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Testing Model Nesting and Equivalence 

Using existing technology, it can be hard or impossible to determine whether two structural equation 

models that are being considered may be nested.  There is also no routine technology for evaluating 

whether two very different structural models may be equivalent.  A simple procedure is proposed that 

uses model-reproduced moment matrices to evaluate both model nesting and equivalence.  Two 

standard applications are to verify whether or not two proposed models are equivalent, and whether a 

baseline model used in an incremental fit index is appropriately nested. 

Key words: Structural equation models, covariance structure models, nested models, equivalent models.  
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Testing Model Nesting and Equivalence 

The basic ideas of model nesting and model equivalence in structural equation modeling (SEM) are 

widely known, already discussed in introductory texts (Kline, 2005; Raykov & Marcoulides, 2006).  Most 

SEM practitioners know that fixing one or more free parameters to yield a more restricted model will 

yield a nested model, and that changing the direction of one or more paths in a simple model may yield 

a structurally equivalent model.  Model nesting is the easier concept.  It is facilitated by SEM programs 

that allow a researcher to run any two models, whose test statistics output can then be used to 

compute a chi-square difference test.  However, the difference test also can be computed when the 

models are not nested and such a test is meaningless.  Although no researcher would do this on 

purpose, such a meaningless comparison often is made in the context of widely used fit indices such as 

the comparative fit index (CFI, Bentler, 1990).  To compute such an index, a SEM program may 

automatically generate the standard baseline or null model of uncorrelated variables and compute the 

fit index by comparing the fit of the current substantive model to that of this null model.  However, as 

noted by Widaman and Thompson (2003), the model of uncorrelated variables often is not a nested 

subset of the model of interest, so the resulting fit index is inappropriate and meaningless.  At a 

minimum, it is biased.  SEM programs, however, provide no information on the appropriateness of the 

model comparison used in computing incremental fit indices.  A simple and automated method for 

evaluating model nesting would eliminate this problem. 

Model equivalence is harder to evaluate, and tends to be overlooked in practice (e.g., Henley, Shook, & 

Peterson, 2006).  Moment equivalent models are those “that, regardless of the data, yield identical (a) 

implied covariance, correlation, and other moment matrices when fit to the same data, which in turn 

imply identical (b) residuals and fitted moment matrices, (c) fit functions and chi-square values, and (d) 
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goodness-of-fit indices based on fit functions and chi-square” (Hershberger, 2006, p. 15).  What is 

especially hard for a practitioner to do is to evaluate whether models are nested or equivalent when 

both models being compared are highly complicated, for example, they may contain dozens or hundreds 

of degrees of freedom (df).  SEM programs provide no help in evaluating equivalent models, and 

researchers are left to study the complicated rules of path replacement most recently summarized by 

Hershberger (2006) to see if such models are equivalent.   

We know of no SEM program that provides a researcher with evidence regarding model nesting or 

equivalence.  This note describes simple computations that can be added to any SEM program to 

achieve these objectives, and that similarly allow a researcher to perform their own nesting and 

equivalence tests.   

We use the following notation.  Let two models be designated as 1M  and 2M , where, if the models 

have different degrees of freedom (df), 1M is the model with the larger df.  This implies that when 

models are nested, 1M is the more restricted model; or, if the df are equal, it may be equivalent to 2M .  

When neither nesting or equivalence holds, 1M  and 2M  are just two models of interest.   

Methodology 

Bentler and Bonett (1980) introduced the concepts of parameter nesting and covariance matrix nesting.  

The type of nesting typically considered is parameter nesting, where a free parameter in 2M  is fixed in 

the more restricted model 1M  or a free parameter is added into a constraint equation that reduces the 

effective number of free parameters.  A result is that the df in 1M  must be larger than those in 2M .  

Parameter nesting is relatively easy to evaluate, especially in simple models, and hence a special 

technology to evaluate parameter nesting is typically not needed.  However, when there are dozens or 
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hundreds of free and fixed parameters in a model, verifying parameter nesting also can be difficult, or at 

least, subject to human error, and computerized assistance may be helpful. 

