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The Monty Hall dilemma (MHD) is a probability puzzle in which humans consistently fail to adopt the optimal winning strategy. The 
participant chooses between three identical doors, behind one of which is a valuable prize. After the participant makes their initial 
decision, the host reveals that there is nothing behind one of the two remaining doors, then asks the participant if they would like to 
stay with their originally selected door or switch to the remaining unopened door. The optimal choice is to switch to the previously 
unchosen door, which increases the probability of winning from 33% to 67%. Despite this basic solution, humans repeatedly perform 
suboptimally. Previous attempts to improve performance by increasing the number of available doors have been successful (Burns & 
Weith, 2004; Franko-Watkins et al., 2003; Saenen et al., 2015; Stibel et al., 2009; Watzek et al., 2018). However, prior studies that 
examined whether this improved performance could generalize to different contexts have been inconclusive (Franko-Watkins et al., 
2003; Watzek et al., 2018). To examine whether human performance can generalize across two computerized variations of the MHD, 
the present study explored how previous experience involving trials presented with eight options affects switching percentages in 
subsequent trials with three options. The results replicated findings from previous studies, which demonstrated that switching rates 
increased as a function of more available options. The findings also revealed participants can successfully generalize their behavior 
when returning to three-option trials. Further exploration of the MHD is needed to determine why performance generalization occurs 
in certain contexts but not others. 
 
Keywords: generalization, Monty Hall dilemma, perception, suboptimal choice 
 
 

The Monty Hall dilemma (MHD) is a basic probability puzzle with one optimal strategy that is 
notoriously challenging for humans. The dilemma originated on the game show, “Let’s Make a Deal," hosted 
by Monty Hall from 1963 through 1986. During the game show, the contestant was presented with three 
identical options, classically represented by numbered doors. Behind one of these doors was an expensive 
prize, while the remaining doors were empty. The host asked the contestant to select one of the doors that may 
contain the prize. After the initial choice was made, the host revealed another door that was not selected by the 
contestant and did not contain the prize. Then the host presented the dilemma to the contestant by asking 
whether they would like to stay with the door they initially chose or if they would like to switch to the final 
unopened door.  
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To maximize the probability of winning the prize, the contestant should always switch to the remaining 
door. When the contestant made their initial choice, they had a 33% chance of choosing the door that contained 
the prize. This outcome is referred to as a "lucky guess." If the contestant made a lucky guess, the host could 
open either of the remaining doors since both doors do not contain the prize. By not switching, the contestant 
would be successful 33% of the time across a given number of trials. Alternatively, if the contestant switched, 
the likelihood of correctly choosing the door with the prize increased to 67%. An easier way to understand why 
switching is advantageous is to consider the dilemma when there are 100 doors available instead of just three. 
If a random door is selected and the host reveals 98 empty doors, the contestant can be almost certain that the 
prize is behind the unopened door that was not initially chosen. When 100 doors are available, switching results 
in a prize 99% of the time since the chances that the contestant's initial choice is a lucky guess is 1%. The 
probability of winning after staying or switching is directly proportional to the number of doors available. 
Therefore, switching to the remaining door is the optimal strategy because any other strategy results in a lower 
probability of winning on average. 

 
Despite the disparity between the winning probability for staying and switching, humans not only fail 

to recognize which strategy has the highest overall probability of resulting in a winning outcome, they 
repeatedly exhibit a bias towards staying with their initial selection (Granberg, 1999). Granberg and Brown 
(1995) found that repeated exposure through multiple trials improved performance and that participants began 
to plateau after approximately 20 trials, switching roughly two-thirds of the time. This plateauing effect in 
human participants has been observed repeatedly (Efendić & Drace, 2015; Granberg & Brown, 
1995;  Herbranson & Schroeder, 2010; Herbranson & Wang, 2014; Hirao et al., 2017; Mazur & Kahlbaugh, 
2012).  

