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Climate sensitivity of spring snowpack in the Sierra Nevada
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[1] California’s spring snowpack provides a critical water resource that may be greatly
reduced by greenhouse warming. However, warming over the past half century has had
little effect on total summer water discharge. The region’s snowpack may therefore be less
sensitive to temperature change than predicted by numerical models. In this study,
53 years of 1 April snow course measurements of snow-water equivalent (SWE) from the
Sierra Nevada are used in a spatially distributed covariance model of SWE sensitivity
to temperature and precipitation. This model is applied at a 2.5 arc min resolution using a
multivariate parameter-surface interpolation scheme and Parameter-elevation Regressions
on Independent Slopes (PRISM) climate grids. Total modeled SWE volume has a
greater covariance to precipitation than to temperature. Increasing precipitation and
temperature from 1950 to 2002 has led to an increase in SWE at high elevations and a loss
at low elevations, resulting in little or no overall change in SWE volume. The covariance
model predicts a 6–10% decrease in total SWE volume per �C. However, sensitivity
is both highly dependent on concurrent change in precipitation and spatially variable,
with the lower-elevation watersheds in the north being the most sensitive to warming.
Overall, climate sensitivity is much less than that predicted by numerical models. This
difference may result from inadequate treatment of elevation and precipitation in climate
models.

Citation: Howat, I. M., and S. Tulaczyk (2005), Climate sensitivity of spring snowpack in the Sierra Nevada, J. Geophys. Res., 110,

F04021, doi:10.1029/2005JF000356.

1. Introduction

[2] Since most of the annual precipitation in California
occurs during the winter, the summer discharge of its major
rivers is supplied mostly by melting of winter snow accu-
mulation at high elevations [Serreze et al., 1999]. Therefore
the impact of climate change on seasonal snow water
volume could have far-reaching implications for regional
hydrology [California Energy Commission, 2003]. Warm-
ing during the winter months would result in more rain, as
opposed to snow, at lower elevations, decreasing summer
water supply and increasing the recurrence and amplitude of
winter and spring flood events [Miller et al., 2003]. Since
existing water resources are already committed within much
of California, any decrease in summer river discharge will
need to be mitigated with either reservoir construction
or conservation policies [California Department of Water
Resources, 1998]. Effective preparation and planning
for a potential decrease in water supply would require
high-confidence estimates of the near-future response of
snowpack to greenhouse warming scenarios for individual
drainages.
[3] Several studies have examined the potential effects of

predicted greenhouse warming on Sierra Nevada’s spring
snowpack using a variety of physically based numerical
climate and watershed models [Kim, 2001; Kim et al., 2002;

Knowles and Cayan, 2002; Snyder et al., 2002, 2004].
These models suggest a high sensitivity of snowpack to
temperature, ranging from a 60% to a nearly 100% reduc-
tion in mean 1 April snow-water equivalent (SWE) under a
warming of 2�–4�C. However, despite an observed winter
warming of up to 3�C over the last half of the twentieth
century, measurements of spring SWE show little overall
trend, and there has been little or no change in total summer
river discharge [Howat and Tulaczyk, 2005; Shelton and
Fridirici, 1997]. This is because significant decreases in
spring snow-water equivalent have occurred at only the
lowest elevations and may have been partially offset by
a significant increase at higher elevations [Howat and
Tulaczyk, 2005]. Although this may indicate a much lower
sensitivity of snow water volume to temperature than
suggested by numerical models, no detailed spatial analysis
of the long-term observational record has been undertaken.
[4] The observational record needed for a long-term

assessment of climate forcing on snow volume and distri-
bution lies in historical snow course observations. Nearly a
century of monthly snow course data exists for the Sierra
Nevada, representing one of the longest and most spatially
dense records of snow hydrology in the world (Figure 1). A
single snow course measurement is the average of several
point measurements, usually located in open, flat areas. This
makes snow course measurements uncertain representations
of the average snowpack for areas where surface conditions
differ from those at the snow course site. However, the
temporal variations are less sensitive to local factors, such
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as changes in foliage or drift patterns, and are more sensitive
to variations in climate [Bohr and Aguado, 2001]. There-
fore, while historical snow course measurements may be
poor predictors of snow volume for any given year, they
provide a much more robust indication of climate-driven
temporal variations and, consequently, the sensitivity of
snowpack to climate forcing at a regional scale.
[5] The objective of this study is to determine the climate

sensitivity of Sierra Nevada’s 1 April SWE3 on the basis of
spatial-temporal analysis of observations between 1950 and
2002. We first reconstruct SWE3 through interpolation of
annual snow course measurements. Estimated SWE3 distri-
butions are then correlated to existing high-resolution maps
of temperature and precipitation to produce a spatially
distributed estimate of climate sensitivity. This sensitivity
is assessed on both the regional and watershed scales and is
compared to estimates produced by numerical models.

