chosen and
the feedback algorithms would have to be designed to guarantee convergence.
Also, much additional work would have to be done to make any such approach
implementable, including development of signalling protocols, reservation pro-
tocols, measurement algorithms, and scheduling policies.

The equilibrium point of this distributed resource allocation process is optimal.
Theorem 2. The resource allocation {BWjl, BFjl} solves Problem U if and
only if it is an equilibrium for Network Algorithm N1 and the User Algorithms
U1 for each class.

The proof is omitted here.

To end users, how to allocate buffer and bandwidth is meaningless. Instead,
they care about the QoS of their applications. So we consider loss and delay as
intermediate variables and based on that we consider a second implementation
in which an arbitrager layer is introduced in between the user and the network.
Each network link periodically updates the prices for buffer and bandwidth
on that link, based on the differences between the total demands and supplies
for buffer and bandwidth. The arbitrager for class j periodically receives a
request for a specified loss level from the class j users and finds the minimum
cost allocation of buffer and bandwidth on each link on route j. The arbitrager
also calculates a cost per unit loss, ηj, and advertises this cost to the class j
users. The class j users periodically calculate the desired loss Lj based on the
cost ηj and the utility function for that class. This process is illustrated in
figure 1.

To simplify the notation, we denote U (jl)
w ≡ ∂Uj/∂BWjl, U

(jl)
f ≡ ∂Uj/∂BFjl,

U (j)
g ≡ ∂Uj/∂Lj, U (j)

gg ≡ ∂U (j)
g /∂Lj, g(jl)

w ≡ ∂Lj/∂BWjl, g
(jl)
f ≡ ∂Lj/∂BFjl,

g(jl)
ww ≡ ∂g(jl)

w /∂BWjl, g
(jl)
wf ≡ ∂g(jl)

w /∂BFjl, and g
(jl)
ff ≡ ∂g

(jl)
f /∂BFjl. The

marginal benefits to class j for adding more bandwidth and buffer can be
represented as U (jl)

w = U (j)
g g(jl)

w and U
(jl)
f = U (j)

g g
(jl)
f .

The network algorithm (N1) remains the same as above. The arbitrager and
user algorithms are formalized as follows:
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Arbitrager Algorithm A2: In each class j, choose the minimum cost band-
width and buffer allocations that achieve a target loss Lj:

min
BWjl,BFjl

nj∑

l=1

(βl + β̂jl)BWjl +
nj∑

l=1

(γl + γ̂jl)BFjl

s.t.
nj∑

l=1

gj(BWjl, BFjl) ≤ Lj

Set a price per unit loss for class j as the minimum marginal cost:

ηj ≡ min(
βl + β̂jl

g
(jl)
w

,
γl + γ̂jl

g
(jl)
f

)

User Algorithm U2: In each class j, choose loss that maximizes consumer
surplus, where the surplus is defined as utility minus cost,

max
Lj

Uj(Lj)− ηjLj (2)

This distributed process simplifies the task for the users by removing direct
consideration of network resources and instead focusing on the QoS parameters
of concern. In addition, the arbitrager could be used to guarantee a fixed price
for each user connection by acting as an insurance agent who charges a small
premium in order to smooth out fluctuations in the resource prices, although
we do not consider this here.

In [38], we show that the equilibrium point of this distributed resource allo-
cation process is optimal:
Theorem 3. The resource allocation {BWjl, BFjl} solves Problem U if and
only if it is an equilibrium for Network Algorithm, the Arbitrager Algorithm
for each class and the User Algorithm for each class.

Theorem 3 establishes that the approach using separate user, arbitrager, and
network algorithms achieves the maximal utility in a distributed fashion. It
is a result on equilibrium, but not on dynamics. Freedom is left to design
feedback algorithms that achieve convergence on a time-scale of interest.

3 Sensitivity to QoS

Feedback algorithms for congestion-based pricing typically assume that net-
work resources behave as Normal goods, i.e. that an increase in the price of
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a resource results in a decreased demand for that resource. We examine this
assumption by considering the relationship between network resources, QoS,
and cost. While the user and arbitrager algorithms operate on each class, the
network algorithm sets prices for bandwidth and buffer at each node in re-
sponse to total demand for these resources from all classes. A change in the
traffic of one class will cause changes in the prices for bandwidth and buffer
at all nodes on its route, and therefore affect the resources that should be
allocated to other traffic sharing the route as well as the resulting QoS. It is
important to understand the sensitivity of the optimal allocation and result-
ing QoS to such price changes in order to understand how resources should be
allocated. These sensitivities are crucial to the design of feedback algorithms
for congestion-based pricing.

We begin by examining the set of minimum cost resource allocations under
a range of loss. We next characterize the form of the resulting minimum cost
function.

3.1 Minimum cost allocations

We consider here the set of minimum cost allocations of bandwidth and buffer
that class j on link l will adopt under a fixed set of prices, over a range of
loss probabilities Ljl. We wish to characterize the form of the set, when the
delay constraint for class j is not binding. Since loss probability Ljl is jointly
strictly convex in bandwidth and buffer, it follows that buffer is strictly convex
in bandwidth given fixed loss. The minimum cost allocation for a specified loss
and price ratio is the point on the given loss contour that is tangent to a cost
contour (if any). Since the loss contour is strictly convex, this minimum cost
allocation is unique. The set of such minimum cost allocations of bandwidth
and buffer over different loss probabilities thus forms a unique curve. We call
this curve the expansion path.