 
To explore how other species would perform when presented with this dilemma, Herbranson and 

Schroeder (2010) compared pigeon (Columba livia) performance to human performance using a nonverbal, 
computerized adaptation of this task. Human participants received 200 trials of the MHD with feedback after 
each trial. Like Granberg and Brown (1995), the participants' switching rates increased steadily until plateauing 
around 67%. Pigeons initially started with a slightly stronger stay bias, but after 30 training sessions, they 
developed a strong preference for switching. Furthermore, the pigeons continued performing better than the 
human participants, even when the researchers reversed the contingencies so that staying became reinforced 
two-thirds of the time. These results indicate that pigeons had greater sensitivity to the contingencies, which 
led pigeons to adopt the optimal strategy more efficiently and reliably than their human participants, even when 
the contingencies were reversed.  

 
Further studies examined whether this suboptimal tendency was exclusive to humans by testing non-

human primates (Klein et al., 2013; Watzek et al., 2018) and rats (Stagner & Zentall, 2014). Klein et al. (2013) 
determined that the monkeys' (Macaca mulatta) performance indicated a substantial comparative similarity 
with human performance. The results of Watzek et al. (2018) also showed considerable similarities between 
response patterns of capuchin (Cebus [Sapajus] apella) and rhesus macaques to human response patterns in 
both 3-door and 8-door conditions. Stagner and Zentall (2014) concluded that rats (Rattus norvegicus 
domestica, Sprague-Dawley strain), like pigeons, appeared to be influenced more by the overall probability of 
reinforcement, leading to similar performance between species. Overall, these studies illustrate that almost all 
subjects, regardless of species, had some difficulty adopting the optimal strategy, but humans seemed to have 
the most difficulty.   
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One explanation for the suboptimal performance of humans is known as probability matching. 
Probability matching is characterized by choice probabilities that match the pre-programmed probabilities for 
obtained reinforcement. This propensity to allocate responses based on associated reinforcement probabilities 
is typical when using probabilistic outcomes (Fantino & Esfandiari, 2002) and frequently results in less 
reinforcement overall. Phyletic similarities and differences in tendencies to probability-match have been 
observed across a range of species including rats, pigeons, monkeys, turtles (Chrysemys picta), and fish 
(Tilapia macrocephala; Bitterman, 1965). An example of this phenomenon occured when participants 
attempted to predict which colored light (green or red) would appear on an upcoming trial. The participants 
received a small monetary reward each time they correctly predicted the color stimulus. In this scenario, the 
green light appeared on 75% of trials while the red light appeared on the remaining trials. Participants could 
maximize their chance of success by only selecting green as the light that would appear. However, over time 
many participants chose green approximately three times more often than red, resulting in response patterns 
that mirrored the probabilities of reinforcement for each alternative (reviewed by Vulkan, 2000).   

 
Increased amounts of anticipated regret have also explained suboptimal performances by humans in 

the MHD. Participants who experienced a loss after switching reported higher feelings of regret than losses 
that resulted from staying (Stibel et al., 2009). This finding may also explain why Petrocelli and Harris (2011) 
discovered that participants often exaggerated the amounts of switch-losses they experienced when asked to 
estimate the frequencies of loss associated with switching and staying, respectively. This increased aversion to 
switching due to more anticipated regret following a switch-loss rather than a stay-loss could explain why 
humans consistently exhibit a stay-bias. Stibel et al. (2009) attempted to test this hypothesis by manipulating 
whether the initial selection was randomly determined or chosen by the participant. Their results showed that 
participants switched more frequently when their initial selection was randomly determined than participants 
who freely selected their initial choice. Zentall et al. (2015) used a similar methodology of forced initial choices 
to examine its effect on pigeons' performance. Unlike humans, pigeons that experienced forced initial 
selections performed worse overall by switching less frequently than pigeons with free selection.  

 
Anticipated regret cannot explain the common misunderstanding of this problem in humans. Still, it 

