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Abstract

We study a dynamic regulation model where firms’ actions contribute to a stock ex-

ternality. The regulator and firms have asymmetric information about serially correlated
abatement costs. With price-based policies such as taxes, or if firms trade quotas efficiently,
the regulator learns about the evolution of both stock and costs. This ability to learn about

costs is important in determining the ranking of taxes and quotas, and in determining the
value of a feedback rather than an open-loop policy.
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1 Introduction

The possibility of global warming has revived interest in comparing taxes and quotas when the
regulator and firms have asymmetric information about abatement costs. Weitzman (1974)
showed that there is a simple criterion for ranking the policies when abatement costs and envi-
ronmental damages are quadratic functions of the flow of pollution, uncertainty enters additively
(i.e., it affects the level but not the slope of the firm’s marginal costs), and the optimal quantity
restriction is binding with probability one.1 When the externality is caused by a stock rather
than a flow the regulatory problem is dynamic, and the comparison of policies is more compli-
cated. When stocks decay slowly, as do greenhouse gasses, current emissions may cause future
environmental damages. Regulatory policies should balance current abatement costs and the
stream of future environmental damages. In formulating these policies, the regulator should
also consider the possibility of learning about the firms’ abatement costs, thereby reducing the
future asymmetry of information.
We show how the regulator’s ability to update information about serially correlated abate-

ment costs affects both the problem of regulating a stock pollutant, and the comparison of taxes
and quotas. In a dynamic model with serially correlated private information about abatement
costs, past observations can provide information about current costs.2 In order to take advan-
tage of this information, the regulator needs to use a feed-back policy.
Staring (1995) considers the simplest dynamic model where the regulator uses an open-loop

policy, i.e. he announces the entire policy trajectory at the initial time. Weitzman’s basic result,
and the intuition for it, still holds: a steeper marginal damage function or a flatter marginal
abatement cost function favor the use of quotas. A lower discount rate or a lower stock-decay
rate – both features that increase the importance of future damages resulting from current pol-

1There is a large literature that examines other aspects of the problem of choosing policies under asymmetric
information. Important contributions to this literature include Dasgupta, Hammond, and Maskin (1980),Kwerel
(1977),Malcomson (1978), Roberts and Spence (1976), Stavins (1996) and Watson and Ridker (1984). These
papers are concerned with the problem of flow rather than stock externalities.
Non-linear policies can achieve higher payoffs than linear taxes or quotas. Roberts and Spence (1976) points

out that a non-linear tax, with the marginal tax rate equals the marginal damage, achieves the first-best outcome in
regulating a single firm and is superior to a quantity policy.

2In addition to learning about abatement costs, the regulator may learn about the relation between stocks and
environmental damages. This second kind of learning leads to a different problem, addressed in Karp and Zhang
(2002b)
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lution – favor the use of quotas.
Hoel and Karp (2002) show that both the ability to change the policy frequently and the

use of a feedback rather than an open-loop policy favors the use of taxes.3 They assume that
cost are uncorrelated, so past observations provide no information about the current cost shock.
The effect of all parameters on the policy ranking is qualitatively the same in the open-loop and
feedback settings. Newell and Pizer (in press) extend the open-loop model by allowing costs
to be serially correlated. They show that a more positive degree of autocorrelation favors the
use of quotas. They study only the open-loop case, where the regulator learns nothing about
either the evolution of stocks or abatement costs.
We consider the stock-regulation problem with correlated costs when the regulator uses a

feedback policy. Correlated costs increase the value of feedback rather than the open-loop
decision rules, because the regulator has the opportunity to learn about both the evolution of
stocks and costs. Not surprisingly, most of the intuition developed in the earlier papers survives
in this more general setting. With a feedback policy, the distinction between tradeable and non-
tradeable quotas is important, because of the two types of policies provide the regulator with
different amounts of information. This paper thus extends our intuition for the stock regulation
problem and confirms that previous results hold in a more general setting.
Although these theoretical insights are valuable, the implications for empirical work are