An example of expansion path is shown in figure 2. In this example, we consider
the traffic as an aggregate of on/off fluid flows with independent and expo-
nentially distributed on and off times. Unless otherwise stated, we assume 500
sources (Nj) with a mean on-time of 340ms and mean off-time 780ms, corre-
sponding to a duty cycle of pj ≈ 0.3036. We measure bandwidth in multiples
of 8kbps (the peak rate) and buffer in multiples of 340B (the mean number
of bytes per cycle). We calculate loss using an effective bandwidth function
derived by Morrison [24].

The fundamental question is whether bandwidth and buffer act as Normal
goods, i.e. whether a decrease in packet loss is paired with an increase in
both bandwidth and buffer. To characterize the expansion path, we investi-
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Fig. 2. Minimum cost allocations

gate the sensitivity of bandwidth and buffer on link l along the expansion
path to loss on link l, denoted dBWjl/dLjl|ep and dBFjl/dLjl|ep respectively,
and the corresponding slope of the expansion path, denoted dBFjl/dBWjl|ep.
The sign of these sensitivities is of particular interest. Normally one would
expect that in order to decrease the loss on a particular link, one would in-
crease both the bandwidth and buffer allocations, namely dBWjl/dLjl|ep < 0,
dBFjl/dLjl|ep < 0, and dBFjl/dBWjl|ep > 0. In economics terminology, this
means that bandwidth and buffer on link l are Normal goods, and that the
slope of the expansion path is positive. We find however that these signs hold
only under certain conditions.

The following notation will be helpful:

xl = (g
(jl)
f ,−g(jl)

w ), Gjl =




g(jl)
ww g

(jl)
wf

g
(jl)
wf g

(jl)
ff




h(jl)
g = |Gjl| (3)

k
(jl)
1 = g(jl)

w g
(jl)
ff − g

(jl)
f g

(jl)
wf (4)

k
(jl)
2 = g

(jl)
f g(jl)

ww − g(jl)
w g

(jl)
wf (5)

K(jl) = xlGjlx
t
l (6)

= (g
(jl)
f )2g(jl)

ww − 2g(jl)
w g

(jl)
f g

(jl)
wf + (g(jl)

w )2g
(jl)
ff

We say link l has increasing bandwidth along the expansion path, denoted
IBW (jl), if k

(jl)
1 < 0, namely if g

(jl)
wf < (g(jl)

w /g
(jl)
f )g

(jl)
ff . Similarly, we say link l

has increasing buffer along the expansion path, denoted IBF (jl), if k
(jl)
2 < 0,
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namely if g
(jl)
wf < (g

(jl)
f /g(jl)

w )g(jl)
ww . Finally, we say link l has increasing bandwidth

and buffer along the expansion path, denoted IWF (jl), if k
(jl)
1 < 0, k

(jl)
2 < 0,

namely if g
(jl)
wf < min[(g(jl)

w /g
(jl)
f )g

(jl)
ff , (g

(jl)
f /g(jl)

w )g(jl)
ww ].

Our first key result is whether these properties hold, and correspondingly
whether bandwidth and buffer act as Normal goods, depends on the shape of
the utility and loss functions:
Theorem 4.

dBWjl

dLjl

|ep =
k

(jl)
1

K(jl)
,

dBFjl

dLjl

|ep =
k

(jl)
2

K(jl)
(7)

dBFjl

dBWjl

|ep =
k

(jl)
2

k
(jl)
1

(8)

Proof. From the optimal shadow costs in equation (1), when the delay con-
straint for class j is not binding, we obtain:

γl

βl

=
g

(jl)
f

g
(jl)
w

(9)

Consider a small change in loss, ∆Ljl, on link l, produced by small changes in
bandwidth and buffer, respectively denoted ∆BWjl and ∆BFjl:

∆Ljl = g(jl)
w ∆BWjl + g

(jl)
f ∆BFjl (10)

To be on the expansion path, the ratio g
(jl)
f /g(jl)

w at the new loss level must
still be equal to the price ratio γl/βl, namely:

lim
∆Ljl→0

g(jl)
w + g(jl)

ww ∆BWjl + g
(jl)
wf ∆BFjl

g
(jl)
f + g

(jl)
wf ∆BWjl + g

(jl)
ff ∆BFjl

=
βl

γl

⇒ lim
∆Ljl→0

g(jl)
ww ∆BWjl + g

(jl)
wf ∆BFjl

g
(jl)
wf ∆BWjl + g

(jl)
ff ∆BFjl

=
βl

γl

(11)

Solving equations (10) and (11), and substituting (9), we can establish the
sensitivity of bandwidth and buffer on link l to loss on link l, along the expan-
sion path, given by equations (7). Combining these two expressions, we can
establish the slope of the expansion path, given by (8).

We can now prove the fundamental result that bandwidth on link l is a Normal
good iff IBW (jl) holds, and that buffer on link l is a Normal good iff IBF (jl)

holds.
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Corollary 1. dBWjl/dLjl|ep < 0 iff IBW (jl), dBFjl/dLjl|ep < 0 iff IBF (jl),
and dBFjl/dBWjl|ep > 0 iff IWF (jl).

Proof. We start with the denominators of (7), K(jl), which can be expressed as
xlGjlx

t
l . By assumption, gj is decreasing and jointly strictly in {BWjl, BFjl}.

It follows that the hessian of gj is positive-definite, and therefore the denomi-
nator is positive. The sign of the numerators are determined by the hypotheses.
The theorem follows.

