
UC Santa Cruz
UC Santa Cruz Previously Published Works

Title
Modular Verification of Multithreaded Programs

Permalink
https://escholarship.org/uc/item/9753d15c

Journal
Theoretical Computer Science, 338(2005)

Authors
Flanagan, Cormac
Freund, Stephen N.
Qadeer, Shaz
et al.

Publication Date
2004-12-08

DOI
10.1016/j.tcs.2004.12.006

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9753d15c
https://escholarship.org/uc/item/9753d15c#author
https://escholarship.org
http://www.cdlib.org/

Modular Verification of Multithreaded

Programs

Cormac Flanagan

Computer Science Department, University of California, Santa Cruz, Santa Cruz,
CA 95064

Stephen N. Freund

Computer Science Department, Williams College, Williamstown, MA 01267

Shaz Qadeer

Microsoft Research, One Microsoft Way, Redmond, WA 98052

Sanjit A. Seshia

School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213

Abstract

Multithreaded software systems are prone to errors due to the difficulty of reason-
ing about multiple interleaved threads of control operating on shared data. Static
checkers that analyze a program’s behavior over all execution paths and for all
thread interleavings are a powerful approach to identifying bugs in such systems.
In this paper, we present Calvin, a scalable and expressive static checker for multi-
threaded programs. To handle realistic programs, Calvin performs modular checking
of each procedure called by a thread using specifications of other procedures and
other threads. The checker leverages off existing sequential program verification
techniques based on automatic theorem proving. To evaluate the checker, we have
applied it to several real-world programs. Our experience indicates that Calvin has
a moderate annotation overhead and can catch defects in multithreaded programs,
including synchronization errors and violation of data invariants.

1 Introduction

Many important software systems, such as operating systems and databases,
are multithreaded. Ensuring the reliability of these systems is an essential but

Preprint submitted to Elsevier Science 16 April 2004

very challenging task. It is difficult to ensure reliability through testing alone,
because of subtle, nondeterministic interactions between threads. A timing-
dependent bug may remain hidden despite months of testing, only to show up
after the system is deployed. Static checkers complement testing by analyzing
program behavior over all execution paths and for all thread interleavings.
However, current static checking techniques for multithreaded programs are
unable to scale to large programs and handle complicated synchronization
mechanisms.

To obtain scalability, static checkers often employ modular analysis techniques
that analyze each component of a system separately, using only a specification
of other components. A standard notion of modularity for sequential programs
is procedure-modular reasoning [29], where a call site of a procedure is analyzed
using a precondition/postcondition specification of that procedure. However,
this style of procedure-modular reasoning does not generalize to multithreaded
programs [6,26]. An orthogonal notion of modularity for multithreaded pro-
grams is thread-modular reasoning [24], which avoids the need to consider
all possible interleavings of threads explicitely. This technique analyzes each
thread separately using a specification, called an environment assumption,
that constrains the updates to shared variables performed by interleaved ac-
tions of other threads. Checkers based on this style of thread-modular reason-
ing have typically relied upon the inherently non-scalable method of inlining
the procedure bodies. Consequently, approaches based purely on only one of
procedure-modular or thread-modular reasoning are inadequate for large pro-
grams with many procedures and many threads.

We present a verification methodology that combines thread-modular and
procedure-modular reasoning. In our methodology, a procedure specification
consists of an environment assumption and an abstraction. The environment
assumption, as in pure thread-modular reasoning, is a two-store predicate
that constrains updates to shared variables performed by interleaved actions
of other threads. The abstraction is a program that simulates the procedure
implementation in an environment that behaves according to the environment
assumption. Since each procedure may be executed by any thread, the im-
plementation, environment assumption, and abstraction of a procedure are
parameterized by the thread identifier tid.

The specification of a procedure p is correct if two proof obligations are satisi-
fied. First, the abstraction of p must simulate the implementation of p. Second,
each step of the implementation must satisfy the environment assumption of
p for every thread other than tid. These two properties are checked for all
tid, and they need to hold only in an environment that behaves according to
the environment assumption of p. In addition, our checking technique proves
them by inlining the abstractions rather than the implementations of proce-
dures called in the implementation of p. We reduce the two checks to verifying

2

the correctness of a sequential program and present an algorithm to produce
this sequential program. This approach allows us to leverage existing tech-
niques for verifying sequential programs based on verification conditions and
automatic theorem proving.

We have implemented our methodology for multithreaded Java [4] programs
in the Calvin checking tool. We have applied Calvin to several multithreaded
programs, the largest of which is a 1500 line portion of the web crawler Mer-
cator [22] in use at Altavista. Our experience indicates that Calvin has the
following useful features:

(1) Scalability via modular reasoning: It naturally scales to programs with
many procedures and threads since each procedure implementation is
analyzed separately using the specifications for the other threads and
procedures.

(2) Ability to handle varied synchronization idioms: The checker is sufficiently
expressive to handle the variety of synchronization idioms commonly
found in systems code, e.g., readers-writer locks, producer-consumer syn-
chronization, and time-varying mutex synchronization.

(3) Expressive abstractions: Although a procedure abstraction can describe
complex behaviors (and in an extreme case could detail every step of the
implementation), in general the appropriate abstraction for a procedure
is relatively succinct. In addition, the necessary environment assumption
annotations are simple and intuitive for programs using common syn-
chronization idioms, such as mutual exclusion or reader-writer locks.

(4) Moderate annotation overhead: Annotations are not brittle with respect
to program changes. That is, code modifications having little effect on
a program’s overall behavior typically require only small changes to any
annotations.

The moderate annotation overhead of our checker suggests that static checking
may be a cost-effective approach for ensuring the reliability of multithreaded
software, simply due to the extreme difficulty of ensuring reliability via tradi-
tional methods such as testing.

The following section introduces Plato, an idealized multithreaded language
that we use to formalize our analysis. Section 3 presents several example pro-
grams that motivate and provide an overview of our analysis technique. Sec-
tion 4 and 5 present a complete, formal description of our analysis. Section 6
describes our implementation and Section 7 describes its application to some
real-world programs. Section 8 surveys related work, and Section 9 concludes.
Proofs of theorems stated in the paper are provided in the Appendix.

This paper is a unified description of results presented in preliminary form at
conferences [17,19]. In particular, this extended presentation includes a revised

3

formal semantics, a correctness proof for our verification methodology based
on this semantics, and an additional case study (the Apprentice challenge
problem proposed by Moore and Porter [33]).

2 The parallel language Plato

In this section, we present the idealized parallel programming language Plato
(parallel language of atomic operations), and introduce notation and termi-
nology for the rest of the paper. In order to avoid the complexity of reasoning
about programs written in a large, complex language like Java, our theoretical
discussion focuses on verification of programs in Plato. The topic of translating
Java into Plato is addressed in Section 6.

σ ∈ Store = Var → Value
s, t ∈ Tid = {1, 2, 3, . . .}
p, q ∈ Predicate ⊆ Tid × Store

X,Y ∈ Action ⊆ Tid × Store × Store
m ∈ Proc
B ∈ Defn = Proc → Stmt

P, Q ∈ Program ::= ‖S
S, T, U ∈ Stmt ::= a atomic op

| S1; S2 composition
| S12S2 choice
| S∗ iteration
| m() procedure call

a, b, c ∈ AtomicOp ::= p?X

Figure 1: Plato syntax

Figure 1 shows the Plato syntax. A Plato program P is the parallel compo-
sition of an unbounded number of threads, each executing a sequential state-
ment. Every thread has an identifier which is a positive integer. When P is
executed, the steps taken by its threads are interleaved nondeterministically.
Threads operate on a shared store σ, which maps variables to values. The set
of values is left unspecified because it is orthogonal to the key ideas we develop
here. A sequential statement may be an atomic operation (described below); a
sequential composition S1; S2; a nondeterministic choice S12S2 that executes
either S1 or S2; an iteration statement S∗ that executes S an arbitrary (zero
or more) number of times; or a procedure call m(). The names of procedures
are drawn from the set Proc, and the function B maps procedure names to
their implementations.

Atomic operations generalize many of the basic constructs found in program-

4

ming languages, such as assignment and assertion. An atomic operation has
the form p?X. Both the predicate p and the action X are parameterized by
the identifier of the thread executing p?X. The predicate p must be true in the
pre-store of the operation. The action X is a predicate over two stores, and it
describes the effect of performing the operation in terms of the pre-store and
post-store.

When a thread with identifier t executes the atomic operation p?X in store σ,
there are three possible outcomes. If p(t, σ) is false, then execution terminates
in a special state wrong to indicate that an error has occurred. If p(t, σ) holds,
the program moves into a post-store σ′ such that the constraint X(t, σ, σ′) is
satisfied. If no such σ′ exists, the atomic operation blocks until it is able to
proceed. Note that other threads may continue while the operation is blocked.