 Covariance matrix nesting, or, allowing mean structures as well, moment matrix nesting, is more 

difficult to verify.  In such models, the mapping from parameters to mean and covariances matrices may 

take completely different forms in the two models being compared, and yet the set of possible moment 

matrices under 1M   remains a subset of the set of possible mean and covariance matrices under 2M .  

Consider for example the two models in Figure 1.  These models look completely different -- they have a 

different number of equations; they have a different number of independent variables; and only one has 

latent variables.  Yet, under standard identification conditions, they are nested.  This can be seen easily 

since model 2M  is a saturated model, and 1M  is just some structural model.  In more complicated 

models it can be even more difficult to establish moment matrix nesting.  Computerized assistance 

would definitely be helpful. 

Using the idea of moment matrix nesting, equivalent models can be defined as not necessarily nested 

models with equal degrees of freedom in which the set of possible moment matrices under 1M  is 

identical to the set of possible covariance matrices under 2M .  We use these ideas to describe our 

method. 

Nesting and Equivalence Test (NET) 

Step 1.  Do a normal SEM run on model 1M .  Save the df and the model reproduced covariances (and 

means, in a mean structure).  Call these df1, 1̂  (and 1̂ if needed). 
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Step 2.  Read in the 1̂ (and 1̂ if needed) as data to be analyzed in a SEM run with model 2M  using the 

same estimation method.  The output needed from this run is the df, say df2, and the minimum of the fit 

function F̂ (or the basic chi-square statistic). 

Step 3.  Compute 1 2d df df  , and pick a small criterion value for  , such as .001  . 

Step 4.  (a) If 0d   and F̂  , the models are nested. 

(b) If 0d   and F̂  , the models are equivalent. 

(c) If 0d   or F̂  , 1M  is not nested in, or equivalent to, 2M . 

The key idea is that when F̂  , the 1M   model-reproduced means/covariance matrices can be 

precisely reproduced by model  2M .  With nonnegative d , as in (a), this implies the models are nested.  

With 0d  , as in (b), this implies the models are equivalent.  Negative degrees of freedom, as in (c), 

imply non-nesting of 1M in 2M and non-equivalence of the models.  Note that if F̂  , i.e., if the 

restricted model reproduced means and covariances cannot be fit exactly by an equal or more general 

model, the models are neither nested or equivalent.  The reason for picking some small   as a criterion 

is that computations always involve some numerical approximations, terminating computations by a 

convergence criterion depends on the specific choice of criterion, and so on. 

Illustrations 

The two models 1M  and 2M  of Figure 1 will be used to illustrate our nesting test.  The sample 

covariance matrix S is the 3 by 3 covariance matrix given by Hershberger (2006, p. 15), namely,  
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2.00

.94 1.80

1.03 .65 1.50

S

 
 


 
  

. 

Hershberger does not give the sample size, and we take it as N=100.  Model 1M  is Hershberger’s Model 

1 (p. 17), which has 1 df (df1=1).  In Step 1, we use maximum likelihood (ML) estimation, and obtain the 

model-reproduced covariance matrix based on the ML estimates as  

1

2.00

ˆ .94 1.80

.339 .65 1.50

 
 

 
 
  

. 

This is identical to that reported by Hershberger (2nd matrix, top of p.16).  Next, we do Step 2, using 

1̂ as data to be analyzed using model 2M  of Figure 1.  The output from this run provides the df (df2=0) 

and the minimum of the ML fit function, ˆ .00000F  .  In step 3, we compute the difference in degrees 

of freedom as d = df1- df2 = 1 – 0 = 1, and choose the default .001  .  We see that the results favor part 

(a) of Step 4, that is, 0d   and F̂  , and hence we conclude that the models are nested. 