Theorem 4 gives the slope of the expansion path. This information can be
used to adjust bandwidth and buffer in the optimal proportion in response
to changes in desired levels of loss, as opposed to methods which may either
increase only bandwidth (with fixed buffer) or may increase both bandwidth
and buffer in a fixed linear proportion. Corollary 1 gives sufficient conditions
for the slope of the expansion path to be positive.

In our example, the traffic model we used has the property that IBW (jl) and
IBF (jl) hold for BWjl ∈ (Njpj,∞) and BFjl ∈ (0,∞), where Njpj is the
mean rate of the class j. In other words, bandwidth and buffer of the class
j are both Normal goods, and the slope of the expansion path is positive, as
pictured in figure 2.

3.2 Minimum cost function

Having established the variation of the optimal resource allocation with changes
in loss probability, we turn to characterizing the corresponding minimum cost
of these allocations.

First we consider a single link. Denote by Cjl(Ljl) the minimum cost on link
l to obtain a loss probability of Ljl, namely:

Cjl(Ljl) = min
(BWjl,BFjl)

βlBWjl + γlBFjl,

s.t. gj(BWjl, BFjl) = Ljl

Lemma 1. The minimum link cost Cjl(Ljl) is a decreasing and convex func-
tion of loss probability on that link Ljl.

Proof. The marginal cost with respect to loss at the cost minimization point is
∂Cjl/∂Ljl = βl/g

(jl)
w and therefore the minimum cost is a decreasing function

of loss probability. To demonstrate that it is also convex:

13
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∂2Cjl

∂L2
jl

=− β

(g
(jl)
w )2

dg(jl)
w

dLjl

|ep

=− β

(g
(jl)
w )2

[
g(jl)

ww

dBWjl

dLjl

|ep + g
(jl)
wf

dBFjl

dLjl

|ep
]

Substituting equations (7) and simplifying:

∂2Cjl

∂L2
jl

= − β

g
(jl)
w

h(jl)
g

K(jl)

where K(jl) is the denominator in (7). Now h(jl)
g > 0 since it is the Hessian of

a positive-definite function, K(jl) > 0 was shown above, and −β/g(jl)
w > 0, so

it follows that ∂2Cjl/∂L2
jl > 0, and hence that the minimum cost is a convex

function of loss probability.

Given the previous example, the cost function with respect to loss when the
price for bandwidth is 3.5 and the price for buffer is 1 is illustrated in figure
3. It shows the cost is convex and decreasing in loss probability.

Now we consider the total minimum cost that achieves a loss probability of
Lj:

Cj(Lj) = min
{(BWjl,BFjl)}

nj∑

l=1

Cjl(gj(BWjl, BFjl))

s.t.
nj∑

l=1

gj(BWjl, BFjl) = Lj

14



Note that the minimum cost solution results in the optimal allocation of losses
to each link and in the optimal allocation of bandwidth and buffer on each
link to achieve the corresponding loss. We can establish that this minimum
cost solution has a similar form to the cost of an individual link:
Theorem 5. The minimum total cost Cj(Lj) is a decreasing and convex func-
tion of the total loss probability Lj.

Proof. The optimal shadow costs in equation (1) can be used to establish that,
at equilibrium,

−U (j)
g = − βl

g
(jl)
w

= − γl

g
(jl)
f

∀l

which means the marginal cost per unit loss, at the optimal allocation, is the
same for each link along the route, namely:

∂Cj

∂Lj

=
∂Cjl

∂Ljl

∀l (12)

Furthermore, these marginal costs are negative, from Lemma 1, establishing
that Cj(Lj) is a decreasing function of the total loss probability Lj.

Differentiating (12) again:

∂2Cj

∂L2
j

=
∂2Cjl

∂L2
jl

dLjl

dLj

∀l (13)

Also,
nj∑

l=1

dLjl

dLj

= 1 (14)

Solving (13) for dLjl/dLj and substituting into (14) gives:

∂2Cj

∂L2
j

nj∑

l=1

1
∂Cjl

∂Ljl

= 1

Combining the terms in the summation into a common denominator and mov-
ing it to the right hand side, we get:

∂2Cj

∂L2
j

=

∏nj

l=1
∂2Cjl

∂L2
jl∑nj

l=1(
∏

i 6=l
∂2Cji

∂L2
ji

)

The numerator consists of the product of positive terms, by Lemma 1, and
the denominator similarly consists of the sum of positive terms. Therefore the
entire expression is positive, establishing that the minimum total cost Cj(Lj)
is a convex function of the total loss probability Lj.
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Congestion-based pricing algorithms typically are based on feedback algo-
rithms in which optimality is achieved at an equilibrium point characterized
by equality of demand and supply. Theorem 5 implies that the price per unit
loss, ηj, that class j faces has an increasing marginal cost for each marginal
decrease in loss probability. Since a class’s utility function is assumed to be de-
creasing and concave in loss, the marginal utility a class gains is decreasing for
each marginal decrease in loss probability. The combination of an increasing
marginal cost with a decreasing marginal utility (as loss decreases) results in a
unique equilibrium at which marginal cost equals marginal utility. This form
is crucial for the design of stable feedback algorithms for congestion-based
pricing.

4 Sensitivity to price without a delay constraint

We can use the properties of the minimum cost functions to characterize the
sensitivity of the optimal allocation with respect to changes in a resource
price, e.g. caused by changes in demand of other users. In the first subsection,
we give sufficient conditions to establish that an increase in the price for a
resource results in an increase in the loss at that node, a decrease in the loss
at all other nodes, and an increase in the total loss. In the next subsection, we
also give sufficient conditions to establish that an increase in the price for a
resource results in a decreased demand for that resource, an increased demand
for the other resource at that node, and an increased demand for resources at
all other hops.