can potentially explain the frequently observed stay-bias in human performance, despite reporting incorrect 
judgments of equivalent probabilities for winning associated with staying and switching. This phenomenon 
among human participants in the MHD is consistent with an equiprobability bias (Gauvrit & Morsanyi, 2014). 
Participants falsely report that both options are equally likely to contain the prize when they estimate the 
probabilities of winning for the two remaining options. Human participants that report equal probabilities 
should not exhibit a preference for one alternative over another. However, studies have shown that participant 
behavior reflects a clear preference for staying despite self-reported estimates of probabilities being equal for 
staying and switching (Franco-Watkins et al., 2003; Granberg & Brown, 1995; Krauss & Wang, 2003; Stibel 
et al., 2009).  
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Although research has demonstrated that human performance in the MHD can improve through 
repeated exposure, typical performance is still well below optimal. Several studies increased the number of 
options available for selection to provide additional performance improvements (Burns & Wieth, 2004; Franco-
Watkins et al., 2003; Saenen et al., 2015; Stibel et al., 2009; Watzek et al., 2018; reviewed by Saenen et al., 
2018). Increasing the number of available options raises the likelihood that switching will result in 
reinforcement when all but two options have been eliminated. For example, when three options are available, 
switching results in reinforcement 67% of the time. That amount is increased to 87.5% if the available options 
are increased to eight, and six of the options that were not initially selected are eliminated. Therefore, the 
contestant should be more likely to switch when more options are added. Saenen et al. (2015) implemented 
three conditions, each with an increasing number of cups (3/10/50), then compared performance across 10 
trials. Stibel et al. (2009) examined whether performance on a single trial improved by including conditions 
that gradually increased the number of boxes available, ranging from 5 to 10. Burns and Wieth (2004) increased 
their total number of options to 128 for a single trial, while Franco-Watkins et al. (2003) implemented doors 
ranging from 3 to 10 for three trials. Each study found that switching rates increased as a function of more 
available options. However, Stibel et al. (2009) found that increased switching rates remained stable, and no 
significant improvement occurred as additional options were added.  

 
Previous studies have examined whether performance in one variation of the MHD can generalize to 

other contexts. Franco-Watkins and colleagues (2003) found inconsistent effects of generalization, but without 
a control group for comparison, interpreting their results becomes challenging. Watzek et al. (2018) attempted 
to address some of these concerns by testing whether performance from humans, capuchins, or rhesus 
macaques during a computerized version of the MHD would generalize to another variation of the MHD. 
Human participants were randomly assigned to a 3-door, 8-door, or control condition, who received an 
unrelated computer task, and tested using repeated trials during a 60 min session. Once the participants 
completed testing, they were given a survey-based "one-shot" variation of the MHD adopted from Krauss and 
Wang (2003).  

 
Nonhuman subjects were tested using a contextually similar computerized variation with three or eight 

options, depending on the condition. Watzek and colleagues (2018) predicted that subjects (human, capuchin, 
and rhesus macaques) in the eight-door condition would switch more frequently than subjects in the 3-door 
condition during initial testing. They also hypothesized that participants in the eight-door condition would 
switch more frequently than other conditions in the one-shot survey-based variation of the MHD.  

 
Watzek and colleagues (2018) found that both human and rhesus macaques showed near-optimal 

responding patterns, which are highly unordinary, but only 19.8% of participants elected to switch during the 
one-shot variation of the task. However, generalization was observed in capuchins that experienced the eight-
door condition before transitioning to the 3-door condition in the computerized version of MHD. The 
researchers' affirmed their prediction that more frequent switching occurred in the 8-door condition. However, 
their participants were primarily unable to generalize their knowledge to a description-based MHD variation, 
with approximately 80% choosing to stay with their initial choice.  

 
The current study expands on the findings of Watzek et al. (2018) by examining whether the 

generalization effects demonstrated by capuchin monkeys will also occur with human participants. This study 
utilized a similar methodology that Watzek and colleagues used with the following modifications. First, square 
stimuli were used to represent doors in the current study instead of the unique arrangement of circular stimuli 
used previously. Secondly, Watzek and colleagues (2018) incorporated the natural reinforcement probabilities 
for staying and switching instead of holding these probabilities constant between 3-option and 8-option 
variations. As a result, the current study maintained consistent reinforcement probabilities across all task 
variations. This modification eliminated the possibility that performance differences could be attributed to 
shifting reinforcement probabilities rather than a perceived decrease in the likelihood that their initial choice 
was correct as a function of experience with an increased number of available options.  
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Generalization is more likely to occur when two task variations have a high degree of similarity (Sousa, 
2016).  To provide the highest likelihood for generalization, the researchers decided to test participants using 
two similar variations of the computerized MHD task instead of one computerized MHD variation and another 
survey-based, one-shot variation of the dilemma used by both Watzek et al. (2018) and Franco-Watkins et al. 
(2003). The total number of trials given to each participant in the current study was decreased to 60, compared 
to the 493 trials that participants completed on average in Watzek et al.'s (2018) study. In addition, the total 
number of trials was reduced so that acquisition could be monitored within each phase while reducing 
completion time. 
 