An action is typically written as a formula containing unprimed and primed
variables and a special variable tid. Unprimed variables refer to their value
in the pre-store of the action, primed variables refer to their value in the post-
store of the action, and tid is the identifier of the currently executing thread.
A predicate is written as a formula with only unprimed variables and tid.

For any action X and set of variables V ⊆ Var , we use the notation 〈X〉V
to mean the action that satisfies X and only allows changes to variables in V
between the pre-store and the post-store, and we use 〈X〉 to abbreviate 〈X〉∅.
Finally, we abbreviate the atomic operation true?X to the action X.

x = e
def
= 〈x′ = e〉x

assert e
def
= e?〈true〉

assume e
def
= 〈e〉

if (e) { S } def
= (assume e; S)2(assume ¬e)

while (e) { S } def
= (assume e; S)∗; (assume ¬e)

acquire(mx)
def
= 〈mx = 0 ∧ mx′ = tid〉mx

release(mx)
def
= 〈mx′ = 0〉mx

skip
def
= 〈true〉

havoc
def
= 〈true〉Var

CAS(l,e,n)
def
=

〈
∧ l 6= e⇒ (l′ = l ∧ n′ = n)
∧ l = e⇒ (l′ = n ∧ n′ = l)

〉
l,n

Figure 2: Conventional constructs in Plato

Using atomic operations, Plato can express many conventional constructs,
including assignment, assert, assume, if, and while statements (see Figure 2).
Atomic operations can also express primitive synchronization operations such
as acuqiring and releasing locks. A lock is modeled as a variable which is

5

either 0, if the lock is not held, or otherwise is a positive integer identifying
the thread holding the lock.

2.1 Semantics

For the remainder of this paper, we assume a fixed function B mapping pro-
cedure names to procedure bodies. We define the semantics of a statement
S as a set [[S]] of sequences of atomic operations that could be performed by
executing S. We first define the set [[S]]d of sequences through S where the
stack depth never exceeds d (see Figure 3). The set of sequences [[S]] is then
obtained as the union of [[S]]d for all d ≥ 0.

A thread is a pair |t, S| consisting of a thread identifier t and a statement
S being executed by thread t. A step |t, a| is a thread whose statement
component is an atomic operation. A path is a finite sequence of steps. If
ā = a1; . . . ; an, then |t, a1; . . . ; an| represents the path |t, a1|; . . . ; |t, an|, where
all steps are taken by the same thread. A thread |t, S| yields the set of paths
[[|t, S|]] = {|t, ā| | ā ∈ [[S]]}.

ā, b̄ ∈ Seq = a1; . . . ; an

u, w ∈ Step = |t, a|
ū, w̄ ∈ Path = u1; . . . ; un

ϕ ∈ PathSet

[[•]]• : Stmt × N → 2Seq

[[a]]d = {a}
[[S1; S2]]

d = [[S1]]
d; [[S2]]

d

[[S12S2]]
d = [[S1]]

d ∪ [[S2]]
d

[[S∗]]d = ([[S]]d)
∗

[[m()]]d =

{
[[B(m)]]d−1 if d > 0
∅ if d = 0

[[•]] : Stmt → 2Seq

[[S]] =
⋃

d≥0 [[S]]d

[[•]] : Program → PathSet
[[||ni=1S]] = [[|1, S|]] ⊗ . . . ⊗ [[|n, S|]]

[[‖S]] =
⋃

n≥1 [[||ni=1S]]

Figure 3: Program paths

A parallel program P can be translated into the set of paths [[P]], as shown in
Figure 3. The path ū; w̄ is the concatenation of paths ū and w̄. We will refer to
a set of paths as a pathset. The pathset ϕ1; ϕ2 is the set of all paths obtained

6

by the concatenation of a path from pathset ϕ1 and a path from pathset ϕ2.
Note that we are overloading the operator “;” to mean both the sequential
composition of statements and steps as well as the concatenation of paths and
pathsets. The pathset ϕ∗ is the Kleene closure of the pathset ϕ. The pathset
ū1⊗ . . .⊗ ūn is the set of all interleavings of the paths ū1, . . . , ūn. The pathset
ϕ1 ⊗ . . .⊗ ϕn is the union of all pathsets obtained by taking the interleavings
of a path from each ϕi for 1 ≤ i ≤ n.

The transition relation • •−→ • ⊆ Store × Step × State is a partial map from
a store and an execution step to a state, which is either a store or the special
state wrong:

ω ∈ State = Store | wrong

Given u = |t, p?X|,
σ

u−→ σ′ if p(t, σ) and X(t, σ, σ′)

σ
u−→ wrong if ¬p(t, σ)

Figure 4: Transition relation

If ū = |t1, a1|; . . . ; |tn, an| is a path, then r = σ1
|t1,a1|−→ σ2 · · ·σk

|tk,ak|−→ ω for
some 1 ≤ k ≤ n is a run of ū. If k = n or ω = wrong, then r is a full

run. Corresponding to each run r = σ1
|t1,a1|−→ σ2 · · ·σk

|tk,uk|−→ ω, there is a

trace τ = σ1
t1−→ σ2 · · ·σk

tk−→ ω, obtained by ignoring atomic operations in
the transitions between adjacent states in the run. We denote the trace τ by
trace(r). If r is a run of ū ∈ ϕ, it is defined to be a run of ϕ and trace(r) is
defined to be a trace of ϕ. If r is a full run, we say that trace(r) is a full trace.
If ϕ = [[P]], a run (respectively, a trace) of ϕ is also a run (resp., a trace) of P .

We say that a program P goes wrong from σ if a run of P starting in σ ends in
wrong. A program P goes wrong if P goes wrong from some store σ. A set of

stores I is an invariant of the program P if for all runs σ1
|t1,a1|−→ σ2 · · ·σk

|tk,uk|−→
σk+1 of P , whenever σ1 ∈ I then σk+1 ∈ I.

In the remainder of this paper, we develop a scheme for modularly check-
ing that a multithreaded program does not go wrong and satisfies specified
invariants.

7

3 Overview of modular verification

We start by considering an example that provides an overview and motivation
of our modular verification method. Consider the multithreaded program Sim-
pleLock in Figure 5. It consists of two modules, Top and Mutex. The module
Top contains two threads that manipulate a shared integer variable x, which
is initially zero and is protected by a mutex m. The module Mutex provides
acquire and release operations on that mutex. The mutex variable m is either
the (positive) identifier of the thread holding the lock, or else 0, if the lock is
not held by any thread. The implementation of acquire is non-atomic, and
uses busy-waiting based on the atomic compare-and-swap instruction (CAS)
described earlier. The local variable t cannot be modified by other threads.
We assume the program starts execution by concurrently calling procedures
t1 in thread 1 and t2 in thread 2. Note that this program can be expressed
as the following multithreaded Plato program:

(assume tid = 1; t1()) 2 (assume tid = 2; t2())

// module Top
int x = 0;

void t1() {
acquire();
x++;
assert x > 0;
release();

}

void t2() {
acquire();
x = 0;
release();

}

// module Mutex
int m = 0;

void acquire() {
var t = tid;
while (t == tid)

CAS(m,0,t);
}

void release()
{

m = 0;
}

Figure 5: SimpleLock program

We would like the checker to verify that the assertion in t1 never fails. This
assertion should hold because x is protected by m and because we believe the
mutex implementation is correct.

To avoid considering all possible interleavings of the various threads, our
checker performs thread-modular reasoning, and relies on the programmer
to specify an environment assumption constraining the interactions among
threads. In particular, the environment assumption Etid for thread tid sum-
marizes the possible effects of interleaved atomic steps of other threads. For
SimpleLock, an appropriate environment assumption is:

Etid
def
= ∧ m = tid⇒ m = m′

∧ m = tid⇒ x = x′

8

The two conjuncts state that if thread tid holds the lock m, then other threads
cannot modify either m or the protected variable x. We also specify an invariant
I stating that whenever the lock is not held, x is at least zero:

I
def
= m = 0 ⇒ x ≥ 0

This invariant is necessary to ensure, after t1 acquires the lock and incre-
ments x, that x is strictly positive.

3.1 Thread-modular verification

For small programs, it is not strictly necessary to perform procedure modular
verification. Instead, our checker could inline the implementations of procedure
calls at their call sites (at least for non-recursive procedures).

Let InlineBody(S) denote the statement obtained by inlining the implementa-
tion of called procedures in a statement S. Let us consider procedure t1 in the
example of Figure 5. Its implementation B(t1) is given in Figure 6(a), with
InlineBody(B(t1)) depicted in Figure 6(b) (all statements are represented in
terms of atomic operations).