4.1 Sensitivity of loss to price

We start by examining sensitivities of loss to resource prices. We prove that
if a resource is a Normal good, then an increase in the price of that resource
causes the loss on that link to increase, the loss on all other links to decrease,
and the total loss to increase.
Theorem 6. If IBW (jl) holds, then ∂Ljl/∂βl > 0, ∂Ljl′/∂βl < 0 ∀l′ 6= l, and
∂Lj/∂βl > 0. If IBF (jl) holds, then ∂Ljl/∂γl > 0, ∂Ljl′/∂γl < 0 ∀l′ 6= l, and
∂Lj/∂γl > 0.

Proof. We begin by aggregating all links other than link l into a single virtual
link denoted l. The virtual link satisfies the property that the minimum total
cost of a user class on those aggregated links is decreasing and convex in the
corresponding total loss, given by Theorem 5. Using this property, it follows
that minimizing total cost along route j is equivalent to minimizing the sum
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of the costs on link l and virtual link l. The minimum cost to achieve an
aggregate loss of Ljl on virtual link l is:

Cjl(Ljl) = min
{Ljl′ , l′ 6=l}

∑

l′ 6=l

Cjl′(Ljl′), s.t.
∑

l′ 6=l

Ljl′ = Ljl

We can then write the surplus for class j as:

f1(Ljl,−Ljl, βl) ≡ Uj(Ljl + Ljl)− Cjl(Ljl)− Cjl(Ljl)

The optimal loss on links l and l are then given by arg maxLjl,Ljl
f1(Ljl,−Ljl, βl).

The proof proceeds in two steps. First, we show that f1(Ljl,−Ljl, βl) is param-
eter monotonic in βl, which will establish that ∂Ljl/∂βl > 0 and ∂Ljl/∂βl < 0.
Second, we show that ∂Ljl/∂βl < 0 implies that ∂Ljl′/∂βl < 0 ∀l′ 6= l.

Define s = (Ljl,−Ljl), S = R+ × R− as the set of possible values of s, and
Θ = R+ as the set of possible values of βl. Then S is a compact sublattice of
R2, and Θ is a sublattice of R. The function f1 : S × Θ → R is a continuous
function on S for each fixed βl.

We wish to first establish that f1 is supermodular in {Ljl,−Ljl, βl}. Consider
the cross-derivatives of f1(Ljl,−Ljl, βl). Of these three variables, note that Uj

is not a function of βl, Cjl(Ljl) is not a function of Ljl, and Cjl(Ljl) is not a
function of βl nor of Ljl. Therefore:

∂2f1

∂Ljl∂βl

= − ∂2Cjl

∂Ljl∂βl

Differentiating Cjl first with respect to βl, we get:

∂2Cjl

∂Ljl∂βl

=
dBWjl

dLjl

|ep (15)

Furthermore, dBWjl/dLjl|ep < 0 iff IBW (jl) by Corollary 1, so ∂2f1/∂Ljl∂βl >
0. Also,

∂2f1

∂Ljl∂(−Ljl)
=

∂2Uj

∂Ljl∂(−Ljl)
= −U (j)

gg > 0 (16)

since Uj is assumed to be strictly concave. Finally,

∂2f1

∂βl∂(−Ljl)
= 0 (17)

Together, (15), (16), and (17) prove that f1 is supermodular in {Ljl,−Ljl, βl}
(c.f. [39], Theorem 10.4).

It follows that f1 satisfies increasing differences in (s, βl) and is supermodular
in s for each fixed βl (c.f. [39], Theorem 10.3). These conditions are sufficient to
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conclude that arg max{f1(s, βl)|s ∈ S} admits a greatest element s∗(βl), and
that this greatest element is parameter monotonic in βl (c.f. [39], Theorem
10.7). However since arg max{f1(s, βl)|s ∈ S} contains a single point for each
fixed βl, then it follows that f1(Ljl,−Ljl, βl) is parameter monotonic in βl.

In particular, this proves that if IBW (jl) holds, then ∂Ljl/∂βl > 0. To show
that ∂Ljl′/∂βl < 0 ∀l′ 6= l, we must still show that ∂Ljl/∂βl < 0 implies that
∂Ljl′/∂βl < 0 ∀l′ 6= l.

To demonstrate this, consider a link l′ 6= l. We now aggregate all links in
l except for link l′ into a virtual link l′. The minimum cost to achieve an
aggregate loss of Ljl′ on virtual link l′ is:

Cjl′(Ljl′) = min
{Ljl′′ ,l′′ 6=l,l′}

∑

l′′ 6=l,l′
Cjl′′(Ljl′′)

Define:

f2(Ljl′ , Ljl) ≡ −Cjl′(Ljl′)− Cjl′(Ljl − Ljl′)

Consider the cross-derivative of f2(Ljl′ , Ljl):

∂2f2

∂Ljl′∂Ljl

=
∂2Cjl′

∂Ljl′∂Ljl

=
∂2Cjl′

∂L2
jl′

> 0

using Theorem 5. It follows that f2(Ljl′ , Ljl) is supermodular in (Ljl′ , Ljl), and
therefore that it is parameter monotonic in Ljl′ with respect to Ljl. Combining
this with ∂Ljl/∂βl < 0 proves that ∂Ljl′/∂βl < 0 ∀l′ 6= l. A similar approach

can be taken to prove that if IBF (jl) holds, then ∂Ljl/∂γl > 0 and ∂Ljl′/∂γl <
0 ∀l′ 6= l.