A more interesting case is that of model equivalence.  Figure 2 shows a model that Hershberger has 

shown to be equivalent to model 1M  of Figure 1; it is his Model 3 (p. 17).  We now use our NET 

procedures to evaluate the equivalence hypothesis.  Step 1 gives the same results as previously.  Using 

the output of Step 1 ( 1̂ as shown above) as input to Step 2, we now run the model of Figure 2.  The 

results show the df (df2=1) and the minimum of the ML fit function, ˆ .00000F  .  In step 3, difference in 

df is given as d = df1 - df2 = 1 – 1 = 0.  With the same default  as before, the results are consistent with 

part (b) of Step 4.  Since 0d   and F̂  , the models are equivalent. 
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Next we consider one of the examples provided by Widaman and Thompson (2003) on appropriate and 

inappropriate null models for fit indices.  They analyzed several psychometric test theory models on 4 

variables taken from Votaw (1948).  Based on 126 subjects, the means of these variables are 14.905, 

15.484, 14.444, 15.123, and the covariance matrix is 

 

 

25.070

12.436 28.202

11.726 9.228 22.739

20.751 11.973 12.069 21.871

S

 
 
 
 
 
 

. 

 

Among the several models they considered is a restricted one-factor model with equal factor loadings, 

equal unique variances, and equal means (their model 1A).  The ML test statistic 
MLT of this substantive 

model, based on df=11, is 115.266MLT  .  Their standard baseline model (model 0C) had no factors, 

freely estimated unique variances, and freely estimated means.  This model is clearly not nested in the 

substantive model since it frees up parameters rather than restricting them further.  It yielded 

272.492MLT  with 6 df.  In this example, the smaller rather than greater number of df should clearly 

warn the user about the inappropriateness of this baseline model, and hence the inappropriateness of 

all incremental fit indices.  Widaman and Thompson suggested that an acceptable baseline model for 

their substantive model would be a model that has no factors, equal unique variances, and equal means 

(model 0A).  This yielded 277.826MLT  with 12 df.  We now show how our NET methodology verifies 

that model 0C is not nested in the substantive model , while model 0A is appropriately nested.  We use 

the 2 statistics for this evaluation, rather than the minima of the fit function as before. 

Our Step 1 model 1M  for model 0C showed 272.492MLT  with 6 df (=df1).  The model reproduced 

means are 14.905, 15.484, 14.444, and 15.123 and the unique variances are 25.070, 28.202, 22.739, and 
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21.871, i.e., these estimates correspond to the sample means and variances as would be expected.  In 

Step 2, these are input into a new run with analysis based on 2M , which is their model 1A (see above).  

The resulting 5.334MLT  with 11 df (=df2).  In Step 3, we compute d = df1 - df2 = 6 – 11 = -5 and choose 

.001  as before.  In Step 4, since 0d   and 5.334MLT   , neither conditions (a) or (b) are met, 

while (c) is met, attesting to the conclusion that the models are not nested as hypothesized or 

equivalent.  Repeating this procedure for model 0A, in Step 1, as noted 277.826MLT  with 12 df (=df1).  

The corresponding model reproduced means are 14.989, 14.989, 14.989, and 14.989, and the unique 

variances are 24.612, 24.612, 24.612, and 24.612. In Step 2, these are input into a new run with analysis 

based on model 2M  (model 1A), yielding 0.000MLT  with 11 df (=df1).  In Step 3, d = df1 - df2 = 12 – 11 = 

1, and we choose .001  .  Using the results of Steps 2 and 3 in Step 4, we have 0d  and 
MLT  , and 

hence we conclude, correctly, that model 0A is nested in model 1A.  Hence, incremental fit indices can 

be based on it. 