Thread modular verification of thread 1 consists of checking the following
property:

InlineBody(B(t1)) is simulated by E∗
2 from the set of states satisfying

m = 0 ∧ x = 0 with respect to the environment assumption E1.
(tmv1)

The notion of simulation is formalized later in the paper. For now, we give an
intuitive explanation of Property tmv1. Consider Figure 6(c), which shows
the interleaving of atomic operations in InlineBody(B(t1)) with an arbitrary
sequence of atomic operations of thread 2 that each satisfy E1. (Operations
of thread 2 are underlined to distinguish them from operations of thread 1.)
Checking Property tmv1 involves verifying that when executed from an initial
state where both x and m are zero, the statement in Figure 6(c) does not
go wrong, and that each non-underlined atomic operation satisfies E2. Note
that the statement in Figure 6(c) can be viewed as a sequential program,
and that Property tmv1 can be checked using sequential program verification
techniques.

The procedure t2 satisfies a corresponding property tmv2 with the roles of E1

and E2 swapped. Using assume-guarantee reasoning, our checker infers from
tmv1 and tmv2 that the SimpleLock program does not go wrong, no matter
how the scheduler chooses to interleave the execution of the two threads.

9

acquire();
x++;
assert x > 0;
release();

(a) B(t1)

〈t′ = 1〉t;
(〈t = 1〉; CAS(m,0,1);)∗;
〈t 6= 1〉
〈x′ = x + 1〉x;
x > 0?〈true〉;
〈m′ = 0〉m;

(b) InlineBody(B(t1))

E∗
1 ; 〈t′ = 1〉t;

(E∗
1 ; 〈t = 1〉; E∗

1 ; CAS(m,0,1);)∗;
E∗

1 ; 〈t 6= 1〉
E∗

1 ; 〈x′ = x + 1〉x;
E∗

1 ; x > 0?〈true〉;
E∗

1 ; 〈m′ = 0〉m; E∗
1 ;

(c) InlineBody(B(t1)) interleaved
with operations of t2 satisfying E1

Figure 6: Thread modular verification of t1

3.2 Adding procedure-modular verification

The inlining of procedure implementations at call sites prevents the simple
approach sketched above from analyzing large systems. To scale to largr sys-
tems, our checker performs a procedure-modular analysis that uses procedure
specifications in place of procedure implementations. In this context, the main
question is: What is the appropriate specification for a procedure in a multi-
threaded program?

A traditional precondition/postcondition specification for acquire is:

requires I; modifies m; ensures m = tid ∧ x ≥ 0

This specification records that:

• The precondition is I;
• m can be modified by the body of acquire;
• When acquire terminates, m is equal to the current thread identifier and x

is at least 0.

This last postcondition is crucial for verifying the assertion in t1.

However, although this specification suffices to verify the assertion in t1, it
suffers from a serious problem: it mentions the variable x, even though x

should properly be considered a private variable of the separate module Top.
This problem arises because the postcondition, which describes the final state
of the procedure’s execution, needs to record store updates performed during
execution of the procedure, both by the thread executing this procedure, and
also by other concurrent threads (which may modify x).

In order to overcome the aforementioned problem and still support modular
specification and verification, we use a generalized specification language that
can describe intermediate atomic steps of a procedure’s execution, and need

10

not summarize effects of interleaved actions of other threads.

In the case of acquire, the appropriate specification is that acquire first
performs an arbitrary number of stuttering steps that do not modify m; it
then performs a single atomic action that acquires the lock; after which it
may perform additional stuttering steps before returning. The code fragment
A(acquire) specifies this behavior:

A(acquire)
def
= 〈true〉∗; 〈m = 0 ∧ m′ = tid〉m; 〈true〉∗

This abstraction specifies only the behavior of thread tid and therefore does
not mention x. Our checker validates the specification of acquire by checking
that the statement A(acquire) is a correct abstraction of the behavior of
acquire, i.e.: the statement B(acquire) is simulated by A(acquire) from
the set of states satisfying m = 0 with respect to the environment assumption
true.

After validating a similar specification for release, our checker replaces calls
to acquire and release from the module Top with the corresponding ab-
stractions A(acquire) and A(release). If InlineAbs denotes this operation
of inlining abstractions, then InlineAbs(B(ti)) is free of procedure calls, and
so we can apply thread-modular verification, as outlined in Section 3.1, to the
module Top. In particular, by verifying that InlineAbs(B(t1)) is simulated by
E∗

2 from the set of states satisfying m = 0 ∧ x = 0 with respect to E1, and
verifying a similar property for t2, our checker infers by assume-guarantee
reasoning that the complete SimpleLock program does not go wrong.

4 Modular verification

In this section, we formalize our modular verification method sketched in the
previous section. Consider the execution of a procedure m by the current
thread tid. We assume m is accompanied by a specification consisting of three
parts: (1) an invariant I(m) ⊆ Store that must be maintained by all threads
while executing m, (2) an environment assumption E(m) ∈ Action that models
the behavior of threads executing concurrently with tid’s execution of m, and
(3) an abstraction A(m) ∈ Stmt that summarizes the behavior of thread tid

executing m. The abstraction A(m) may not contain any procedure calls.

In order for the abstraction A(m) to be correct, we require that the implemen-
tation B(m) be simulated by A(m) with respect to the environment assump-
tion E(m). Informally, this simulation requirement holds if, assuming other
threads perform actions consistent with E(m), each action of the implemen-
tation corresponds to some action of the abstraction. The abstraction may

11

allow more behaviors than the implementation, and may go wrong more of-
ten. If the abstraction does not go wrong, then the implementation also should
not go wrong and each implementation transition must be matched by a cor-
responding abstraction transition. When the implementation terminates the
abstraction should be able to terminate as well.

We formalize the notion of simulation between (multithreaded) programs. We
first define the notion of subsumption between traces. Intuitively, a trace τ
is subsumed by a trace τ ′ if either τ ′ is identical to τ or τ ′ behaves like a

prefix of τ and then goes wrong. Formally, a trace σ1
t1−→ σ2 · · ·σk

tk−→ ω is

subsumed by a trace σ′
1

t′1−→ σ′
2 · · ·σ′

l

t′l−→ ω′ if (1) l ≤ k, (2) for all 1 ≤ i ≤ l,
we have σi = σ′

i and ti = t′i, and (3) either ω′ = wrong or l = k and ω′ = ω.
A pathset ϕ1 is simulated by the pathset ϕ2, written ϕ1 v ϕ2 if every trace
of ϕ1 is subsumed by a trace of ϕ2, and every full trace of ϕ1 is subsumed
by a full trace of ϕ2. A program P is simulated by a program Q, written
P v Q, if [[P]] is simulated by [[Q]]. Given a statement B, an environment
assumption E, and an integer j > 0, let P(B, E, j) be the program in which
the j-th thread is B and every other thread is E∗[tid := j]. A statement B
is simulated by a statement A with respect to an environment assumption
E, written B vE A, if the program P(B, E, j) is simulated by the program
P(A, E, j) for all j ∈ Tid .

While checking simulation between B(m) and A(m) for a procedure m, we
would like to use not only the environment assumption E(m) of m but also
the environment assumptions of all the procedures transitively called by m.
Let ; be the calls relation on the set Proc of procedures such that m ; l iff
procedure m calls the procedure l. Let ;∗ be the reflexive-transitive closure
of ;. We define a derived environment assumption for procedure m as

Ê(m) =
∧

m;∗l

E(l).

Apart from being simulated by A(m), the implementation B(m) must also
satisfy two other properties. While a thread tid executes m, every atomic
operation must preserve the invariant I(m) and satisfy the environment as-
sumption E(m)[tid := j] of every thread j other than tid. We can check that
B(m) is simulated by A(m) and also satisfies the aforementioned properties by
checking that B(m) is simulated by a derived abstraction Â(m). This derived
abstraction Â(m) is obtained from A(m) by replacing every atomic operation
p?X in A(m) by

(p ∧ I(m))?(X ∧ I ′(m) ∧ ∀j ∈ Tid : j 6= tid⇒ Ê(m)[tid := j]).

In order to check simulation for a procedure m, we first inline the derived

12

abstractions for procedures called from B(m). We use InlineAbs : Stmt →
Stmt to denote this abstraction inlining operation. The following theorem
formalizes our modular verification methodology.

Theorem 1 Let P = ‖l() be a parallel program. Suppose for all procedures
m ∈ Proc, the statement InlineAbs(B(m)) is simulated by Â(m) with respect
to the environment assumption Ê(m). Then the following are true.

(1) P is simulated by Q = ‖Â(l).

(2) If σ ∈ I(l), A(l) is simulated by true∗ with respect to Ê(l), and σ
|t1,a1|−→

· · · |tk,ak|−→ ω is a run of P , then ω 6= wrong and ω ∈ I(l).

The proof of this theorem is given in Appendix A.

Discharging the proof obligations in this theorem requires a method for check-
ing simulation between two statements without procedure calls, which is the
topic of the following section.