To determine the sign of the sensitivity of the total loss to prices, we rewrite
the surplus for class j as:

f3(Ljl, Lj, βl) ≡ Uj(Lj)− Cjl(Ljl)− Cjl(Lj − Ljl)

A similar approach as we took with f1 above can be used to prove that if
IBW (jl) holds then ∂Lj/∂βl > 0, and that if IBF (jl) holds then ∂Lj/∂γl >
0.

Theorem 6 is an important property in the design of the arbitrager feedback
algorithms. If a resource is a Normal good, then when a network node raises
the price, the arbitrager should respond by buying a combination of resources
on that link that produces a higher loss and a combination of resources on
other links that produce lower losses. As a consequence, the arbitrager should
respond by raising (in absolute value) the price per unit loss, which in turn
results in an increase in the requested loss probability in that class.
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Fig. 4. Sensitivity of loss to price

Figure 4 illustrates the result in theorem 6. We consider an aggregate of data
flows that has the same traffic model as given in the previous example and
traverses two links in the network. As we discussed before, this traffic model
has the property that both bandwidth and buffer of class j are Normal goods.
When the price of bandwidth on link 1 increases, we observe that the loss
probability on link 1 increases, and that the loss on link 2 decreases.

4.2 Sensitivity of resources to price

The last theorem gives sufficient conditions to establish that an increase in the
price for a resource results in an increase in the loss at that node, a decrease
in the loss at all other nodes, and an increase in the total loss. It does not,
however, address the resulting changes in buffer and bandwidth at each node.
We consider these in this subsection.

Let µj = [β1, γ1, · · · , βnj
, γnj

]t denote the set of resource prices for class j,
xj = [BWj1, BFj1, · · · , BWjnj

, BFjnj
]t denote the set of resource allocation

for class j, and Uj(xj) denote the resulting utility. Let x̃j denote the re-
source allocation for class j that maximizes the class’s surplus, i.e. x̃j =
arg maxxj

Uj(xj)−∑nj

l=1 (βlBWjl + γlBFjl). So we have:

∇µj
xj =




∂BWj1

∂β1

∂BFj1

∂β1
...

∂BWjnj

∂β1

∂BFjnj

∂β1

∂BWj1

∂γ1

∂BFj1

∂γ1
...

∂BWjnj

∂γ1

∂BFjnj

∂γ1

...

∂BWj1

∂γnj

∂BFj1

∂γnj
...

∂BWjnj

∂γnj

∂BFjnj

∂γnj




(18)
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which is the sensitivity matrix that we wish to understand. And we also have

∇2Uj(xj) =




U (11)
ww U

(11)
fw ... U

(nj1)
ww U

(nj1)
fw

U
(11)
wf U

(11)
ff ... U

(nj1)
wf U

(nj1)
ff

...

U
(1nj)
ww U

(1nj)
wf ... U

(njnj)
ww U

(njnj)
fw

U
(1nj)
wf U

(1nj)
ff ... U

(njnj)
wf U

(njnj)
ff




which is the Hessian matrix of utility with respect to network resources.
Lemma 2. At the optimum xj = x̃j, if ∇2Uj(xj) is positive definite, then
∇µj

xj = [∇2Uj(xj)]
−1, ∀j.

Proof. When the delay constraint is not binding, Theorem 1 states that:

∇Uj(xj)|xj=x̃j
= µj ∀j

Writing out the chain rule for the derivative of this gradient with respect to
µj gives:

[∇2Uj(xj)|xj=x̃j
] · [∇µj

xj|xj=x̃j
] = I ∀j (19)

Lemma 2 tells us that the gradient of the optimal resource allocations depend
on the Hessian of the utility function with respect to bandwidth and buffer.
The next theorem gives the explicit expressions for these sensitivities, which
are directly derived from lemma 2.

The following mappings will be helpful:

U (ll)
ww =

∂2Uj

(∂BWjl)2
= U (j)

gg (g(jl)
w )2 + U (j)

g g(jl)
ww

U
(ll)
ff =

∂2Uj

(∂BFjl)2
= U (j)

gg (g
(jl)
f )2 + U (j)

g g
(jl)
ff
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U
(ll)
wf =

∂2Uj

∂BWjl∂BFjl

= U (j)
gg g(jl)

w g
(jl)
f + U (j)

g g
(jl)
wf

U (ll′)
ww =

∂2Uj

∂BWjl∂BWjl′
= U (j)

gg g(jl)
w g(jl′)

w

U
(ll′)
ff =

∂2Uj

∂BFjl∂BFjl′
= U (j)

gg g
(jl)
f g

(jl′)
f

U
(ll′)
wf =

∂2Uj

∂BWjl∂BFjl′
= U (j)

gg g(jl)
w g

(jl′)
f

Theorem 7. When delay constraint is not binding, and ∇2Uj(xj)|xj=x̃j
is

positive definite, we have:

1) The following sensitivities hold for all links l:

∂BWjl

∂βl

=
1

H
{U (j)

gg g
(jl)
ff

∑

k 6=l

(K(jk)
∏

i6=l,k

h(ji)
g ) + U

(jl)
ff

∏

i6=l

h(ji)
g }

∂BFjl

∂γl

=
1

H
{U (j)

gg g(jl)
ww

∑

k 6=l

(K(jk)
∏

i6=l,k

h(ji)
g ) + U (jl)

ww

∏

i6=l

h(ji)
g }

∂BFjl

∂βl

=
∂BWjl

∂γl

=

− 1

H
{U (j)

gg g
(jl)
wf

∑

k 6=l

(K(jk)
∏

i 6=l,k

h(ji)
g ) + U

(jl)
wf

∏

i6=l

h(ji)
g }

where h(ji)
g is given by (3), K(jk) is given by (6),

H = U (j)
g U (j)

gg

nj∑

k=1

(K(jk)
∏

i6=k

h(ji)
g ) + (U (j)

g )2
nj∏

i=1

h(ji)
g

and where by convention the summations evaluate to 0 if they have no terms
and the products evaluate to 1 if they have no terms.