2. Data

[6] We use 1 April SWE measurements from 177 snow
courses in the Sierra Nevada of California and western
Nevada operated by the California Cooperative Snow Survey
and distributed by the U.S. Department of Agriculture (see
http://www.wcc.nrcs.usda.gov/snowcourse and the auxiliary
material1) (Figure 1). A detailed description of the data
collection and verification program is given by Roos

[2003]. These stations are missing no more than five mea-
surements from the period 1950–2002, with no more than
two consecutive years missing. While some snow courses
have records extending to the early 1900s, we use the period
1950–2002 because our analysis requires a temporally
homogenous data set (i.e., the same group of stations must
be used throughout the time period) and many more stations
are available after 1950. Also, as stated above, this is the
period of a strong winter warming trend. The April 1 date is
chosen because it provides, by far, the largest data set and is,
on regional average, closest to the date of maximum SWE.
[7] Gridded monthly mean temperature and total precip-

itation were obtained from 2.5 arc min resolution maps
generated from the Parameter-elevation Regressions on
Independent Slopes (PRISM) interpolation model (see
http://www.ocs.orst.edu/prism). These data sets have under-
gone extensive validation and provide the highest-resolution
gridded climate maps available [Daly et al., 2000a].
[8] Total summer (April–September) full natural flow

data for 17 major Sierra Nevada drainages (Figure 1) were
obtained from the California Data Exchange Center (see
http://cdec.water.ca.gov). Watershed boundaries used to
compare estimated snow water volume with summer river
discharge were obtained from the California Department of
Water Resources (see http://wwwdwr.water.ca.gov).

3. Methods

3.1. Spatial Interpolation Model

[9] Comparative studies of interpolating snow measure-
ments over large, topographically complex regions have
found that surface detrending coupledwith distance-weighted
residual interpolation yields optimal results [Carroll and
Cressie, 1997; Daly et al., 2000b; Erxleben et al., 2002;
Fassnacht et al., 2003; Marquinez et al., 2003]. This
method also has the advantage of being easily adapted over
space and time through parameter fitting and yields estimate
confidence intervals. Binary decision trees and neural
networks have also been employed with success [Balk and
Elder, 2000; Erxleben et al., 2002]. However, these methods
are not easily automated (e.g., regression tree ‘‘pruning’’ and
neural classification); they are difficult to interpret physically,
and their uncertainties are difficult to asses.
[10] We employ a multivariate parameter-surface model-

ing approach in which we assume the linear system

SŴE ¼ B � xþ e; ð1Þ

where

B ¼

b0
b1
..
.

bn�p

2
6664

3
7775;

x ¼ 1 x11 . . . xpn
� �

;

SŴE is the predicted snow-water equivalent, x and B are
vectors of independent variables and empirical model
parameters, respectively, and e is the random model
residual. Each vector contains np + 1 elements, where n is

Figure 1. Map of Sierra Nevada snow courses (circles),
watershed boundaries (gray lines), and river gauges
(triangles) used in this study.

1Auxiliary material is available at ftp://ftp.agu.org/apend/jf/
2005JF000356.
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the number of independent variables used in the model and
p is the maximum order of the model. We include higher-
order terms (2. . .p) because of the observed highly
nonlinear relation between snow distribution and physio-
graphic and climactic variables [Aguado, 1990]. The model
residual e is interpolated from the population of data points
to the estimate location using anisotropic distance-weighted
averaging:

e ¼

Xn
x;y¼1

Ee�Dxi=hx ; Ee�Dyi=hy
h i

Xn
x;y¼1

e�Dxi=hx ; e�Dyi=hy
h i ; ð2Þ

where hx and hy determine the relative weight assigned to
the surrounding observation points. Larger values of h tend
to smooth over small-scale variability in the parameter
surface. As h approaches 0, the effect of small-scale
variability is increased, while areas farther away from
observations approach the population mean. The best fit
model parameters are found simultaneously by nonlinear
least squares fitting of the combined equations (1) and (2).
We allow B to vary spatially by applying the model
independently to data subsamples within a search radius w.
[11] For independent variables we select physical and

climate parameters that have been previously demonstrated
to show high spatial correlation to SWE at the scale of the
interpolation grid (�2 km) [Carroll and Cressie, 1997;
Fassnacht et al., 2003]. Here we use the three-dimensional
position, slope, east aspect, north aspect, winter mean
temperature, and total winter precipitation. Climate varia-
bles are adjusted to the SWE measurement elevation from
the PRISM grid position using a lapse rate fitted to a nearest
neighbor subsample of the data.
[12] Following a methodology similar to that of