5 Checking simulation

We first consider the simpler problem of checking that the atomic operation
p?X is simulated by q?Y . This simulation holds if (1) whenever p?X goes
wrong, then q?Y also goes wrong, i.e., ¬p ⇒ ¬q, and (2) whenever p?X
performs a transition, q?Y can perform a corresponding transition or may go
wrong, i.e., p ∧X ⇒ ¬q ∨ Y . The conjunction of these two conditions can be
simplified to (q ⇒ p) ∧ (q ∧X ⇒ Y).

The following atomic operation sim(p?X, q?Y) checks simulation between the
atomic operations p?X and q?Y ; it goes wrong from states for which p?X is
not simulated by q?Y , and otherwise behaves like p?X. The definition uses
the notation ∀Var ′ to quantify over all primed (post-state) variables.

sim(p?X, q?Y)
def
= (q ⇒ p) ∧ (∀Var ′. q ∧X ⇒ Y))?(q ∧X)

We now extend our method to check simulation between an implementa-
tion B and an abstraction A with respect to an environment assumption E.
Let I be the invariant associated with the implementation B; e.g., if B is
InlineAbs(B(m)) for some procedure m, then I is I(m). We assume that the
abstraction A consists of n atomic operations I?Y1, I?Y2, . . . , I?Yn interleaved
with stuttering steps I?K, preceded by an asserted precondition pre?〈true〉,

13

and ending with the assumed postcondition true?〈post〉:

A
def
= pre?〈true〉;

(I?K∗; I?Y1); . . . ; (I?K∗; I?Yn);
I?K∗; true?〈post〉

This restriction on A enables efficient simulation checking and has been suf-
ficient for all our case studies. Our method may be extended to more general
abstractions A at the cost of additional complexity.

Our method translates B, A, and E into a sequential program such that if that
program does not go wrong, then B is simulated by A with respect to E. We
need to check that whenever B performs an atomic operation, the statement A
performs a corresponding operation. In order to perform this check, the pro-
grammer needs to add a witness variable pc ranging over {1, 2, . . . , n + 1}
to B, to indicate the operation in A that will simulate the next operation
performed in B. An atomic operation in B can either leave pc unchanged or
increment it by 1. If the operation leaves pc unchanged, then the correspond-
ing operation in A is K. If the operation changes pc from i to i + 1, then the
corresponding operation in A is Yi. Thus, each atomic operation in B needs
to be simulated by the following atomic operation:

W
def
= I?(

n∨
i=1

(pc = i ∧ pc ′ = i + 1 ∧ Yi) ∨ (pc = pc ′ ∧K))

Using the above method, we generate the sequential program [[B]]EA which
performs the simulation check at each atomic action, and also precedes each
atomic action with the iterated environment assumption that models the inter-
leaved execution of other threads. Thus, the program [[B]]EA is obtained by re-
placing every atomic operation p?X in the program B with E∗; sim(p?X, W).
The following program extends [[B]]EA with constraints on the initial and final
values of pc.

assume pre ∧ pc = 1; [[B]]EA; E∗; assert post ∧ pc = n + 1

This program starts execution from the set of states satisfying the precondi-
tion pre and asserts the postcondition post at the end. Note that this sequential
program is parameterized by the thread identifier tid. If this program cannot
go wrong for any nonzero interpretation of tid, then we conclude that B is
simulated by A with respect to E. We leverage existing sequential analysis
techniques (based on verification conditions and automatic theorem proving)
for this purpose.

14

6 Implementation

We have implemented our modular verification method for multithreaded Java
programs in an automatic checking tool called Calvin. This section provides
an overview of Calvin, including a description of its annotation language and
various performance optimizations that we have implemented.

6.1 Checker architecture

The Calvin checker takes as input a Java program, together with annota-
tions describing candidate environment assumptions, procedure abstractions,
invariants, and asserted correctness properties, and outputs warnings and er-
ror messages indicating if any of these properties are violated. Calvin starts
by parsing the input program to produce abstract syntax trees (ASTs). After
type checking, these abstract syntax trees are translated into an intermediate
representation language that can express Plato syntax [27]. The translation of
annotations into Plato syntax is described in Section 6.3.

Calvin then uses the techniques of this paper, as summarized by Theorem 1,
to verify this intermediate representation of the program. To verify that each
procedure p satisfies its specification, Calvin first inlines the abstraction of any
procedure call from p. (If the abstraction is not available, then the implemen-
tation is inlined instead.) Next, Calvin uses the simulation checking technique
of the previous section to generate a sequential “simulation checking” pro-
gram S. To check the correctness of S, Calvin translates it into a verification
condition [11,20] and invokes the automatic theorem prover Simplify [34] to
check the validity of this verification condition.

If the verification condition is valid, then the procedure implements its speci-
fication and the stated invariants and assertions are true. Alternatively, if the
verification condition is invalid, then the theorem prover generates a coun-
terexample, which is then post-processed into an appropriate error message
in terms of the original Java program. Typically, the error message either
identifies an atomic step that may violate one of the stated invariants, envi-
ronment assumptions, or abstraction steps, or the error message may identify
an assertion that could go wrong. This assertion may either be explicit, as in
the example programs of Section 3, or implicit, such as, for example, that a
dereferenced pointer is never null.

The implementation of Calvin leverages extensively off the Extended Static
Checker for Java, which is a powerful checking tool for sequential Java pro-
grams. For more information regarding ESC/Java, we refer the interested
reader to a recent paper [18].

15

6.2 Handling Java threads and monitors

In our implementation, thread identifiers are either references to objects of
type java.lang.Thread or a special value main (different from all object
references) that refers to the initial thread present when the program starts.
Thus, the value of the current thread identifier tid is either an object reference
of type java.lang.Thread or main. Thread creation is modeled by introducing
an abstract instance field 1 start into the java.lang.Thread class. When a
thread is created, this field is initialized to false. When a created thread is
forked, this field is set to true. The following assume statement is implicit at
the beginning of the main method:

assume tid = main

The following assume statement is implicit at the beginning of the run method
in any runnable class:

assume tid = this ∧ tid.start

The implicit lock associated with each Java object is modeled by including in
each object an additional abstract field holder of type java.lang.Thread,
which is either null or refers to the thread currently holding the lock. The Java
synchronization statement synchronized(x) { S } is desugared into

〈x.holder = null ∧ x.holder′ = tid〉x.holder;
S ;
〈x.holder′ = null〉x.holder

For the sake of simplicity, our checker assumes a sequentially consistent mem-
ory model and that reads and writes of primitive Java types are atomic (al-
though neither of these assumptions are strictly consistent with Java’s current
memory model).

6.3 Annotation Language

This section describes the source annotations whose desugaring yields the
appropriate abstraction and environment assumption for each procedure p.

The annotation env assumption is used to provide environment assumptions.
Each class has a set of these annotations; each annotation provides an action

1 An abstract variable is one that is used only for specification purposes, and is not
originally present in the implementation.

16

that may be parameterized by the current thread identifier tid. The envi-
ronment assumption of a class is the conjunction of the actions in all the
env assumption annotations. The environment assumption E(p) of a method
p is the conjunction of the environment assumption of the class containing p
and of all those classes whose methods are transitively called by p.

The annotation global invariant is used to provide invariants. Each class
has a set of these annotations with each annotation providing a predicate. The
invariant of a class is the conjunction of the predicates in all the global invariant

annotations. The invariant of a method p is the invariant of the class contain-
ing p.

The abstraction of a method p is specified using the following notation:

requires pre
modifies c
action: also modifies v1 ensures e1

. . .
action: also modifies vn ensures en

ensures post

where c, v1, . . . , vn are sets of variables, pre is a single-store predicate, and
e1, . . . , en, post are actions.

From the above notation, we construct the abstraction statement A(p) as
follows:

(1) We construct the following guarantee G based on the assumption that
actions of p should not violate the environment assumptions of p for other
threads.

G
def
= ∀Thread j : (j 6= null ∧ j 6= tid) ⇒ E(p)[tid := j]

(2) If I is the invariant of p, we combine the various annotations into the
following abstraction statement A(p):

pre?〈true〉;
I?〈G ∧ I ′〉c∗; I?〈e1 ∧G ∧ I ′〉c∪v1 ;
. . .
I?〈G ∧ I ′〉c∗; I?〈en ∧G ∧ I ′〉c∪vn ;
I?〈G ∧ I ′〉c∗;
true?〈post〉

The stuttering steps should satisfy G and only modify variables in c. Each
action: block in the annotations corresponds to an atomic operation in
the abstraction; this atomic operation can modify variables in c and vi,
it should satisfy both ei and the guarantee G, and the requires action

17

pre is asserted to hold initially. Finally, every step is required to maintain
the invariance of I.

Comparing A(p) with the notation in Section 5, we see that Yi is
〈e1 ∧G ∧ I ′〉c∪v1 and K is 〈G ∧ I ′〉c.