probably more important. For some pollution problems (such as global warming) where we
would like to compare taxes and quotas, we have only rough estimates (or guesses) of the slopes
of marginal damages and abatement costs, and estimates of other parameters such as decay and
discount rates and cost correlations. An empirical challenge is to use the existing data to rank
policies. This challenge cannot be met merely by knowing the qualitative characteristics of
a problem. For example, Hoel and Karp (2002) show that despite the lack of a qualitative
difference, there is a large quantitative difference in the criterion for ranking taxes and quotas,
depending on whether the regulator uses open-loop or feedback policies; however, for all plau-
sible parameter estimates, taxes dominate quotas for the control of greenhouse gasses under
either open-loop or feedback policies. Newell and Pizer (in press) reach a similar conclusion
with respect to changes in the cost correlation parameter, given that the regulator uses an open-
loop policy. The formulae that we derive enable us to rank taxes and quotas in a more realistic

3The effect of the length of a period is the same in the more general setting discussed in this paper (where costs
are serially correlated). Details are available upon request.
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and general setting (e.g., with or without cost correlation, under open-loop or feedback policies,
with or without trade in quotas).
The literature to which this paper contributes compares efficient quotas and efficient taxes.

To be consistent with this literature we assume that when there is no trade in quotas, firms
have the same marginal abatement costs. In this case, there would be no efficiency gain from
trade. When firms have different cost shocks, we assume that there is trade in quotas, so the
potential efficiency gain is realized. That is, in both of these cases the quota is efficient. The
difference between the two cases is that with trade the equilibrium quota price contains the same
information about the aggregate cost shock as does the equilibrium response to a tax; without
trade, the regulator learns nothing about the cost shock when he uses a quota. Thus, we identify
the role of trade in providing information (via the quota price). One way to interpret this model
is that trade in quotas is always permitted. In equilibrium trade actually occurs if and only if
firms are heterogenous.
A third possibility, that we do not study (but mention in footnote 9), is that firms are het-

erogenous and there is no trade under quotas. In this case the quota is inefficient. This model
would illustrate the combined effects of the greater information and the greater allocative effi-
ciency provided by taxes or by quotas with trade.
Section 2 describes the model and Section 3 explains the intuition for our results. Section

4 generalizes Newell and Pizer’s policy ranking under the open-loop assumption and shows
that more positively correlated cost shocks always favors the use of quotas. Section 5 shows
that under the feedback policy without quota trading, taxes tend to dominate quotas when the
cost shocks are highly positively or negatively correlated. Section 6 shows that efficient quota
trading eliminates the informational advantage of taxes; as in the open-loop setting, higher
autocorrelation of cost shocks then favors the use of quotas. Subsequent sections assess the
likelihood that the policy ranking is different in the three scenarios (open-loop, feedback with
and without quota trading), and provide an empirical illustration.

2 The model

We begin the analysis with the assumption that all firms are identical, so there is no incentive
for firms to trade quotas. Firms behave non-strategically towards the regulator. We fix units of
time equal to years and assume that a period lasts for one year. All time-dependent variables
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are constant within a period. At time t the stock of pollutant is St and the flow of new pollution
is xt. The fraction 1−∆ of the stock decays within a period:

St+1 = ∆St + xt. (1)

In period t the flow of environmental damages is D(St):

D (St) = cSt +
g

2
S2t , g > 0.

The representative firm’s business-as-usual (BAU) level of emissions in period t is xbt =
x + θ̃t where θ̃t is a random variable. With an actual emission level xt < xbt , the firm’s
abatement cost is a quadratic function of abatement A (xt) = b

2

¡
xbt − xt

¢2 with b > 0. The
firm’s benefit from higher emission equals the abatement costs that it avoids having to pay.
Defining the cost shock θt ≡ bθ̃t, we write the benefit as a linear-quadratic function, concave
in the emission with an additive cost shock. The benefit function for a representative firm is
defined as the flow of cost saving due to more pollution (less abatement):4

B (xt, θt) = f + (a+ θt)xt − b

2
x2t , b > 0. (2)

At time t only the firm observes θt ; there is persistent asymmetric information. The regulator
knows the parameters of the AR (1) process that determines the evolution of θ:

θt = ρθt−1 + µt; µt ∼ iid
¡
0, γ2

¢
(3)

for t ≥ 1. The regulator’s subjective distribution for θ0 is

θ0 ∼
¡
θ̄0, σ

2
0

¢
.