Rationale for NET Methodology 

Consider a situation in which the set of possible mean and covariance matrices under 1M   is equal to, or 

is a subset of, the set of possible mean and covariance matrices under 2M .  This moment matrix nesting 

requires that all possible sets of parameters 1 that could generate means 1 1( )  and covariance 

matrices 1 1( ) must generate sets of means and covariances that also are found among the 

means 2 2( )  and covariance matrices 2 2( ) .  As a consequence, fitting the more general model 

{ 2 2( )  , 2 2( ) } to the restricted model { 1 1( )  , 1 1( ) } must yield a perfect fit.  In practice, consistent 

estimators { 1 1
ˆ( )  , 1 1

ˆ( ) }  are fit by the model { 2 2( )  , 2 2( ) } according to some estimation 

methodology.  If the fit is perfect, the models are nested, and furthermore, if both models have the 
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same degrees of freedom, they are equivalent.  The technical basis for this methodology is given in the 

Appendix. 

Discussion 

In principle, the approach outlined here for evaluating model nesting and equivalence applies to a wide 

variety of related modeling situations such as multiple group models or higher moment structures in 

SEM, log-linear models in categorical data situations, and so on.  Since incremental fit indices are almost 

universally reported in SEM, one of the simplest yet most important areas of application is that of 

verifying the nestedness of a baseline or null model for the computation of incremental fit indices.  

Although Bentler and Bonett (1980) had emphasized that an appropriate null model for such indices 

must be a nested model relative to the substantive model of interest, they also noted that “there are 

cases when it is not a simple matter to verify that 0M  [the null model] is a special case of kM , 

lM [substantive models], or 
sM [the saturated model].  Nonetheless, this is a fundamental requirement 

of 0M ” (p. 596).  Such a difficulty may be inevitable when the researcher uses prior results (Sobel & 

Bohrnstedt, 1985), an equal-correlation baseline model (Rigdon, 1998), or some untested ideas to 

specify the null model.  The only standard default used in SEM programs that we know about is the 

uncorrelated variables model as the baseline model, yet, as Widaman and Thompson (2003) show, this 

is often an inappropriate model choice since this model may not be nested in the model of interest.  The 

methodology provided here can be easily implemented to routinely evaluate nesting for incremental fit 

indices, especially when the null model is provided by a program default.  

Of course, difficulties can arise in particular applications.  In the context of basic SEM models considered 

here, an especially important situation is that of missing data.  The approach developed here is difficult 

to implement with the popular direct maximum likelihood method.  However, the two-stage maximum 

likelihood method described by Yuan and Bentler (2000) and Savalei and Bentler (2007) immediately 
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allows applying the proposed NET framework.  In the two-stage approach, a saturated model 

(sometimes called the EM means and covariance matrix) is first estimated.  These saturated means and 

covariances are then taken as the sample means and covariances to be modeled in the subsequent step.  

For the NET procedure, the saturated moments are taken as the data to be analyzed in Step 1 above, 

and model 1M   is fit to it.  Then Steps 2-4 are completed as usual. 

A more general issue is how to apply the proposed NET procedure when there are no data at all, and 

hence no sample covariance matrix S (and means, when relevant) is available for Step 1 of our method.    

When not having S from empirical data, it is possible to substitute an S obtained from simulated data, 

e.g., data from a hypothetical normal population with a given covariance matrix.  In particular, a 

population specification from 1M  is used to generate the sample moment matrix S1 which is then fitted 

under 1M  to obtain the fitted moment 1̂ . Then 1̂ is analyzed under model 2M  to obtain F̂ .  If F̂   

and 0d  , then the models are nested; or if F̂  and  0d  , the models are equivalent.  