6.4 Optimizations

Calvin reduces simulation checking to the correctness of the sequential “sim-
ulation checking” program. The simulation checking program is often signifi-
cantly larger than the original procedure implementation, due in part to the
iterated environment assumption inserted before each atomic operation. To
reduce verification time, Calvin simplifies the program before attempting to
verify it. In particular, we have found the following two optimizations partic-
ularly useful for simplifying the simulation checking program:

• In all our case studies, the environment assumptions were reflexive and tran-
sitive. Therefore, our checker optimizes the iterated environment assumption
E∗ to the single action E after using the automatic theorem prover to verify
that E is indeed reflexive and transitive.

• The environment assumption of a procedure can typically be decomposed
into a conjunction of actions mentioning disjoint sets of variables, and any
two such actions commute. Moreover, assuming the original assumption is
reflexive and transitive, each of these actions is also reflexive and transi-
tive. Consider an atomic operation that accesses a single shared variable
v. An environment assertion is inserted before this atomic operation, but
all actions in the environment assumption that do not mention v can be
commuted to the right of this operation, where they merge with the envi-
ronment assumption associated with the next atomic operation. Thus, we
only need to precede each atomic operation with the actions that mention
the shared variable being accessed.

7 Applications

7.1 The Apprentice challenge problem

Moore and Porter [33] introduced the Apprentice example as a challenge prob-
lem for multithreaded software analysis tools. In this section, we apply Calvin
to this challenge problem.

The Apprentice example contains three classes—Container, Job and Apprentice.
The class Container has an integer field counter. The class Job, which ex-

18

tends Thread, has a field objref pointing to a Container object. The class
Apprentice contains the main routine.

class Container { int counter; }

class Job extends Thread {
Container objref;

public final void run() {
for (;;) {

synchronized(objref) { objref.counter = objref.counter + 1; }
}

}
}

class Apprentice {
public static void main(String[] args) {

Container container = new Container();
for (;;) {

Job job = new Job();
job.objref = container;
job.start();

}
}

}

After k iterations of the loop in main, there are k + 1 concurrently executing
threads consisting of one main thread and k instances of Job. We would like
to prove that in any concurrent execution the field counter of any instance
of Container takes a sequence of non-decreasing values. 2 This property is
stated by the following annotation in the Container class.

/*@ env_assumption \old(counter) <= counter */

Note that this property could be violated in several ways. A thread t executing
the method t.run reads t.objref thrice during one iteration of the loop:

(1) to obtain the monitor on the object pointed to by t.objref,
(2) to read t.objref.counter, and
(3) to write t.objref.counter.

If another thread modifies t.objref from o1 to o2 between the second and third
reads, then the value written by thread t into o2.counter may be less than
its previous value. Moreover, even if other threads do not modify t.objref,
they might increment t.objref.counter more than once between the read

2 Calvin treats the int type as unbounded unlike the 32-bit semantics in Java.

19

and the write of t.objref.counter. This interference might again cause a
similar violation.

The environment assumption stated above is not strong enough for analyzing
each thread separately in Calvin. We also need to specify the conditions under
which the environment of a thread can modify the fields counter and objref.
We add the annotation

/*@ unwritable_by_env_if holder == tid */

to the field counter to indicate that for any instance o of Container, if thread
t holds the monitor on o then the environment of t may not modify o.counter.
Thus, unwritable by env if annotations provide a simple and concise way
of writing environment assumptions. For example, the unwritable by env if
annotation shown above on the field counter is semantically equivalent to the
following annotation:

/*@ env_assumption holder == tid ==> counter == \old(counter) */

We also add the annotation

/*@ unwritable_by_env_if tid == main || objref != null */

to the field objref. In this annotation, main refers to the main thread. This
annotation specifies that for any instance o of Job, the environment of main
must not modify o.objref. In addition, even main must not modify o.objref
if o.objref is different from null. Using these annotations, Calvin is success-
fully able to verify the original environment assumption together with the
environment assumptions induced by these annotations.

We now introduce a bug in the Apprentice example as suggested by Moore
and Porter and show the warning produced by Calvin.

public static void main(String[] args) {
Container container = new Container();
Container bogus = new Container();
for (;;) {

Job job = new Job();
job.objref = container;
job.start();
job.objref = bogus;

}
}

In this new buggy implementation of Apprentice.main, the thread main mu-
tates job.objref again after job has started. As mentioned above, such be-
havior in main might result in a violation of the specification that the values
of counter in all instances of Container be non-decreasing.

20

Calvin analyzes the modified Apprentice example and produces the following
warning.

Apprentice.java:29: Warning: Write of variable when not allowed
job.objref = bogus;

Associated declaration is "Apprentice.java", line 9, col 8:
/*@ unwritable_by_env_if (tid == main || objref != null) */

This warning correctly points out that main is violating the requirement that
it not modify job.objref if job.objref is not null.

7.2 The Mercator web crawler

Mercator [22] is a web crawler which is part of Altavista’s Search Engine 3
product. It is multithreaded and written entirely in Java. Mercator spawns a
number of worker threads to perform the web crawl and write the results to
shared data structures in memory and on disk. To help recover from failures,
Mercator also spawns a background thread that writes a snapshot of its state
to disk at regular intervals. Synchronization between these threads is achieved
using two kinds of locks: Java monitors and readers-writer locks.

We focused our analysis efforts on the part of Mercator’s code (about 1500
LOC) that uses readers-writer locks. We first provided a specification of the
readers-writer lock implementation (class ReadersWriterLock) in terms of
two abstract variables—writer, a reference to a Thread object, and readers,
a set of references to Thread objects. If a thread owns the lock in write mode
then writer contains a reference to that thread and readers is empty, oth-
erwise writer is null and readers is the set of references to all threads that
own the lock in read mode.

As an example of a specification, consider the procedure beginWrite that ac-
quires the lock in write mode by setting a program variable hasWriter of type
boolean. While hasWriter is not visible to clients of the ReadersWriterLock
class, the abstract variables writer and readers are. The annotations spec-
ifying the abstraction of beginWrite and the corresponding Plato code are

21

shown below.

/*@
requires holder == tid
modifies hasWriter
action:

also modifies writer
ensures writer == null

&& writer’ == tid
*/
public void beginWrite() {
...
}

holder = tid?〈true〉;
true?〈true〉hasWriter∗;

true?

〈
writer = null

∧ writer′ = tid

〉
{hasWriter,writer}

;

true?〈true〉hasWriter∗

The next step was to annotate and check the clients of ReadersWriterLock
to ensure that they follow the synchronization discipline for accessing shared
data. The part of Mercator that we analyzed uses two readers-writer locks—
L1 and L2. We use the following unwritable by env if annotation to state
that before modifying the variable tbl, the background thread should always
acquire lock L1 in write mode, but a worker thread need only acquire the
mutex on lock object L2.

/*@ unwritable_by_env_if (tid == backgroundThread && L1.writer == tid)
|| (tid instanceof Worker && L2.holder == tid) */

private long[][]tbl; // the in-memory table

We also provided specifications of public methods that can access the shared
data and used inlining to avoid annotating non-public methods.

Overall, we needed to insert 55 annotations into the source code. The majority
of these annotations (21) were needed to specify and prove the implementation
of readers-writer locks. However, once the readers-writer class is specified, its
specification can be re-used when checking many clients of this class.

Interface annotations (apart from those in ReadersWriterLock) numbered
16, and largely consisted of constraints on the type of thread that could call
a method, and about locks that needed to be held on entry to a method.

We did not find any bugs in the part of Mercator that we analyzed; however,
we injected bugs of our own, and Calvin located those. In spite of inlining
all non-public methods, the analysis took less than 10 minutes for all except
one public method. The exception was a method of 293 lines (after inlining
non-public method calls), on which the theorem prover ran overnight to report
no errors.

22

7.3 The java.util.Vector library

We ran Calvin on java.util.Vector class (about 400 LOC) from JDKv1.2.
There are two shared fields: an integer elementCount, which keeps track of
the number of valid elements in the vector, and an array elementData, which
stores the elements. These variables are protected by the mutex on the Vector
object.

/*@ unwritable_by_env_if this.holder == tid */
protected int elementCount;
/*@ unwritable_by_env_if this.holder == tid */
protected Object elementData[];

/*@ global_invariant 0 <= elementCount && elementCount <= elementData.length */
/*@ global_invariant elementData != null */

Based on the specifications, Calvin detected a race condition illustrated in the
following excerpt.

public int lastIndexOf(Object elem) {
return lastIndexOf(elem, elementCount-1); // RACE!