Fassnacht et al. [2003], each independent variable is ranked
by the strength of spatial correlation between the variable
and the set of observations. Each variable of successively
lower correlation is included in the model so that each
variable is tested but is discarded if model fit is not
significantly improved. We extend this method by also
testing higher orders (1. . .p) of the set of independent
variables (1. . .n) again until the improvement in model fit
is small or until the parameter matrix becomes rank defi-
cient. The overall fit of each model is assessed through
cross-validation root-mean-square error

RMSEm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

Xn
i¼1

SŴEi;m � SWEi

� �2s
; ð3Þ

where, for each test model m, SŴE is predicted for the
location of each ith observation using the other N-1
observations and is compared to the observed value SWE.
[13] For each parameter model Xm tested, the optimal

regression radius w is determined by a simplex search
[Nelder and Mead, 1965]. The range of possible w is
confined by the number of stations needed in each regres-
sion to maintain a rank-sufficient parameter matrix. The
optimal model and w for each 1 April data set is then used
to calculate SŴE at each point on the interpolation grid

from the corresponding fields of independent variables.
The 95% (1.96s) confidence interval of SŴE at each
observation point is determined from the variance in B, as
given by the residuals and Jacobian of the nonlinear least
squares solution.

3.2. Temporal Sensitivity Model

[14] The objective of temporal analysis is to constrain a
sensitivity term relating variance in snow-water equivalent
to corresponding temperature and precipitation at each grid
cell. For this we assume that 1 April SWE varies with mean
winter climate as

SWE ¼ P þ aT ; T > Tmin

SWE ¼ P; T � Tmin;
ð4Þ

where P and T are gridded winter total precipitation and
average temperature, respectively. The climate sensitivity
parameter a is analogous to a degree day constant in index
melt models [Hock, 2003] and relates variance in SWE to
variance in temperature forcing. Below a threshold
temperature Tmin, SWE varies only with P. We estimate a
for each grid cell by linear regression between the
corresponding time series of SŴE and PRISM temperature
and precipitation. We then obtain Tmin from the value of T at
SWE � P = 0. In order to determine the confidence level of
each a and Tmin the regression is performed for a large
number (500) of synthetic SWE time series drawn normal
randomly from the variance of each SŴE estimate.
Assuming a one-tailed normal distribution, the 95%
confidence level is then constrained from the populations
of a and Tmin generated with the synthetic SWE data.
[15] Once the best fit a and uncertainty are determined

for each grid cell, we then use the range of possible a and a
prescribed change in P to integrate equation (4) over a range
of temperature change. This yields the predicted change in
snow-water equivalent volume SŴE3 as a function of the
potential change in T and P.

4. Results

4.1. Spatial Model Error and Confidence

[16] The most often selected independent variables for the
regression model were elevation, used for all years, and
precipitation, used in 52 out of 53 years. Cross-validation
errors for the interpolation models range from 7 to 36 cm, or
18 to 48% of that year’s average SWE (Figure 2). Over the
entire time series, there is a mean error of 18 cm, or 27% of
the 53 year average, with no temporal trend in error. On
average, the models were able to account for 68% of the
spatial variance in measured SWE, reaching over 80%. The
magnitude of error increases linearly with observed SWE,
indicating an increasing degree of spatial variability with
larger snowpack, although relative error decreases with
greater snowpack. There is no clear relation between model
error and which or how many independent variables were
used in each annual model.
[17] The 95% confidence interval in SŴE averages 10–

20% of the predicted value, with the largest uncertainties in
the extreme northern end of the Sierra Nevada (Figure 3)
due to poor regression fits. Estimate uncertainty closely
follows the density of observations, with uncertainties
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reaching a minimum where observations are the most
closely spaced between 2600 and 3200 m above sea level
(masl) (Figure 4). On the basis of mean SWE, there is a bias
in the distribution of stations toward the upper-middle end
of the elevation range. Because of this bias, uncertainties
reach over 100% below 1500 masl.
[18] Anomalously high uncertainties occurred during the

winters of 1992–1993, 1995–1996, and 1997–1998, which
were the only seasons with greater than 50% SŴE3 estimate
uncertainty. This is due to abnormally high local variability
in snow course measurements, with stations recording up to

200% of normal in close proximity to stations registering
near or below normal SWE. This results in poor model
fitting and larger confidence intervals. It is unclear from the
available data why these years would have such highly
variable SWE, as there is no large abnormality in the spatial
variance of precipitation or temperature.