2) The following sensitivities hold for all pairs of links l and l′ 6= l:
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∂BWjl′

∂βl

=−U (j)
gg

H
k

(jl′)
1 k

(jl)
1

∏

i6=l,l′
h(ji)

g

∂BFjl′

∂γl

=−U (j)
gg

H
k

(jl′)
2 k

(jl)
2

∏

i6=l,l′
h(ji)

g

∂BWjl′

∂γl

=−U (j)
gg

H
k

(jl′)
1 k

(jl)
2

∏

i6=l,l′
h(ji)

g

∂BFjl′

∂βl

=−U (j)
gg

H
k

(jl′)
2 k

(jl)
1

∏

i6=l,l′
h(ji)

g

where k
(jl)
1 and k

(jl)
2 are given by (4) and (5).

Proof. We only need to show that equation (19) is satisfied if all the sensitiv-
ities in the sensitivity matrix (18) are given by theorem 7. Then according to
the uniqueness of the inverse matrix, we know the theorem is proved.

Consider the product of the sensitivity matrix and the Hessian of utility, and
assume all the sensitivities in the sensitivity matrix are given by theorem 7.
First let’s inspect the diagonal elements of the product matrix, e.g. the sth

diagonal element, which is given by the product of row s of the sensitivity
matrix and column s of the Hessian of utility. When s is an odd element:

(
∂BWj1

∂βs
...

∂BFjnj

∂βs

) (
U (s1)

ww ... U
(sn)
wf

)t

=
∂BWjs

∂βs

U (ss)
ww +

∂BFjs

∂βs

U
(ss)
wf +

∑

m6=s

∂BWjm

∂βs

U (sm)
ww

+
∑

m6=s

∂BFjm

∂βs

U
(sm)
wf (20)

Substitute the sensitivities given by theorem 7 and the second derivatives of
utility with respect to bandwidth and buffer into equation (20). By further
simplifying it, equation (20) yields a result of 1.

Similarly, if s is even:

22



(
∂BWj1

∂γs
...

∂BFjnj

∂γs

) (
U

(s1)
wf ... U

(sn)
ff

)t

=
∂BWjs

∂γs

U
(ss)
wf +

∂BFjs

∂γs

U
(ss)
ff +

∑

m6=s

∂BWjm

∂γs

U
(sm)
wf

+
∑

m6=s

∂BFjm

∂γs

U
(sm)
ff

= 1

We have shown all the diagonal element of the product matrix is 1. Now let’s
look at the other elements of the product matrix, e.g. the (s, r) element, where
s 6= r. It is the product of row s of the sensitivity matrix and column r of the
Hessian of utility. If s and r both are even:

(
∂BWj1

∂βs
...

∂BFjnj

∂βs

) (
U (r1)

ww ... U
(rn)
wf

)t

=
∂BWjs

∂βs

U (rs)
ww +

∂BFjs

∂βs

U
(rs)
wf +

∑

m6=s

∂BWjm

∂βs

U (rm)
ww

+
∑

m6=s

∂BFjm

∂βs

U
(rm)
wf

= 0

Similarly, we can show all the elements except for the diagonal elements of
the product matrix are 0, which indicates the product matrix is an identity
matrix.

We are particularly interested in the signs of these sensitivities:
Corollary 2. ∂BWjl/∂βl < 0 and ∂BFjl/∂γl < 0 always holds, and ∂BFjl/∂βl =
∂BWjl/∂γl > 0 iff

U (j)
gg g

(jl)
wf

∑

k 6=l

(K(jk)
∏

i6=l,k

h(ji)
g ) + U

(jl)
wf

∏

i6=l

h(ji)
g < 0 (21)

Proof. As mentioned above, h(jl)
g > 0 ∀l, K(jl) > 0 ∀l, g(jl)

ww > 0, and g
(jl)
ff > 0,

since gjl(BWjl, BFjl) is jointly strictly convex in (BWjl, BFjl). Also, U (j)
g < 0

and U (j)
gg < 0, since Uj is decreasing and strictly concave in loss. It follows that

H > 0. In addition, U (jl)
ww < 0 and U

(jl)
ff < 0. Therefore, ∂BWjl/∂βl < 0 and

∂BFjl/∂γl < 0. Finally, ∂BFjl/∂βl = ∂BWjl/∂γl > 0, iff the condition given,
is trivial when H > 0.

We note that when nj = 1, the condition (21) reduces to ∂BFjl/∂βl =
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Fig. 5. Effect of price increase upon resources on same link

∂BWjl/∂γl > 0 iff U
(jl)
wf < 0, namely iff Uj is submodular in buffer and band-

width.