}
public synchronized int lastIndexOf(Object elem, int index) {

....
for (int i = index; i >= 0; i--)
if (elem.equals(elementData[i]))

....
}
....
synchronized void trimToSize() { ... }
synchronized boolean removeAllElements() { ... }

Suppose there are two threads manipulating a Vector object v. The first
thread calls v.lastIndexOf(Object), which reads v.elementCount with-
out acquiring the lock on v. Now suppose that before the first thread calls
lastIndexOf(Object,int), the second thread calls v.removeAllElements(),
which sets v.elementCount to 0, and then trimToSize(), which resets v.elementData
to be an array of length 0. Then, when the first thread tries to access v.elementData
based on the old value of v.elementCount, it will trigger an array out-of-
bounds exception. An erroneous fix for this race condition is as follows:

public int lastIndexOf(Object elem) {
int count;
synchronized(this) { count = elementCount-1; }
return lastIndexOf(elem, count);

}

23

Even though the lock is held when elementCount is accessed, the original
defect still remains. RCC/Java [15], a static race detection tool, caught the
original defect in the Vector class, but will not catch the defect in the mod-
ified code. Calvin, on the other hand, still reports this error as what it is:
a potential array out-of-bounds error. The defect can be correctly fixed by
declaring lastIndexOf(Object) to be synchronized.

8 Related Work

A variety of static and dynamic checkers have been built for detecting data
races in multithreaded programs [2,7,40,37,18]; however, these tools are lim-
ited to checking a subset of the synchronization mechanisms found in systems
code. For example, RCC/Java [15,16] is an annotation-based checker for Java
that uses a type system to identify data races. While this tool is successful at
finding errors in large programs, the inability to specify subtle synchroniza-
tion patterns results in many false alarms. Moreover, these tools cannot verify
invariants or check refinement of abstractions. The methods proposed by En-
gler et al. [13,14] for checking and inferring simple rules on code behavior are
scalable and surprisingly effective, but cannot check general invariants.

Several tools verify invariants on multithreaded programs using a combina-
tion of abstract interpretation and model checking. The Bandera toolkit [12]
uses programmer-supplied data abstractions to translate multithreaded Java
programs into the input languages of various model checkers. Yahav [42] de-
scribes a method to model check multithreaded Java programs using a 3-valued
logic [36] to abstract the store. Since these tools explicitly consider all inter-
leavings of the multiple threads, they have difficulty scaling to large programs.
Ball et al. [5] present a technique for model checking a software library with an
unspecified number of threads that are identical and finite-state. Bruening [8]
has built a dynamic assertion checker based on state-space exploration for mul-
tithreaded Java programs. His tool concurrently runs an Eraser-like [38] race
detector to ensure the absence of races, which guarantees that synchronized
code blocks can be considered atomic. Stoller [41] provides a generalization of
Bruening’s method to allow model checking of programs with either message-
passing or shared-memory communication. Both of these approaches focus on
mutex-based synchronization and operate on the concrete program without
any abstraction.

The compositional principle underlying our technique is assume-guarantee
reasoning, of which there are several variants. One of the earliest assume-
guarantee proof rules was developed by Misra and Chandy [31] for message-
passing systems, and later refined by others (e.g., [25,35,32]). However, their
message-passing formulation is not directly applicable to shared-memory soft-

24

ware.

The most closely related previous work is that by Jones [24] and by Abadi and
Lamport [1]. Jones [24,23] gave a proof rule for multithreaded shared-memory
programs and used it to manually refine an assume-guarantee specification
down to a program. This proof rule of Jones allows each thread in a multi-
threaded program to be verified separately, but the program for each thread
does not have any procedure calls. We have extended Jones’ work to allow the
proof obligations for each thread to be checked mechanically by an automatic
theorem prover, and our extension also handles procedure calls. Stark [39] also
presented a rule for shared-memory programs to deduce that a conjunction of
assume-guarantee specifications hold on a system provided each specification
holds individually, but his work did not allow the decomposition of the im-
plementation. Abadi and Lamport [1] consider a composition of components,
where each component modifies a separate part of the store. Their system
is general enough to model a multithreaded program since a component can
model a collection of threads operating on shared state and signaling among
components can model procedure calls. However, their proof rule does not
allow each thread in a component to be verified separately.

Collette and Knapp [10] extend Abadi and Lamport’s approach to the more
operational setting of Unity specifications [9]. Alur and Henzinger [3] and
McMillan [30] have presented assume-guarantee proof rules for hardware com-
ponents.

In recent work [21], we have begun to explore an extension to the abstraction
mechanism presented here. We augment simulation-based abstraction with
the notion of reduction, which was first introduced by Lipton [28]. Reduction
permits us to identify sequences of steps in a procedure that are guaranteed to
execute without interference. Such “atomic” sequences can be summarized by
a single step in procedure specifications, thereby making specifications even
more concise in some cases.

9 Conclusions

We have presented a new methodology for modular verification of multi-
threaded programs, based on combining the twin principles of thread-modular
reasoning and procedure-modular reasoning. Our experience with Calvin, an
implementation of this methodology for multithreaded Java programs, shows
that it is scalable and sufficiently expressive to check interesting properties of
real-world multithreaded systems code.

25

References

[1] M. Abadi and L. Lamport. Conjoining specifications. ACM Transactions on
Programming Languages and Systems, 17(3):507–534, 1995.

[2] A. Aiken and D. Gay. Barrier inference. In Proceedings of the 25th Symposium
on Principles of Programming Languages, pages 243–354, 1998.

[3] R. Alur and T. Henzinger. Reactive modules. In Proceedings of the 11th Annual
Symposium on Logic in Computer Science, pages 207–218. IEEE Computer
Society Press, 1996.

[4] K. Arnold and J. Gosling. The Java Programming Language. Addison-Wesley,
1996.

[5] T. Ball, S. Chaki, and S. Rajamani. Parameterized verification of multithreaded
software libraries. In Tools and Algorithms for the Construction and Analysis
of Systems (TACAS), April 2001.

[6] A. Birrell, J. Guttag, J. Horning, and R. Levin. Synchronization primitives for
a multiprocessor: A formal specification. Research Report 20, DEC Systems
Research Center, 130 Lytton Ave, Palo Alto, CA 94301, USA, August 1987.

[7] C. Boyapati and M. Rinard. A parameterized type system for race-free
Java programs. In Proceedings of 16th Annual Conference on Object-Oriented
Programming, Systems, Languages, and Applications, pages 56–69, Tampa Bay,
FL, October 2001.

[8] D. Bruening. Systematic testing of multithreaded Java programs. Master’s
thesis, Massachusetts Institute of Technology, 1999.

[9] K. Chandy and J. Misra. Parallel Program Design: A Foundation. Addison-
Wesley Publishing Company, 1988.

[10] P. Collette and E. Knapp. Logical foundations for compositional verification
and development of concurrent programs in Unity. In Algebraic Methodology
and Software Technology, Lecture Notes in Computer Science 936, pages 353–
367. Springer-Verlag, 1995.

[11] E. Dijkstra. Guarded commands, nondeterminacy, and formal derivation of
programs. Communications of the ACM, 18(8):453–457, 1975.

[12] M. Dwyer, J. Hatcliff, R. Joehanes, S. Laubach, C. Pasareanu, Robby, W. Visser,
and H. Zheng. Tool-supported program abstraction for finite-state verification.
In Proceedings of the 23rd International Conference on Software Engineering,
2001.

[13] D. Engler, B. Chelf, A. Chou, and S. Hallem. Checking system
rules using system-specific, programmer-written compiler extensions. In
Proceedings of the 4th USENIX Symposium on Operating Systems Design and
Implementation(OSDI), October 2000.

26

[14] D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf. Bugs as deviant
behavior: A general approach to inferring errors in systems code. In Proceedings
of the ACM Symposium on Operating Systems Principles (SOSP), October
2001.

[15] C. Flanagan and S. N. Freund. Type-based race detection for Java. In
Proceedings of the SIGPLAN Conference on Programming Language Design
and Implementation, pages 219–232, 2000.

[16] C. Flanagan and S. N. Freund. Detecting race conditions in large programs.
In Workshop on Program Analysis for Software Tools and Engineering, pages
90–96, June 2001.

[17] C. Flanagan, S. N. Freund, and S. Qadeer. Thread-modular verification
for shared-memory programs. In Proceedings of European Symposium on
Programming, pages 262–277, April 2002.

[18] C. Flanagan, K. Leino, M. Lillibridge, G. Nelson, J. Saxe, and R. Stata.
Extended static checking for Java. In Proceedings of the Conference on
Programming Language Design and Implementation, pages 234–245, June 2002.

[19] C. Flanagan, S. Qadeer, and S. Seshia. A modular checker for multithreaded
programs. In CAV 02: Computer Aided Verification, July 2002.

[20] C. Flanagan and J. Saxe. Avoiding exponential explosion: Generating compact
verification conditions. In Proceedings of the 28th Symposium on Principles of
Programming Languages, pages 193–205. ACM, Jan. 2001.