The most extensive change to the methodology used by Watzek et al. (2018) to demonstrate 
generalization in capuchins involves stimulus presentation structure. Watzek and colleagues presented the same 
number of stimuli in each condition while varying the order in which the stimuli were presented. For example, 
in one condition capuchin subjects received 500 trials of a computerized MHD task with three doors in their 
experiment, followed by 500 trials of a similar task with eight options. Monkeys in the other condition received 
500 trials of the 8-option computerized MHD task before receiving 500 trials of the 3-option variation. The 
current study modified this A-B/B-A design into an A-B-A or A-A-A design for the experimental and control 
conditions, respectively. The A-phase consisted of trials with 3-options, and the B-phase consisted of 8-option 
trials. This adaptation also provides within-subjects and between-subjects points of comparisons while 
controlling for any potential order effects that might have been present previously.  

 
The present study expanded on the previous findings by Watzek et al. (2018) in human participants by 

examining whether prior experience with an 8-option computerized variation of the MHD generalized to 
improve performance in a computerized variation with three options. We predicted that participants in the 
experimental condition would switch more frequently in Phase 2. In that case, this finding would suggest that 
the participants changed their perception regarding the likelihood that their initial choice was a lucky guess. 
For example, during three-option trials, participants are more likely to perceive their initial choice as having a 
higher likelihood of being correct (33%) than in 8-option trials (12.5%). This change in perception was 
expected to occur even though the participants were unaware that the likelihood of a "lucky guess" remains 
constant in both variations.  

 
We also predicted that improvements in participants’ performance would generalize to Phase 3 despite 

reinforcement probabilities remaining constant. Together, these results would indicate that this perceptual 
change was able to generalize to different variations of the dilemma. These findings would provide evidence 
that human performance in this dilemma can be improved, and that this improvement can be translated into 
novel contexts. If successful, this result would be the first step in demonstrating how improved performance 
in the MHD can generalize to other scenarios while providing the foundation needed to determine which 
mechanisms affect how participants respond under uncertainty.  

 
To test these predictions, all participants experienced 20 trials of the classic MHD with three available 

options to establish a baseline performance level. Then, participants in the experimental condition completed 
Phase 2 with eight available options for an additional 20 trials before beginning Phase 3 consisting of 20 final 
trials, identical to Phase 1 (i.e., the same classic form of MHD). To our knowledge, this is the first study in 
which the reinforcement probabilities for switching (67%) and staying (33%) remained constant despite 
increasing the number of available options. Therefore, any effect on performance can be attributed to 
manipulating the increased number of options available and not to changes in reinforcement probabilities. 
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Method 
 
Participants 
 

Participants (N = 112, 73.2% female, 25.8% male, 1% other) were undergraduate psychology students from Georgia Southern 
University who participated for course credit. All participants were at least 18 years of age and provided informed consent before 
beginning the study. At the end of the session, participants were asked to indicate whether they were familiar with the Monty Hall 
dilemma and its optimal strategy before participating. If the participants answered "Yes" to both questions, their data were excluded 
from the analysis.  Data from participants that indicated familiarity with the MHD but not its optimal strategy were not excluded. Data 
from one participant was excluded from analyses based on these criteria.  

 
Materials 
 

The experimental task was programmed using AngularJS version 1.8.0. The program was hosted using Bluehost web hosting 
services. After a participant registered via SONA Systems, a hyperlink was made available containing information about the informed 
consent policy and instructions for participants. In addition, a link to an external survey was also included so that participants could 
confirm their participation while their data remained anonymous. This link appeared at the beginning and end of the experiment. Once 
the participant provided informed consent, the instructions were presented (see Appendix A), followed by the experimental trials.  