4.2. Temporal Variations

[19] The 53 year time series of SŴE3 shows large
interannual fluctuations, with a standard deviation of
approximately 50% of the 53 year mean and a weak

Figure 2. Time series of average 1 April Sierra Nevada snow-water equivalent (SWE) measured at 177
snow courses from 1950 to 2002 (gray bars) and average of cross-validation error (equation (3)) of the
interpolation models (black bars). The line shows the percent of spatial variance in observed SWE
explained by the best fit regression (right-hand scale).

Figure 3. Maps of (left) modeled 1 April SŴE for the period 1950–2002 interpolated from annual
snow course observations and (right) the 95% (1.96s) confidence interval of the predictions.
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negative trend totaling 8% over the record (Figure 5).
Separating the output by elevation, below 2500 masl
the negative trend in SŴE3 strengthens to 20%. Above
2500 masl, SŴE3 has increased 15%. Considering the range
as whole, this volume increase equals 40% of the volume
loss below 2500 masl.
[20] Winter precipitation volume accounts for over 70%

of the variance in SŴE3 and has increased approximately
8%. Temperature accounts for 13% of the variance in SŴE3

(p = 0.01) and shows a strong positive trend (>95% Mann’s
T confidence) of approximately 1�C over the time period.
Below 2500 masl, temperature accounts for 23% of the
variability in SŴE3, while precipitation explains 55%.
Above 2500 masl, P accounts for 91% of the variance in
SŴE3 and has increased by 9%. Winter temperature shows
the strongest increase at higher altitudes at �1.2�C but
shows little or no correlation with SŴE3.

4.3. Climate Sensitivity

[21] Values for a range from 0 to �20 cm �C�1, with
lowest (closest to zero) sensitivities occurring at elevations
greater than 3200 m in the south (Figure 6). While a
appears to be dependent on elevation in the southern half
of the region, areas of high sensitivity occur at high
elevations in the north, with the greatest sensitivity occur-
ring in the areas around the Feather, American, and Yuba
river drainages. Uncertainty in a averages 20% of the
predicted values and corresponds to uncertainty in SŴE
(Figure 6), with uncertainty reaching over 100% of the
predicted value in the extreme north and at the lowest
elevations.

[22] Integrations of equation (4) were performed for
changes in P of 0, 5, and �5% �C�1 (Figure 7). We limit
application of the climate sensitivity model to a temperature
change (dT) up to 5�C because the solution for a becomes
less valid outside the temporal standard deviation of the T
data. The decrease in land area with elevation results in
slightly nonlinear loss in SŴE3 with increasing tempera-
ture. In the dP = 0 case, there is a 6–10% decrease in SŴE3

for each 1�C increase in winter temperature. For the dP =
�5% �C�1 case the rate of change in SŴE3 increases
to �8 to �13% �C�1, while for the P = +5% �C�1 case
the rate of change in SŴE3 decreases to �2 to �5% �C�1.
Increasing the rate of change of P to 8–12% �C�1 would
result in no change in SŴE3 up to dT = 5�C, with higher rates
resulting in increasing SŴE3. For this temperature range
a 100% loss in SŴE3 would require a 100% loss in P since T
would still be less than Tmin at the highest elevations.

4.4. Watershed Sensitivity

[23] Estimated SŴE3 within 17 major Sierra Nevada
watersheds accounts for an average of 76% of the variance
in total summer unimpacted flow (Table 1). In general, this
covariance is greater for higher-elevation watersheds. On
average, total summer discharges are 70% of the watershed
SŴE3, which is a typical value for the ratio of runoff to
snowmelt [Viessman and Lewis, 2002]. The high temporal
correlation and reasonable relative values for summer dis-
charge and SŴE3 support the validity of the interpolation
model estimates.
[24] Assessing climate sensitivity by watershed, we find

that the lower-elevation drainages in the northwestern sector

Figure 4. Histograms of (top) mean modeled SŴE3 and (bottom) station density by elevation. Error
bars show the range of mean uncertainty in volume estimates, also shown as a percent of SŴE3 in Figure
4 (bottom, scale on the right-hand side). Station distribution is biased toward the higher elevations and
does not agree with SWE distribution. This results in a sharp increase in relative prediction uncertainties
below 2000 m above sea level (masl).
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Figure 5. Time series and linear best fits of (left) SŴE3, (middle) total winter (November–March)
precipitation volume, and (right) mean winter temperature over the interpolation domain for elevations
above 1500 masl, from 1500 to 2500 masl, and above 2500 masl. Error bars for SŴE3 are the
95% confidence intervals.