[21] S. N. Freund and S. Qadeer. Checking concise specifications for multithreaded
software. In Workshop on Formal Techniques for Java-like Programs, 2003. An
extended version has been submitted to a special issue of the Journal of Object
Technology dedicated to papers from this workshop.

[22] A. Heydon and M. Najork. Mercator: A scalable, extensible web crawler. In
Proceedings of World Wide Web conference, pages 219–229, December 1999.

[23] C. Jones. Specification and design of (parallel) programs. In R. Mason,
editor, Information Processing, pages 321–332. Elsevier Science Publishers B.
V. (North-Holland), 1983.

[24] C. B. Jones. Tentative steps toward a development method for interfering
programs. ACM Transactions on Programming Languages and Systems,
5(4):596–619, 1983.

[25] B. Jonsson. On decomposing and refining specifications of distributed systems.
In J. de Bakker, W.-P. de Roever, and G. Rozenberg, editors, Stepwise
Refinement of Distributed Systems: Models, Formalisms, Correctness, Lecture
Notes in Computer Science 430, pages 361–385. Springer-Verlag, 1989.

[26] L. Lamport. Specifying concurrent program modules. ACM Transactions on
Programming Languages and Systems, 5(2):190–222, 1983.

27

[27] K. R. M. Leino, J. B. Saxe, and R. Stata. Checking Java programs via
guarded commands. In B. Jacobs, G. T. Leavens, P. Müller, and A. Poetzsch-
Heffter, editors, Formal Techniques for Java Programs, Technical Report 251.
Fernuniversität Hagen, May 1999.

[28] R. Lipton. Reduction: A method of proving properties of parallel programs. In
Communications of the ACM, volume 18:12, pages 717–721, 1975.

[29] B. Liskov and J. Guttag. Abstraction and Specification in Program
Development. MIT Press, 1986.

[30] K. McMillan. A compositional rule for hardware design refinement. In
O. Grumberg, editor, CAV 97: Computer Aided Verification, Lecture Notes
in Computer Science 1254, pages 24–35. Springer-Verlag, 1997.

[31] J. Misra and K. Chandy. Proofs of networks of processes. IEEE Transactions
on Software Engineering, SE-7(4):417–426, 1981.

[32] A. Mokkedem and D. Mery. On using a composition principle to design parallel
programs. In Algebraic Methodology and Software Technology, pages 315–324,
1993.

[33] J. S. Moore and G. Porter. The apprentice challenge. ACM Transactions on
Programming Languages and Systems (TOPLAS), 24(3):193–216, 2002.

[34] C. Nelson. Techniques for program verification. Technical Report CSL-81-10,
Xerox Palo Alto Research Center, 1981.

[35] P. Pandya and M. Joseph. P-A logic: A compositional proof system for
distributed programs. Distributed Computing, 5(1), 1991.

[36] M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued
logic. In Proceedings of the 26th Symposium on Principles of Programming
Languages, pages 105–118, 1999.

[37] S. Savage, M. Burrows, C. Nelson, P. Sobalvarro, and T. Anderson. Eraser: A
dynamic data race detector for multithreaded programs. ACM Transactions on
Computer Systems, 15(4):391–411, 1997.

[38] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. E. Anderson. Eraser:
A dynamic data race detector for multi-threaded programs. ACM Transactions
on Computer Systems, 15(4):391–411, 1997.

[39] E. Stark. A proof technique for rely/guarantee properties. In Proceedings
of the 5th Conference on Foundations of Software Technology and Theoretical
Computer Science, Lecture Notes in Computer Science 206, pages 369–391.
Springer-Verlag, 1985.

[40] N. Sterling. WARLOCK — a static data race analysis tool. In USENIX
Technical Conference Proceedings, pages 97–106, Winter 1993.

28

[41] S. D. Stoller. Model-checking multi-threaded distributed Java programs. In
Proceedings of the 7th International SPIN Workshop on Model Checking and
Software Verification, Lecture Notes in Computer Science 1885, pages 224–244.
Springer-Verlag, 2000.

[42] E. Yahav. Verifying safety properties of concurrent Java programs using
3-valued logic. In Proceedings of the 28th Symposium on Principles of
Programming Languages, pages 27–40, January 2001.

A Proof of modular verification theorem

Lemma 1 If the statement l() is simulated by the statement Â(l) with respect
to Ê(l), then the program ‖l() is simulated by the program ‖Â(l).

Proof Let

P
def
= ‖l()

Q
def
= ‖Â(l)

Pj
def
= P(l(), Ê(l), j)

Qj
def
= P(Â(l), Ê(l), j)

We prove that if τ is a trace of P , then there is a trace τ ′ of Q such that (1) τ
is subsumed by τ ′, and (2) if τ ′ does not go wrong, then τ is a trace of Pj for
all 1 ≤ j ≤ n. The proof is by induction on the length of τ .

• Base Case: Let τ = ω. This trivial trace clearly satisfies the desired prop-
erty.

• Induction Step: Suppose τ is obtained from a run ra = σ0
|t1,a1|−→ σ1 · · ·σk−1

|tk,ak|−→
σk

|j,a|−→ ωa is a run of P . Let r be the prefix of ra that excludes the last transi-

tion. By the induction hypothesis, there is a run rd = σ0
|t1,d1|−→ σ1 · · ·σl−1

|tl,dl|−→
ωd of Q such that trace(rd) subsumes trace(r). If ωd = wrong, then trace(rd)
also subsumes trace(ra) = τ and we are done. Otherwise ωd = σk 6= wrong,

l = k, and there is a run rb = σ0
|t1,b1|−→ σ1 · · ·σk−1

|tk,bk|−→ σk of Pj.
We first prove that τ is subsumed by a trace of Q. A run rab of Pj

can be obtained from ra and rb by replacing actions of thread j in rb

by corresponding actions of thread j in ra and adding the last action
of thread j in ra to the end of rb. This run rab has the property that
trace(rab) = trace(ra) = τ . Since Pj is simulated by Qj, there is a run

rc = σ0
|t1,c1|−→ σ1 · · ·σm−1

|tm,cm|−→ σm
|j,c|−→ ωc of Qj such that trace(rc) sub-

sumes trace(rab) = τ . A run rcd of Q can be obtained from rc and rd by
replacing actions of thread j in rd by corresponding actions of thread j in

29

rc. If m = k, we also append the last action of thread j in rc to rd. This run
rcd has the property that trace(rcd) = trace(rc) and therefore it subsumes
τ .

We now prove that if ωc 6= wrong, then τ is a trace of Pi for all i ∈ Tid .
If ωc 6= wrong, then m = k and ωc = ωa and trace(ra) = trace(rc) = τ .
Thus we get that τ is a trace of Pj. Now, pick i ∈ Tid such that i 6= j. By

the induction hypothesis, there is a run re = σ0
|t1,e1|−→ σ1 · · ·σk−1

|tk,ek|−→ σk of

Pi. We have shown that σk
|j,d|−→ ωa is a transition of Q. From the definition

of Q, the atomic operation d is of the form

(p ∧ I(l))?(X ∧ I ′(l) ∧ ∀i ∈ Tid : i 6= tid⇒ Ê(l)[tid := i]).

If ωa 6= wrong, then Ê(l)[tid := i](j, σk, ωa) holds. Therefore, the run re of

Pi can be extended to σ0
|t1,e1|−→ σ1 · · ·σk−1

|tk,ek|−→ σk
|j,Ê(l)[tid:=i]|−→ ωa and we get

that τ is a trace of Pi.

2

Lemma 2 If a statement S is simulated by a statement T with respect to
environment assumption E and E ′ implies E, then S is simulated by T with
respect to E ′.

Proof

Fix j ∈ Tid and let

Pj
def
= P(S, E, j)

Qj
def
= P(T,E, j)

P ′
j

def
= P(S, E ′, j)

Q′
j

def
= P(T, E ′, j)

Consider a run r = σ0
|t1,a1|−→ σ1 . . .

|tm,am|−→ ω of P ′
j , for arbitrary j. Consider

all transitions σi−1
|ti,ai|−→ σi in r where ti 6= j. For each such transition,

E ′(j, σi−1, σi) holds. Since, E ′ implies E, E(j, σi−1, σi) holds. Therefore, r is a
run of Pj.

Since Pj v Qj, there exists a run r′ = σ0
|t1,b1|−→ σ1 . . .

|tn,bn|−→ ω′ of Qj such that

trace(r′) subsumes trace(r). Consider any transition σi−1
|ti,bi|−→ σi in r′ where

ti 6= j. Since trace(r′) = trace(r), both E(j, σi−1, σi) and E ′(j, σi−1, σi) hold.
Therefore, r′ is also a run of Q′

j.

30

Thus, we get P ′
j v Q′

j for all j ∈ Tid and thereby S vE′ T .