The random variable θ0 has (subjective) mean θ̄0 and variance σ20. θ0 and µt are independent
and the correlation coefficient ρ satisfies −1 < ρ < 1.
If the regulator uses quotas, we assume that these are always binding.5 Depending on the

choice of parameter values and the initial value of S, the probability that the quota is binding
4The parameters satisfy f = − b

2x
2 and a = bx. We ignore the effect of θ̃ on f since f has no effect on the

regulator’s control.
5Costello and Karp (2002) study a dynamic model with flow pollution, in which the possibility that the quota

is not binding enables the regulator to learn about the firm’s cost. Brozovic, Sunding, and Zilberman (2002) point
out that even in the simplest static problem, the regulator’s payoff might not be globally concave. In this case, a
binding quota might be a local but not a global maximum.
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for an arbitrarily large but finite number of periods can be made arbitrarily close to one. Since
the regulator discounts the future, this fact means that the loss from ignoring the possibility that
the quota is slack is very small. Therefore, we view the assumption that the quota is always
binding as an approximation.
If the regulator uses a tax pt, firms in each period maximize the difference between the

savings in abatement cost and the tax payment:

Max
xt

Πt = B (xt, θt)− ptxt =

·
f + (a+ θt)xt − b

2
x2t

¸
− ptxt.

The firms’ first order condition implies6

x∗t =
a− pt
b

+
θt
b
. (4)

When the regulator uses a tax, the flow of emissions and the evolution of the pollutant stock St
are stochastic. At time t the regulator knows the actual level of emissions and the tax at time
t − 1, and (using equation (4) ) he is able to infer the value of θt−1. The tax-setting regulator
does better using a feedback rather than an open-loop policy because he learns about the cost
variable and the pollution stock, and he conditions his policy on this information.
Define zit as the regulator’s expected emission given the tax pt, for i = OL (open loop) or

i = FB (feedback). Under the open-loop tax policy,

zOLt = E0x
∗
t =

a− pt
b

+
1

b
E0θt =

a− pt
b

+
1

b
ρtθ̄0.

Under the feedback tax policy,

zFBt = Etx
∗
t =

a− pt
b

+
1

b
Etθt.

The regulator’s expectation of the cost variable (under the feedback policy) is Etθt = θ̄0 when
t = 0 and Etθt = ρθt−1 when t ≥ 1. Choosing a tax pt is equivalent to choosing expected
emissions zit. The firm’s actual level of emissions is

x∗t (zt, θt) =

(
zOLt + 1

b

¡
θt − ρtθ̄0

¢
(open-loop)

zFBt + 1
b
(θt −Etθt) (feedback).

(5)

Hereafter we model the tax-setting regulator as choosing zit; we drop the superscript i (i = OL

or i = FB) where the meaning is clear.
6Non-strategic firms solve a succession of static optimization problems. If firms made investment decisions

which affect their abatement costs, as in Karp and Zhang (2002a), firms would solve dynamic problems. This
problem requires the solution of a dynamic game.
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3 The intuition for policy ranking

The policy ranking obtained in subsequent sections depends on four considerations. The first
two, which we refer to as the flexibility effect and the stochasticity effect, form the basis for
policy ranking in Weitzman (1974)’s static model, and in all of dynamic models previously
cited. Under taxes, emissions and marginal abatement costs are positively correlated. This
flexibility increases expected cost saving, favoring taxes. However, taxes result in a stochastic
stock of pollution. Stochastic stocks increase expected damages because damages are convex
in stocks. The stochasticity effect favors quotas.
The third and fourth considerations are related to the autocorrelation parameter ρ. The

change in stocks approximately equals the sum of flows. (A positive decay rate means that
the two are not exactly the same.) Other things equal, the variation in the stock is smaller
when the flows are negatively autocorrelated – as occurs under taxes when costs are negatively
correlated. Thus, negative autocorrelation of costs reduces the characteristic (stochasticity
of stocks) that tends to make taxes unattractive. Similarly, positive autocorrelation of costs
increases the characteristic that tends to make taxes unattractive. This relation – “the stock
correlation effect” – explains why the preference for quotas is monotonically increasing in ρ
under an open-loop policy.
The stock correlation effect exists but is less important under the feedback tax policy, be-