In economics terminology, ∂BWjl/∂βl < 0 and ∂BFjl/∂γl < 0 means that
neither buffer and bandwidth are Giffen goods. In addition, buffer and band-
width on a single link are called substitutes, since the slope of the loss contour
is negative. For two resources which are substitutes, when the price of one
rises it causes two effects. The substitution effect causes a decrease in demand
for the resource whose price rose and a corresponding increase in demand for
the other resource, reflecting the new price ratio. The income effect causes a
decrease in the demand for both resources, reflecting higher costs. Given that
buffer and bandwidth are substitutes, ∂BFjl/∂βl = ∂BWjl/∂γl > 0 when
the substitution effect is greater than the income effect. Such a situation in
pictured in figure 5. Again, we consider an aggregate of data flows traversing
two links in the network. The original optimal allocation on link 1 is denoted
as point A. After an increase in β1 from 3.5 to 3.55, the optimal allocation
on link 1 moves to point C. This change can be decomposed into two pieces.
First, the substitution effect trades off bandwidth for buffer, moving from A
to B. Second, the income effect causes an increase in loss on link 1, moving
from B to C.
Corollary 3. If l′ 6= l, ∂BWjl′/∂βl > 0 if IBW (jl′) and IBW (jl) hold,
∂BFjl′/∂γl > 0 if IBF (jl′) and IBF (jl) hold, ∂BWjl′/∂γl > 0 if IBW (jl′)

and IBF (jl) hold, and ∂BFjl′/∂βl > 0 if IBF (jl′) and IBW (jl) hold.

Proof. Recall that k
(jl)
1 < 0 iff IBW (jl) and that k

(jl)
2 < 0 iff IBF (jl). Pre-

viously we proved that h(jl)
g > 0 ∀l, U (j)

gg < 0, and H > 0. The corollary
follows.

24



174 174.2 174.4 174.6 174.8 175 175.2 175.4 175.6 175.8 176
27

28

29

30

31

32

33

34
BF

j2
 

BW
j2

 

D

E

Fig. 6. Effect of price increase upon resources on other links

These results can be interpreted to mean that if resources on two different
links are Normal goods, then an increase in the price of one causes in increase
in demand for the other. Such a situation in pictured in figure 6. Continue with
the previous example. The original optimal allocation on link 2 is denoted as
point D. After an increase in β1, the optimal allocation on link 2 moves to
point E.

Finally, we can examine the sensitivity of loss on each link and total loss to
changes in price:
Theorem 8. The following sensitivity holds for all links l:

∂Ljl

∂βl

=
k

(jl)
1

H
{U (j)

gg

∑

k 6=l

(K(jk)
∏

i6=k,l

h(ji)
g ) + Ug

∏

i6=l

h(ji)
g }

∂Ljl

∂γl

=
k

(jl)
2

H
{U (j)

gg

∑

k 6=l

(K(jk)
∏

i6=k,l

h(ji)
g ) + Ug

∏

i6=l

h(ji)
g }

If nj ≥ 2, the following sensitivities hold for all pairs of links l and l′ 6= l:
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∂Ljl′

∂βl

=−U (j)
gg

H
K(jl′)k

(jl)
1

∏

i6=l

h(ji)
g

∂Ljl′

∂γl

=−U (j)
gg

H
K(jl′)k

(jl)
2

∏

i6=l

h(ji)
g

∂Lj

∂βl

=
U (j)

g

H
k

(jl)
1

∏

i6=l

h(ji)
g

∂Lj

∂γl

=
U (j)

g

H
k

(jl)
2

∏

i6=l

h(ji)
g

Proof. We can expand each of the sensitivities of loss as follows:

∂Ljl

∂βl

= g(jl)
w

∂BWjl

∂βl

+ g
(jl)
f

∂BFjl

∂βl

∂Ljl

∂γl

= g(jl)
w

∂BWjl

∂γl

+ g
(jl)
f

∂BFjl

∂γl

∂Ljl′

∂βl

= g(jl′)
w

∂BWjl′

∂βl

+ g
(jl′)
f

∂BFjl′

∂βl

∂Ljl′

∂γl

= g(jl′)
w

∂BWjl′

∂γl

+ g
(jl′)
f

∂BFjl′

∂γl

∂Lj

∂βl

=
nj∑

k=1

∂Ljk

∂βl

,
∂Lj

∂γl

=
nj∑

k=1

∂Ljk

∂γl

Substituting the corresponding expressions from Theorems 7 gives the desired
expressions.

The signs of these sensitivities were considered in theorem 6.

5 Sensitivity to price with a binding delay constraint

In this section, we consider the sensitivity of loss and delay to changes in the
price of bandwidth, in the case in which a delay constraint is binding for the
traffic class. As with the previous case in which the delay constraint was not
binding, we start by examining the set of minimum cost resource allocations
under a range of loss, and the resulting minimum cost function. We then use
the properties established to prove the form of the sensitivities.