2

We introduce a few additional definitions for the remainder of this appendix.
Let Pd(B, E, j) be the parallel program in which the j-th thread executes B
with the depth of its stack bounded by d and every other thread executes
E∗[tid := j]. We write B vd

E A to indicate that the program Pd(B, E, j) is
simulated by the program Pd(A, E, j) for all j ∈ Tid .

Let ū be a path that is the concatenation of n paths ū1, ū2, . . . , ūn. Let
r1, r2, . . . , rn−1 be full runs of ū1, ū2, . . . , ¯un−1 respectively, and let rn be a
run of ūn, such that the last state in ri is the first state of ri+1 for 1 ≤ i < n.
Then, we denote the corresponding run r of ū by r1; r2; . . . ; rn.

Lemma 3 Suppose for all m ∈ Proc, InlineAbs(B(m)) is simulated by Â(m)
with respect to the environment assumption Ê(m). Then for all d ∈ N, state-
ments S, and environment assumptions E such that E ⇒ Ê(l) whenever l is
called by S, we have S vd

E InlineAbs(S).

Proof We proceed by induction over the depth d of the stack.

• Base case: Suppose d = 0. By the definition of [[S]]0 and InlineAbs(S), we
get [[S]]0 ⊆ [[InlineAbs(S)]]. Therefore S v0

E InlineAbs(S).

• Induction step: Suppose d ≥ 1. We proceed by induction over the structure
of S. Fix an E such that E ⇒ Ê(m) whenever m is called by S. Also, fix
j ∈ Tid.
· (S = a) : Then, InlineAbs(S) = a. Therefore, [[S]]d = [[InlineAbs(S)]], and

so, S vd
E InlineAbs(S).

· (S = S1; S2) : Consider a run r of Pd(S, E, j). There are two possible

cases: (1) r is a run of Pd(S1, E, j), or (2) r = r1; r2, r1 is a full run of
Pd(S1, E, j), and r2 is a run of Pd(S2, E, j).

Case 1. By the induction hypothesis, we have S1 vd
E InlineAbs(S1).

Therefore, there is a run r′ of P(InlineAbs(S1), E, j) such that trace(r)
is subsumed by trace(r′). Since r′ is a run of P(InlineAbs(S1), E, j), it is
also a run of the program P(InlineAbs(S1); InlineAbs(S2), E, j).

Case 2. By the induction hypothesis, we have that S1 vd
E InlineAbs(S1)

and S2 vd
E InlineAbs(S2). Therefore, there is a full run r′1 of P(InlineAbs(S1), E, j)

such that trace(r1) is subsumed by trace(r′1). If r′1 goes wrong, then r′1 is
also a run of P(InlineAbs(S1); InlineAbs(S2), E, j) and we are done. Oth-
erwise trace(r1) = trace(r′1). Further, there is also a run r′2 of P(InlineAbs(S2), E, j)
such that trace(r2) is subsumed by trace(r′2). Let r′ = r′1; r

′
2. Then, we get

that trace(r) is subsumed by trace(r′) and r′ is a run of P(InlineAbs(S1); InlineAbs(S2), E, j).
Since InlineAbs(S1; S2) = InlineAbs(S1); InlineAbs(S2), in both cases

31

we get that r′ is a run of P(InlineAbs(S1; S2), E, j).

· (S = S12S2) : Consider a run r of Pd(S, E, j). Either r is a run of

Pd(S1, E, j) or r is a run of Pd(S2, E, j). By the induction hypothesis,
we get S1 vd

E InlineAbs(S1) and S2 vd
E InlineAbs(S2). If r is a run

of Pd(S1, E, j), then there is a run r′ of P(InlineAbsS1, E, j) such that
trace(r) is subsumed by trace(r′). If r is a run of Pd(S2, E, j), then there
is a run r′ of P(InlineAbsS2, E, j) such that trace(r) is subsumed by
trace(r′). Thus, there is a run r′ of the program P(InlineAbs(S1)2InlineAbs(S2), E, j)
such that trace(r) is subsumed by trace(r′). Since we have InlineAbs(S12S2) =
InlineAbs(S1)2InlineAbs(S2), we get r′ is a run of P(InlineAbs(S12S2), E, j).

· (S = S1
∗) : Consider a run r of Pd(S, E, j). Then, for some x > 0, there

are runs r1, r2, . . . , rx with the following properties: (1) r = r1; r2; . . . ; rx,
(2) for all 0 < i < x, ri is a full run of Pd(S1, E, j), and (3) rx is a run of
Pd(S1, E, j).

By the induction hypothesis, we have S1 vd
E InlineAbs(S1). Therefore,

for all 0 < i < x, there is a full run r′i of P(InlineAbs(S1), E, j) such
that trace(ri) is subsumed by trace(r′i). Moreover, there is a run r′x of
P(InlineAbs(S1), E, j) such that trace(rx) is subsumed by trace(r′x).

Case 1. At least one of r′i (1 ≤ i ≤ x) goes wrong. Let j be the least i that
goes wrong. Let r′ = r′1; . . . ; r

′
j. Then r′ is a run of P(InlineAbs(S1)

∗, E, j)
and trace(r′) subsumes trace(r).

Case 2. No run r′i (1 ≤ i ≤ x) goes wrong. Let r′ = r′1; . . . ; r
′
x. Then r′

is a run of P(InlineAbs(S1)
∗, E, j) and trace(r′) = trace(r).

In both case, we get a run r′ of P(InlineAbs(S1)
∗, E, j) such that trace(r′)

subsumes trace(r). Since InlineAbs(S1
∗) = InlineAbs(S1)

∗, we get that r′

is a run of P(InlineAbs(S1
∗), E, j).

· (S = m()) : Since the statement m() calls the procedure m, we have

E ⇒ Ê(m). Moreover, Ê(m) ⇒ Ê(l) whenever l is called by m. Therefore
E ⇒ Ê(l) whenever l is called by m. From the induction hypothesis, we get
B(m) vd−1

E InlineAbs(B(m)). We also have that InlineAbs(B(m)) vÊ(m)

Â(m) Since E ⇒ Ê(m), we use Lemma 2 to get InlineAbs(B(m)) vE

Â(m). Therefore B(m) vd−1
E Â(m). Since [[S]]d = [[B(m)]]d−1 and InlineAbs(S) =

Â(m), we get S vd
E InlineAbs(S).

2

Restatement of Theorem 1 Let P = ‖l() be a parallel program. Suppose
for all procedures m ∈ Proc, the statement InlineAbs(B(m)) is simulated by
Â(m) with respect to the environment assumption Ê(m). Then the following
are true.

(1) P is simulated by Q = ‖Â(l).

32

(2) If σ ∈ I(l), A(l) is simulated by true∗ with respect to Ê(l), and σ
|t1,a1|−→

· · · |tk,ak|−→ ω is a run of P , then ω 6= wrong and ω ∈ I(l).

Proof We consider each part of the theorem in turn.

• Part 1: By Lemma 3, we get l() vd
Ê(l)

InlineAbs(l()) for all d ≥ 0. Therefore

l() vÊ(l) InlineAbs(l()). Since InlineAbs(l()) = Â(l) we get l() vÊ(l) Â(l).
By Lemma 1, we can conclude that P is simulated by Q.

• Part 2: Let r be a run of P . The proof is by induction on m, the length of
the run.
· Base case: For m = 0, σ0 ∈ I(l), and hence the trivial run r does not

end in wrong.

· Induction step: Let m > 0 and let r be σ0
|t1,a1|−→ σ1 . . . σn−1

|tn,an|−→ ω, where
σ0 ∈ I(l). By the induction hypothesis, we have that σ0, . . . , σn−1 ∈ I(l).
Since P v Q, there is a run r′ of Q such that trace(r′) subsumes trace(r).

Let r′ = σ0
|t1,b1|−→ σ1 . . . σm−1

|tm,bm|−→ ω′, where for each k, we have

bk = (pk ∧ I(l))?(Xk ∧ I ′(l) ∧ ∀i ∈ Tid : i 6= tid⇒ Ê(l)[tid := i]).
(A.1)

Now trace(r′) is also a trace of the program P(A(l), Ê(l), tm) for the
following reasons:

(1) For each state transition σk−1
|tm,bk|−→ σk, bk is of the form in Equa-

tion A.1. Since σk−1 ∈ I(l), we get that σk−1
|tm,pk?Xk|−→ σk

(2) For each state transition σk−1
|t,bk|−→ σk where t 6= tm, we have (Ê(l)[tid :=

tm])(t, σk−1, σk) holds.
Furthermore, since A(l) is simulated by true∗, we get that trace(r′) is
a trace of P(true∗, Ê(l), tm), which means that ω′ 6= wrong. Therefore
n = m and ω′ = ω. From the structure of bm and the fact that σm−1 ∈ I(l)
and ω 6= wrong, we get that ω ∈ I(l).

2

33