 
Square stimuli measured 128 pixels, and the center square was located 13 cm from the top of the screen and 21.9 cm from 

the left-hand side of the screen. Subsequent squares were arranged equidistant from the center square by 0.635 cm. All measurements 
were made using a monitor with an aspect ratio of 1920x1080. Precise locations of stimuli varied based on the device used by each 
participant. When a square was selected, it was indicated by two intersecting lines in the form of an "X" for one second before reverting 
during the following selection process. Once a selection was made, one to six squares became "revealed” depending on the condition. 
These revealed squares remained black for the trial's duration and could not be selected until a new trial began (see Figure 1). 
 
Design and Procedure 
 

This project was reviewed by the Georgia Southern Institutional Review Board (H21237). Participants were randomly 
assigned to the Experimental or the Control group using a random number generator before the first trial began. Participants in the 
Experimental group completed three consecutive phases in a standard A-B-A experimental design. To examine acquisition curves 
within each phase, all phases consisted of 20 trials.  For the Experimental group, the first and third phases included three options for 
selection, whereas the number of available options increased to eight during Phase 2. The number of options available for selection 
during the terminal choice remained the same regardless of phase. Participants in the Control group experienced three identical phases 
with three options for selection across all trials. All participants were informed of their rights and provided informed consent before 
the experiment began. After obtaining consent, the participants were provided instructions for completing the task. 

 
The experiment began after the participants clicked a button labeled "Begin." For participants in the Experimental group, 

Phase 1 consisted of 20 trials with three options available to be chosen (see Figure 1). After the participant’s initial selection, the 
selected square became marked, while a different square, chosen at random, became solid black. After 1 s, the marked square returned 
to its previous form, leaving two identical squares that could be chosen. Finally, the participant made their terminal choice (either 
retaining their initial selection or switching to the available option), and their selected square became marked once more. After one 
second, all stimuli disappeared, and feedback was delivered in the form of "You win! Try again" on winning trials or "You lose. Try 
again" on losing trials. Feedback remained visible for two seconds before an inter-trial interval (ITI) consisting of a blank white screen 
appeared for one second, after which a new trial commenced. 

 
The outcome of the trial (win or loss) was determined by a random number generator that pulled a number between 1-100. 

This number was generated once the participant chose to stay or switch, not at the start of the trial. This way, these probabilities would 
be constant no matter how many options were available. Once a number was generated, the program examined whether the participant 
chose to stay or switch. If the participant chose to stay, numbers ≤ 33 were considered wins, while numbers ≥ 34 were considered wins 
if the participant chose to switch. 
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Figure 1 
 
Experimental Group Example Trials 
 

 
 
Note. Black squares denote revealed options and cannot be selected. Intersecting lines represent selected 
squares. Instructions are only presented before the first trial commences. 
 

After 20 trials, Phase 2 began. Participants in the Experimental group were presented with eight options rather than three. 
Note that reinforcement probabilities for staying and switching remained constant across every trial regardless of condition. Like Phase 
1, once an option was selected, it was marked while six of the remaining seven squares were simultaneously eliminated as choices that 
could not be selected. After a one second delay, the participant made their terminal choice. Again, the chosen square became marked 
for one second before feedback was delivered, and an ITI was presented.  Once 20 more trials occurred, Phase 3 began. For the control 
condition, Phase 2 and Phase 3 were simply a continuation of Phase 1 (i.e., three available options). For both conditions, the first and 
third phases were identical in presentation. 

 
Upon completing all three phases, participants in both conditions were presented with a series of questions. Participants were 

first asked to indicate their gender. Next, participants indicated whether they were familiar with the MHD, also known as the 3-Door 
problem, before beginning the experiment. Participants who responded “Yes” to the first question were asked if they knew the 
dilemma’s optimal strategy before beginning the experiment. Finally, participants described their strategy during the task in an open-
response format. Upon completing the survey questions, participants were given a short description debriefing them about the 
experiment’s purpose and potential implications. The researcher’s contact information was provided along with the external survey link 
to ensure participants were properly compensated for participating. 
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Data Analysis 
 
Raw choice data were analyzed using the generalized multilevel logistic regression (GMLR) approach. All analyses were 

preformed using R Statistical Software (v4.2.2; R Core Team 2022).The R package lme4 (Bates et al., 2015) was used for model fitting, 
and the emmeans package (Lenth, 2022) was used for post hoc comparisons using Tukey’s method for adjusted p values. GMLR 
approaches reduce the likelihood of observing a Type 1 error by implementing both fixed effects (group-level) and random effects 
(individual level) and are the recommended data analysis technique for binomial choice data (Young, 2018). GMLR methods can also 
detect smaller effects by including all choice data in a model. This method is more precise when compared to traditional techniques, 
like analysis of variance (ANOVA), which relies on single-point means (Boisgontier & Cheval, 2016).  