cause the regulator is able to adjust the policy in every period to accommodate the previous
shock. In choosing the current tax he need only consider next-period stock variability.
The fourth consideration is the learning effect. A higher absolute value of ρ means that

knowledge of the previous cost provides more information about the current cost. By observ-
ing the level of lagged emissions and taxes, the tax-setting regulator learns the previous cost
variable under a feedback policy. Under the feedback quota the regulator learns the previous
cost variable only if quotas are traded.
When quotas are traded, the learning effect is the same under taxes and quotas. This symme-

try means that the only difference (related to ρ) between taxes and quotas is the stock correlation
effect. Consequently, a higher value of ρ favors (tradable) quotas under feedback policies.
When quotas are not traded, the learning effect and the stock correlation reinforce each other

for ρ < 0, so a smaller value of ρ favors taxes; when ρ > 0 the two effects tend to counteract
each other. The interplay of the two effects explains why the ranking of feedback taxes and
non-tradable feedback quotas may be non-monotonic in ρ.
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4 Open-loop policy

With an open-loop policy, the regulator chooses an infinite sequence of policy levels, {xt}∞t=0
under quotas and {zt}∞t=0 under taxes, based on the information he has at time 0. This decision
depends on the variance and covariance of the costs shocks, conditional on the information at
time 0.
Conditional on information at time 0, limt→∞ var (θt) =

γ2

1−ρ2 . If the initial conditional
variance, σ20, also equals

γ2

1−ρ2 (as in Newell and Pizer (in press)) the regulator’s open-loop
problem is stationary. For any other value of σ20, the problem is non-stationary. We consider
the general case (an arbitrary value of σ20) in order to be able to compare the policy ranking in
the open-loop and feedback settings. In the feedback setting the regulator would have the prior
σ20 =

γ2

1−ρ2 after the first period only if he begins with these beliefs and uses a non-tradable
quota. This prior is therefore not useful for comparing the open-loop and feedback settings.7

The regulator wants to maximize the expectation of the present value of the difference
between abatement cost saving and pollution damages

E0

∞X
t=0

βt {B (xt, θt)−D (St)} .

β is a constant discount factor. The expectation is taken over the sequence of random variables
{θt}∞t=0 with respect to the information available at t = 0. Define TOL(S0) as the maximized
expected value of the regulator’s open-loop (OL) program when he uses taxes and the initial
stock of pollutant is S0. Define Q(S0) as the maximized expected value of the regulator’s
programwhen he uses a quota. (Since – as we explain in Section 5 – this value is the same under
open-loop and feedback quotas without trading, we do not use a superscript on the function
Q(S).)
The expectation of the trajectories of the flow and the stock of pollution are the same for

every scenario that we consider: open-loop and feedback, taxes and quotas, with and without
quota trading. This fact is a consequence of the Principle of Certainty Equivalence of the
linear-quadratic model with additive uncertainty.8 Consequently, the policy ranking depends
on the second moment of the random variable.

7An earlier version of this paper explains a second reason for considering general priors. The variance of costs
changes in a predictable manner, raising the possibility that the choice of policy instruments (as distinct from the
choice of policy levels) might be time-inconsistent. Our earlier paper shows that this type of time-inconsistency
does not occur.

8This Principle states that in the linear-quadratic control problem with additive random variables, the optimal
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The payoff difference under taxes and quotas, given the open-loop policy, is

ΨOL
0 ≡ TOL (S0)−Q (S0) =

1
2b(1−ρ2β)

³
σ20 +

γ2β
1−β
´n
1− g

b
β

1−β∆2
1+ρβ∆
1−ρβ∆

o
.

(6)

(Details of this and other derivations, discussions of tangential issues, and some technical
proofs, are contained in an appendix that is available upon request.) Since the term outside
the curly brackets is always positive, the policy ranking is independent of the regulator’s priors
(θ̄0, σ20); that is, Newell and Pizer (in press)’s criterion for ranking policies is correct for all
priors. We restate this result as:

Remark 1 The preference for quotas under the open-loop policy is monotonically increasing
in g, β,∆, ρ, and monotonically decreasing in b.

Since the possibility of learning about cost shocks depends on the value of ρ, we emphasize
the role of this parameter.