Figure 6. Maps of (left) climate sensitivity parameter values (a) and (right) confidence intervals
obtained from least squares fitting of equation (4).

F04021 HOWAT AND TULACZYK: CLIMATE SENSITIVITY OF CALIFORNIA SNOW

6 of 9

F04021



of the study area, with the exception of the Tule basin in the
south, would have the largest percent reduction in snow
water volume under climate warming. The largest Sierra
Nevada river by summer discharge, the Feather, is the most
sensitive, losing from 17–28% of its total summer volume
under a mean winter warming of 1�C up to 65% under 3�C
warming. The San Joaquin, which drains the high southern
Sierra, is the least sensitive, with a predicted loss of 22%
under 3�C warming.

5. Discussion and Conclusions

[25] Total winter precipitation is the dominant control on
both the spatial distribution and interannual variation in
Sierra Nevada 1 April SWE, accounting for up to 90% of
the spatial variance and over 50% of the temporal variation
at even the lowest elevations. Therefore the high-resolution
PRISM precipitation maps were essential for achieving
model cross-validation errors much lower than interpolation
schemes where only terrain variables were used [Balk and
Elder, 2000; Erxleben et al., 2002; Fassnacht et al., 2003].
However, the dependence on precipitation may be over-
predicted at low elevations because of the upper elevation
bias in the observations (Figure 4). The greatest estimate
uncertainties are in the northern Sierras because of the
higher degree of spatial variability in SWE.
[26] The regional dependence of SWE on precipitation

relative to temperature has resulted in little or no significant
trend in 1 April SŴE3 over the past half century despite a

significant increase in mean winter temperatures. Increased
melt at lower elevations from this warming has been
significantly offset by an increase in precipitation, leading
to an increase in SŴE3 at higher elevations. Furthermore,

Figure 7. Change in SWE3 as a percentage of the 1950–2002 mean versus change in mean winter
temperature (dT) estimated from integration of equation (4) at each model grid cell using a and prescribed
rates of change in winter precipitation (dP). Dotted lines are the estimate uncertainties (1.96s) derived
from the combined uncertainty in SŴE3 and a.

Table 1. Total Summer Discharge (Q) and Mean Elevation of

Major Sierra Nevada Watersheds With Correlation (r2) to Estimated

1 April Watershed Snow-Water Equivalent Volume (SŴE3) and the

95% Confidence Interval of the Predicted Change in Watershed

SŴE3 (as a Percent of the 1950–2002 Mean) for Increases in Mean

Winter Temperature Using the Climate Sensitivity Parameter

Drainage Q, km3 Altitude, masl r2
dSŴE3, %

+1�C +2�C +3�C

American 1.6 1353 0.77 �11/�17 �23/�33 �34/�47
Carson 0.3 2233 0.81 �6/�11 �11/�21 �16/�31
Cosumnes 0.2 859 0.55 �14/�22 �27/�40 �40/�53
Feather 2.5 1560 0.70 �17/�28 �33/�49 �47/�65
Kaweah 0.4 1271 0.74 �8/�15 �16/�28 �22/�37
Kern 0.6 1818 0.83 �8/�17 �16/�31 �22/�41
Kings 1.6 2352 0.86 �4/�9 �8/�17 �11/�24
Merced 0.8 1706 0.84 �7/�12 �15/�23 �22/�33
Mokelumne 0.6 1247 0.82 �7/�12 �15/�24 �22/�35
Owens 0.1 2086 0.60 �3/�12 �6/�22 �9/�29
San Joaquin 1.6 2174 0.85 �4/�8 �9/�15 �13/�22
Stanislaus 0.9 1646 0.82 �8/�12 �16/�24 �23/�35
Truckee 0.3 2016 0.76 �13/�18 �26/�35 �38/�49
Tule 0.1 1243 0.58 �14/�24 �26/�41 �35/�52
Tuolumne 1.6 1857 0.85 �7/�11 �14/�21 �20/�30
Walker 0.3 2391 0.76 �4/�11 �7/�20 �11/�28
Yuba 1.3 1350 0.72 �12/�18 �23/�33 �34/�47
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there has been no clear increase in the overall correlation
between SŴE3 and temperature, as would be expected
under a strong warming trend. This pattern is markedly
different from that of the Cascades to the north, where a
similar warming trend and a decrease in precipitation has
led to a widespread, significant loss of 1 April SWE [Howat
and Tulaczyk, 2005; Mote, 2003; Mote et al., 2005].
[27] The high interannual variability of winter climate in