When the delay constraint for class j is not binding, we previously found that
buffer and bandwidth on link l are Normal goods iff IBW (jl) and IBF (jl)
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hold, respectively. When the delay constraint is binding, it is helpful to jointly
consider loss and delay on each link, as outlined in section 2.2. With a fixed
delay on link l, any decrease in the loss probability on link l can only be ac-
complished by simultaneously increasing buffer and bandwidth on link l (in a
proportion determined by the delay on link l). The expansion path now fol-
lows the delay constraint (while it is binding), and correspondingly we denote
the sensitivity of bandwidth and buffer on link l along the expansion path
to loss on link l, as dBWjl/dLjl|dc and dBFjl/dLjl|dc respectively, and the
corresponding slope of the expansion path as dBWjl/dBFjl|dc.
Theorem 9.

dBWjl

dLjl

|dc =
1

g
(jl)
w + Djlg

(jl)
f

< 0

dBFjl

dLjl

|dc =
Djl

g
(jl)
w + Djlg

(jl)
f

< 0

dBFjl

dBWjl

|dc = Djl > 0

The proof is straightforward, and is omitted here. When the delay constraint
is binding, define Cjl(Ljl, Djl) as the minimum cost to achieve a loss of Ljl and
a delay of Djl on link l, and Cj(Lj, Dj) as the minimum cost to achieve a total
loss of Lj and a total delay of Dj. We say route j is convex and submodular
in loss and delay if

∑
l∈R Cjl(Ljl, Djl) is jointly convex and submodular in

(
∑

l∈R Ljl,
∑

l∈R Djl), where R is any subset of the links on route j.

When the delay constraint for class j is not binding, we previously found
that if a resource is a Normal good, then an increase in the price of that
resource causes the loss on that link to increase and the loss on all other
links to decrease. When the delay constraint is binding and route j is convex
and submodular in loss and delay, we find that an increase in the price of
bandwidth causes both the loss and delay on that link to increase and both
the loss and delay on all other links to decrease.
Theorem 10. If route j is convex and submodular in loss and delay, then
∂Ljl/∂βl > 0, ∂Djl/∂βl > 0, ∂Ljl′/∂βl < 0, and ∂Djl′/∂βl < 0, ∀l′ 6= l.

Proof. The proof follows a similar procedure to that for theorem 6. Due to
space restrictions, we only outline the differences here. We aggregate all links
other than link l into a single virtual link denoted l. The surplus for class j
now becomes:

f1(Ljl, Djl,−Ljl, βl)≡Uj(Ljl + Ljl)

−Cjl(Ljl, Djl)− Cjl(Ljl, Djl)
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Provided that route j is convex and submodular in loss and delay, it can be
shown that the cross-derivatives for all six combinations of {Ljl, Djl,−Ljl, βl}
are nonnegative. Following a similar approach as before, this can be used
to prove that f1 is supermodular in {Lj1, Djl,−Ljl, β1}, and hence that f1 is
parameter monotonic in βl. This establishes that ∂Ljl/∂βl > 0 and ∂Djl/∂βl >
0.

To show that ∂Ljl′/∂βl < 0 and ∂Djl′/∂βl < 0 ∀l′ 6= l, we must still show that
∂Ljl/∂βl < 0 and ∂Djl/∂βl < 0 implies that ∂Ljl′/∂βl < 0 and ∂Djl′/∂βl <
0 ∀l′ 6= l. Following a similar approach as in the proof for theorem 6, we
aggregate all links in l except for link l′ into a virtual link l′. We consider the
function:

f2(Ljl′ , Djl′ , Ljl, Djl) ≡
−Cjl′(Ljl′ , Djl′)− Cjl′(Ljl − Ljl′ , Djl −Djl′)

It can be shown that f2 is parameter monotonic in (Ljl′ , Djl′) with respect to
(Ljl, Djl). Combining this with ∂Ljl/∂βl < 0 and ∂Djl/∂βl < 0 proves that
∂Ljl′/∂βl < 0 and ∂Djl′/∂βl < 0 ∀l′ 6= l.

Finally, if an increase in the price of bandwidth causes an increase in the loss
and delay on that link, and a decrease in loss and delay on other links, then
we can establish the corresponding changes in bandwidth usage on each link:
Corollary 4. If route j is convex and submodular in loss and delay, then
∂BWjl/∂βl > 0 and ∂BWjl′/∂βl < 0 ∀l′ 6= l.

The proof uses theorems 9 and 10, and is omitted here. Changes in buffer
usage on each link are indeterminate.

6 Conclusion

We have assumed the existence of a reservation-based QoS architecture that
uses shadow-cost pricing. In particular, we considered a pricing policy which
implements a distributed resource allocation to provide guaranteed bounds on
packet loss and end-to-end delay for real-time applications. When the delay
constraints are absent or not binding, we have given closed-form expressions
for the sensitivity of buffer and bandwidth to changes in loss, and correspond-
ing necessary and sufficient conditions for buffer and bandwidth to be Normal
goods. We have shown that the cost required to achieve a target loss probabil-
ity is decreasing and convex. We have given sufficient conditions to establish
that an increase in the price for a resource results in an increase in the loss at
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that node, a decrease in the loss at all other nodes, and an increase in the to-
tal loss. We have also given closed-form expressions for all of the resource and
QoS sensitivities, and given sufficient conditions to establish that an increase
in the price for a resource results in a decreased demand for that resource,
an increased demand for the other resource at that node, and an increased
demand for resources at all other hops. Finally, when the delay constraint is
binding, we have given sufficient conditions to establish that an increase in
the price of bandwidth at one node results in increased loss and delay at that
node, and decreased loss and delay at all other nodes.

Of course, much additional work would have to be done to make any such
pricing approach practical, e.g. design of signalling protocols, reservation pro-
tocols, measurement algorithms, scheduling policies, user agents to automate
the user response, and feedback algorithms to guarantee convergence. The
sensitivity results derived here could be used to guide development of pricing
feedback algorithms, and to adjust buffer and bandwidth in the optimal pro-
portion in response to changes in desired levels of loss, as opposed to methods
which may either increase only bandwidth (with fixed buffer) or may increase
both buffer and bandwidth in a fixed linear proportion.
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