Proposition 1 Under an open-loop policy, the preference for quotas is monotonically increas-
ing in ρ. Taxes dominates quotas iff

ρ ≤ 1− β∆2 − β g
b

β∆
¡
1− β∆2 + β g

b

¢ .

5 Feedback policy without quota trading

The assumption that the optimal quota is always binding means that the quota-setting regulator
learns nothing about the previous cost shock and also means that the evolution of the stock
of pollution is nonstochastic. Since no new information becomes available, the open-loop and
feedback quota policies (and payoffs) are identical when quotas are not traded. When the
regulator uses taxes, the evolution of St is stochastic. By observing the firms’ response to
the tax, the regulator learns the value of the random cost. With taxes the regulator obtains

control rule does not depend on second moments of the random variable. Hoel and Karp (2001) examine the case
where the slope rather than the intercept of firms’ marginal abatement cost is uncertain. In that case uncertainty
is multiplicative, and the Principle of Certainty Equivalance does not hold.
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information over time, so a feedback tax policy results in a higher payoff than does an open-
loop policy.
We compare the payoffs under the two policies by comparing their respective value func-

tions. With correlated costs, there are two state variables, the stock of pollution St and the
current expected value of the cost variable yt ≡ Etθt. When necessary to avoid confusion, we
use superscripts to distinguish state variables under tax or quota policies, e.g. ytaxt and yquotat .
The value functions under both taxes and quotas are quadratic in the state, i.e. they both

have the form

V i
0, t + (v1 v2)| {z }

V1

Ã
St

yt

!
+
1

2
(St yt)

Ã
V11 V12

V12 V22

!
| {z }

V2

Ã
St

yt

!
. (7)

The first term of the value function V i
0,t, i = tax, quota, depends on t because Vart (θt) changes

exogenously in the first period.
The appendix contains explicit expressions for the parameters of the value functions. The

matrices V1 and V2 are the same under taxes and quotas. For a given state, the optimal control,
z∗t under taxes and x∗t under quotas are equal and are given by

a (1− β∆)− βc

(b− βV11)− bβ∆
+

1− ρβ∆

b (1− ρβ∆)− βV11
yt +

β∆V11
b− βV11

St, (8)

with

V11 =
− (bβ∆2 + βg − b)−

q
(bβ∆2 + βg − b)2 + 4βgb

2β
< 0. (9)

The function V11 is independent of ρ; the correlation parameter affects only the slope of the
control rule with respect to the state yt. Equation (8) implies that an increase in current expected
costs, yt, increases the current (expected) flow of pollution, as in the static model.
The values of z∗t and x∗t differ over time because the actual trajectories of the state vector

differ under taxes and quotas. However, as we remarked above, the first moments of pollution
flows and stocks are the same in all of our scenarios, because of the Principle of Certainty
Equivalence. Taking expectations at time 0, we have E0ytaxt = E0 (ρ θt−1) = ρtθ̄0 = yquotat .
This relation and equation (8) imply

E0z
∗
t = x∗t . (10)

The expected values of the programs are different because of the second moments of the
cost shocks. It makes sense to compare the values of these programs only under the same
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information set, e.g. at time t = 0. The same comparison holds at an arbitrary time, provided
that the regulator evaluates the two policy instruments using the same information set.
In the initial period, ytax0 = yquota0 = θ̄0. The payoff difference under taxes and quotas, given

the feedback policy, is due to the difference in the term V i
0,t (evaluated at t = 0) in equation (7)

:
ΨFB
0 ≡ TFB

¡
S0, θ̄0

¢−Q
¡
S0, θ̄0

¢
=

1
2b(1−ρ2β)

³
σ20 +

γ2β
1−β
´ (1−β

b
V11)

½
(1−ρβ∆)2−β2

b2
V 211(1−ρ2β)

¾
(1−ρβ∆−β

b
V11)

2 .
(11)

The ranking of feedback tax and quota policies depends only on the sign of the term in curly
brackets. Hoel and Karp (2002) show that for ρ = 0 and σ20 = γ2, the parameters b, g, β and
∆ have qualitatively the same effect on the policy ranking under both open-loop and feedback
policies. The comparative statics of the ranking with respect to b, g, and ∆ are unchanged
when ρ 6= 0:

Remark 2 The preference for quotas under the feedback policy is monotonically increasing in
g, ∆, and monotonically decreasing in b.