the Sierra Nevada region allows for prediction of the
sensitivity parameter within a narrow confidence interval
over the range of climate changes predicted by physical
models for the near future (50–100 years from present). On
the basis of past variance in SWE, spring snowpack at
elevations below 2000 masl, as well as in the northern
portion of the study area, is highly sensitive to temperature
changes. While the elevation dependence of climate sensi-
tivity is expected [Kim, 2001], the cause for the latitudinal
dependence is unknown but may be due to a contrast in
regional atmospheric patterns [Knowles and Cayan, 2002].
Higher elevations and much of the southern Sierra Nevada
show very little sensitivity to temperature. Here a several
degree increase in mean winter temperatures may result in
only a 10–20% loss in SŴE3.
[28] Since low-elevation snowpack is more sensitive to

temperature, the difference between 1 April and 1 March
SWE should be decreasing under warming at lower eleva-
tions. In Figure 8 we plot the 53 year trends in the values of
1 April minus 1 March SWE for the 55 stations that have
records for both months. The trends in themselves are
not statistically significant (all but one have a p value
>0.05 using Mann’s T) and are not correlated with latitude.
However, the magnitudes of trends are highly correlated

with elevation (r2 = 0.3), with the change in 1 April minus
1 March SWE becoming increasingly negative at lower
elevations and positive at higher ones. This correlation
agrees with our sensitivity analysis and is evidence that
melting is occurring earlier at lower elevations. This earlier
melt would partly offset the positive contribution of an
increase in winter precipitation to the 1 April volume
budget.
[29] There is a wide degree of variability in climate

sensitivity between individual watersheds, with the large
watersheds in northern Sierra Nevada being especially
sensitive to warming relative to the higher-elevation basins
to the south (Table 1). Exactly how changes in snowpack
may affect the discharge of individual rivers should depend,
to a large extent, on basin hydrogeology. However, on a
regional scale, this pattern is consistent with watershed
models [Knowles and Cayan, 2002], although the magni-
tudes of potential sensitivity are much less in this analysis.
For the majority of watersheds, loss of SŴE3 due to
warming may be offset by an increase in snow precipitation
within the range expected from theoretical studies of po-
tential atmospheric moisture changes (up to 10% �C�1)
[Trenberth et al., 2003].
[30] The data show a weaker overall sensitivity to tem-

perature change than predicted by physically based fore-
casting models. According to the covariance model, a
change of 3�C over the next century would force a 30%
decrease in SŴE3, as opposed to 60% or greater in
numerical models [Kim et al., 2002; Knowles and Cayan,
2002; Snyder et al., 2002, 2004]. This discrepancy in
predicted change in SŴE3 may be partly due to the higher
spatial resolution, and therefore more detailed topography,

Figure 8. Elevation versus the trend in values for 1 April minus 1 March SWE for the period 1950–
2002 for the 55 stations where records for both months exist. The best fit line has an r2 of 0.3.
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used in this study (�2 km) relative to atmospheric and
regional hydrologic models (>10 km). The smoothed to-
pography of these models may tend to underrepresent
change at higher elevations, leading to an overprediction
of the sensitivity of the land surface to temperature changes
[Cline et al., 1998]. Furthermore, the contribution of any
potential increase in high-elevation precipitation to the total
spring snow budget may be decreased or not included.
[31] Our analysis of historical data indicates that the

potential impact of warming on snow water volume is
highly dependent on concurrent precipitation changes and
watershed topography. Existing model estimates of changes
in precipitation under greenhouse warming scenarios have a
high uncertainty and low spatial resolution [Coquard et al.,
2004; Maurer and Duffy, 2005; Snyder et al., 2002].
Predictions of potential snow water volume changes based
on these forecasts should therefore carry a high uncertainty
as well.

[32] Acknowledgments. This work was funded by grants from the
UC Center for Water Resources and the STEPS Institute. The authors thank
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