 
In the analyses, all categorical variables were effect coded. These variables included Group (Experimental and Control) and 

Phase (1-3). Models with Phase treated categorically rather than continuously had lower Akaike Information Criterion (AIC) values, 
suggesting greater model fit. Therefore, Phase was treated categorically with Phase 3 as the contrasting condition. Subtrial refers to the 
20 trials within each phase. Subtrial was a continuous variable that was mean-centered to reduce multicollinearity (Iacobucci et al., 
2016). Based on previous literature, switch behavior was predicted to produce a logarithmic function across subtrials, such that 
switching rates would begin to plateau as participants approached the end of each phase. To account for this, we included a log-
transformation of subtrial as a parameter for model comparison. The outcome variable was binomial choice data, with 0 representing 
‘stay’ and 1 representing ‘switch.’  

 
The data were modeled using a full factorial model with Group, Phase, and log(Subtrial) as fixed effects. Each model used a 

parsimonious random-effect structure which systematically added complexity to find the best fitting model. The random effect structure 
that produced the lowest AIC value was an intercept-only model (AIC = 6580.5). Models that included log(Subtrial) as a random slope 
resulted in higher AIC values, while models that included Phase as a random slope produced lower AIC values but failed to converge. 
Therefore, they were not included in the analysis. For comparison, a simpler model was included with Group, Phase, and their 
interaction as fixed effects. Using the same procedure to determine the best-fitting random effect structure, the model with Subject as 
a random intercept and Phase as a random slope produced the model with the lowest AIC value (AIC = 6433). Based on AIC values, 
the reduced model was the best-fitting model. The standard metric of p < .05 threshold was used for determining significance.  
 

 
Results 

 
A generalized mixed-effects model was used to predict the proportion of switching by Phase, Group, 

and their interaction. The best fitting model revealed that participants switched significantly less during Phase 
1 but significantly more during Phase 2. The model also revealed a significant Group [Cont] x Phase [1] 
interaction (see Table 1). 

 
Table 1 
 
Parameter Estimates from Reduced Model 
 
    
 Estimate SE Z value Pr(>|z|)  
Intercept 1.461 0.138 10.610 < 0.0001  

Group [Cont] -0.166 0.137 -1.216 0.224  
Phase [1] -0.401 0.083 -4.856 < 0.0001  
Phase [2] 0.168 0.078 2.252 0.024  
Group [Cont] * Phase [1] 0.227 0.080 2.851 0.004  

Group [Cont] * Phase [2] -0.103 0.068 1.514 0.130  
Note. Estimates are shown as log-odds. 
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Figure 2 shows the mean percentage of switching for participants in the Experimental and Control 
groups. Post hoc analyses of all possible comparisons using Tukey’s adjusted p-values revealed the proportion 
of switching in the Experimental group was significantly higher in Phase 2 (z = -5.124; p < .0001) and Phase 
3 (z = -4.621; p = .0001) compared to Phase 1. All other pairwise comparisons were not significant (p > .062). 
These findings suggest that increasing the number of options available does improve performance 
independently of reinforcement probabilities. The results also suggest that these performance improvements 
persist despite reverting to three-option trials.  

 
Figure 2 
 
Percentage of Switching Across Phase 

 

 
Note. Error bars represent ± 1 standard error. 
 

Discussion 
 

The results of the current study support the findings from prior studies that found that the addition of 
more options ultimately improved participants’ performance (Burns & Weith, 2004; Franko-Watkins et al., 
2003; Saenen et al., 2015; Stibel et al., 2009; Watzek et al., 2018). Our results show that performance 
differentially improved in the Experimental condition during Phase 2 when the number of available options 
increased to eight. This finding provides evidence that merely altering how the task is presented by introducing 
more options is sufficient to improve performance independently of changes in the reinforcement probabilities. 
Despite observing a significant improvement in performance from the Experimental condition, this 
improvement was moderate (approximately a 7% increase).  