With regard to model equivalence, we should note that our goals have been modest.  We proposed a 

way to evaluate whether any two models that a researcher nominates might be equivalent moment 

structure models.  Making such a comparison is critical to ruling out potentially competing explanations 

of a phenomenon (MacCallum, Wegener, Uchino, & Fabrigar, 1993; Stelzl, 1986).  However, our 

methods do not address the more complicated problem of starting with only one model and generating 

an entire class of models that might be equivalent to a given model.  Rules for specifying some 

equivalent models have been developing for over two decades since Stelzl (1986) first pointed out that 

alternative causal hypotheses could yield identical indices of model fit (e.g., Lee & Hershberger, 1990; 

Luijben, 1991; Hershberger, 1994, 2006).  Since there may be a lot of equivalent models (Raykov & 

Marcoulides, 2001, 2007), a computer algebra surely will need to be incorporated into SEM programs to 

help the researcher generate and evaluate such candidates.  Our methods also do not address the 
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complicated issue of whether models might be equivalent in the broader sense of observational 

equivalence, implying that their generating probability distributions are equivalent.  This topic may 

require studying individual case scores and residuals (e.g., Raykov & Penev, 2001). 
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Appendix 

 

Let ( ) [ , { ( ) }vech       and consider two moment structural models 
1 1 1 1 1: = ( ), M      , and 

2 2 2 2 2: = ( ), M       defined on the space of unconstrained moments ={ | }C    , with 
1 , 

2 , and   Euclidean spaces, and 
1(.)  and 

2 (.)  continuously differentiable functions.  Consider the 

subsets of C  associated to the two models 
1 1 1 1 1={ | = ( ),  }C       and 

2 2 2 1 2={ | = ( ), }C       , 

and the intersection 
12 1 2=C C C .  Then locally for any moment structure model, the following result 

applies (see, e.g., Satorra, 1989): 

 Result 1.  Locally around a point C  , for a moment structure model, jM , the set of moments 

satisfying the model jC  can be defined as ={ | ( ) = 0}j jC h   for a continuously differentiable (vector-

valued) function (.)jh .  

Now we consider a sample moment s  that has an absolutely continuous distribution in the set C .1 

When fitting s using models 
1M , we obtain the fitted moments 

1̂ .  When fitting 
1̂  using models 

2M  

the minimum of the fitting function is denoted 
12F ; we could equally consider 

12nF , where n  is sample 

size.  With these definitions, we have the following. 

Theorem.  Let s  be the vector of sample moments and 12F  be the associated sample value of Step 3 of 

NET. Then, one, and only one, of the following outcomes apply:   

         - 12 1=C C , i.e. 1 2C C  (
1 2<M M ) and 12 = 0F   

         - 
12C  is not equal to 

1C  and 12 > 0F  with probability 1 .  

 Proof:  Combining Result 1 with Sard's (1942) Theorem,2 it follows that either 1) 12 1=C C , in which case 

                                                           
1
That the distribution is absolutely continuous is essential, but is not restrictive, since it encompasses SEM except 

for the case of degenerate distributions. It excludes the case of discrete distributions.  
2
 Let : n mf R R , f continuously differentiable, with the jacobian matrix of f  having rank < m , then the set 
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12 = 0F ; or 2) 
12C  has Lebesgue measure zero in 

1C . Since for any absolutely continous distribution, sets 

of Lebesgue measure zero have zero probability, it follows that when 
12 1C C  the probability that 

1 12C   is zero, so 
12 > 0F  with probability 1 .3   

This result suggests the procedure of the Nesting and Equivalence Test given in the text, where 
12F is 

designated as F̂ , concluding that 
1 2<M M  when 

12 <F  , for   a small constant; model equivalence 

when in addition to 
12 <F  , the two models have the same number of degrees of freedom ( = 0d ); or 

non-nesting and non-equivalence of 1M  in 2M  when 12 >F  . 

   

                                                                                                                                                                                           

{ | ( ) = 0}x f x  has measure zero in mR .  
3
A graph can help on this. The graph would show a square which is model 1C  and a curved line that is 12C , and a 

point outside the line which represents 1̂ . In this graph, the Lebesgue measure of 12C  is zero, unless 12C  is the 

whole space 1C , when 1 2C C .  



17 

 

Figure 1 

 

Two Nested Models 

 

 

Model M1 

 

 
Model M2  
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Figure 2 

 

An Equivalent Model to Model M1 of Figure 1 

 

 

 

 

 