 
Including verbal instructions or increasing the number of available options for selection is not the only 

method to alter how the dilemma is potentially perceived. Tubau and Alonso (2003) changed how participants 
perceived the dilemma by allowing them to take the host’s perspective before being tested as a contestant. The 
researchers found that the participants who took the host’s perspective before testing switched significantly 
more than the control participants. Similar to the current study, the findings from Tubau and Alonso (2003) 
demonstrate that performance can be improved without changing the reinforcement probabilities. 
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A novel contribution of this study was eliminating reinforcement probabilities as a confound when the 
number of options were increased. Thus, these results suggest that the inclusion of more options without a 
commensurate increase in reinforcement probabilities was sufficient to increase switch rates compared to the 
Control condition. Furthermore, prior studies have shown that performance improved significantly when the 
probability of reinforcement was increased for switching without adding additional options for selection 
(Franco-Watkins et al., 2003; Herbranson & Schroeder, 2010; Hirao et al., 2016; Mazur & Kahlbaugh, 2012). 
These findings might suggest that reinforcement probabilities and number of options potentially interact to 
enhance performance.  

 
Our findings expand on the results of Watzek et al. (2018), which explored whether humans could 

generalize their performance between two variations of the dilemma first demonstrated with capuchins and 
rhesus macaques. Watzek and colleagues hypothesized that including more options would improve 
performance and this improvement would persist when given an alternative version of the dilemma. The results 
from human participants supported their first hypothesis, but the participants did not generalize their 
performance from a non-verbal, experience-based computerized variation when tested on a description-based 
variation. Our results, however, showed that participants in the experimental condition behaved similarly to 
the capuchin monkeys in Watzek et al. (2018). The participants in the current study successfully generalized 
their previous experience with eight-option trials and continued to switch at significantly higher rates compared 
to the control condition, which did not experience eight-option trials.  

 
This result may explain why performance generalization has been inconsistent in previous studies 

(Franko-Watkins et al., 2003; Watzek et al., 2018). Prior studies have assessed generalization by training 
participants using experience-based versions while testing them on single-trial, description-based variations. 
Participants in the current study and capuchin monkeys from Watzek and colleagues’ (2018) study successfully 
demonstrated performance generalization when they were trained and tested on two experience-based 
variations of the dilemma.  

 
Our results also indicate that the participants’ switch rates in Phase 1 were higher than typically seen 

with experience-based Monty Hall tasks using repeated trials. We considered whether including the ‘X’ used 
to designate the selected option may have biased responding towards switching. However, this marker was 
included after any selection was made, including on winning trials. Ultimately, we suspect this difference may 
be due to natural variability in responding, rather than an effect driven by one or more procedural details.  

 
The unusually high rates of switching observed in the participants of the current study, and the 

participants in Watzek and colleagues’ (2018) study, can also be explained by the description-experience gap. 
The description-experience gap suggests that when relying on probabilistic reasoning, experienced-based 
methods involving multiple trials disproportionally engages working memory, attention, and other problem-
solving processes while description-based methods primarily rely on heuristics and intuition (Schulze & 
Hertwig, 2021). Therefore, participants who are given description-based versions of the MHD may be more 
likely to rely on intuition when choosing, making generalization of their previous experience less likely. 
However, more research is needed to investigate the effects of differing contexts on performance and 
generalization in the MHD. 

 
 
 
 
 
 
 
 
 



 
 

11 

 
 

Results from the current study support that how probabilistic dilemmas are presented contributes to 
the level of accuracy that is assessed. Future research focused on reducing commonly committed errors within 
probabilistic dilemmas should explore how stimuli presentation can be modified to enhance the reinforcement 
outcomes associated with choice selections. The current study demonstrates that altering the presentation of 
the dilemma, thus influencing how the dilemma is potentially perceived, led to significant improvements in 
performance. This performance improvement also persisted when participants were returned to baseline 
conditions. More research is warranted to determine why performance generalization occurs in some contexts 
but not others. In addition, future research should examine how other manipulations to the presentation of 
probability-based dilemmas affects performance to better understand the factors that influence statistical 
intuitions. 
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