However, the effect of ρ and β is different in the open-loop and feedback setting. Equation
(11) implies

Proposition 2 Feedback taxes dominate non-tradable feedback quotas iff

f(ρ) ≡ ρ2β2
µ
∆2 +

β

b2
V 2
11

¶
− 2ρβ∆+ 1− β2

b2
V 2
11 ≥ 0. (12)

The function f (ρ) is convex in ρ and for some parameter values is nonmonotonic in ρ over
ρ ∈ (−1, 1). For such parameter values, the preference for quotas is non-monotonic in ρ.

The function f (ρ) reaches a minimum at ρ ≥ 0; the minimum occurs at ρ = 0 if and
only if ∆ = 0, i.e. for a flow externality. We define ρ1 and ρ2 as the smaller and the larger
roots of f (ρ) = 0, provided that these roots are real. If both of these roots are in the interval
(−1, 1), then for low values of ρ an increase in ρmakes quotas more attractive, and the opposite
holds for high values of ρ. The following are sufficient conditions for either taxes or quotas to
dominate:

Corollary 1 A sufficient condition for taxes to dominate quotas is

1− β∆2

β
>

g

b
.

10



A sufficient condition for quotas to dominate taxes is

ρ1 < −1 and ρ2 > 1.

Under an open-loop policy, a larger value of β favors the use of quotas, because a larger β
increases the importance of the future stock variability arising from the current flow variability.
Under feedback policies, the comparative statics of β is ambiguous. We have:

Proposition 3 Under a feedback policy, a higher discount factor favors quotas (i.e., it de-
creases ΨFB

0 ) iff

− ¡∆2 + g
b

¢
β
b
V11 +

g
bq¡

β∆2 + β g
b
− 1¢2 + 4β g

b

≥ ρ (ρ2β∆− 2∆+ ρ)

2 (1− ρ2β)
3
2

. (13)

A sufficient condition for inequality (13) is β ≤ 2∆−ρ
ρ2∆

and ρ ≥ 0. These two inequalities are
satisfied if 0 ≤ ρ ≤ ∆.

A higher discount factor favors the use of quotas if the gain from the informational advan-
tage under taxes is not great enough to offset the higher expected damage from future stock
variability. The sufficient condition 0 ≤ ρ ≤ ∆ means that equation (13) is very likely to hold
for stock pollutants that decay slowly. For example, when a period is one year a half-life of
15 years corresponds to ∆ = 0.9548; greenhouse gasses have a half-life of over 80 years, for
∆ = 0.99 (see Section 8).
In the limiting case where ∆ = 0 the externality is a flow pollutant. Define g̃ = βg, the

present value of the slope of marginal damages and set σ20 = γ, the variance of the innovation
to costs. The difference between payoffs under taxes and quotas for a flow pollutant is

ΨFB
0 =

σ20
2b (1− β)

"
βρ2

(1− βρ2)
¡
1 + g̃

b

¢ +µ1− g̃

b

¶#
.

This expression shows how the learning that is made possible by a nonzero value of ρ favors
the use of taxes for the case of a flow pollutant. When ρ = 0 we obtain Weitzman (1974)’s
criterion.
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6 Ranking with quota trading

Previous sections assume that all firms are identical, so firms have no incentive to trade emis-
sions permits. When firms are heterogeneous, emissions trade increases efficiency and also
reveals industry-wide costs with a one-period lag. The informational advantage of taxes disap-
pears in this case.
Suppose there are n firms, where n is large. Let xi,t be firm i’s emissions at time t. The

benefit for firm i of emitting xit is

Bi (xi,t, θt, �i,t) =
f

n
+ (a+ θt + �i,t)xi,t − bn

2
x2i,t, (14)

where �i,t is the firm-specific deviation from the industry-wide cost θt. These firm-specific
deviations are i.i.d. over time with mean 0 and constant variance σ2� . They are uncorrelated
with each other and are independent of the industry-wide average θt, which follows the AR(1)
process defined in equation (3).
We use pt (ptaxt or pquotat ) to denote either the tax level or the quota price from trading. The

first order condition to firm i’s problem gives its emission response as

x∗i,t =
a− pt
bn

+
θt + �i,t
bn

. (15)

Summing over x∗i,t gives the aggregate industry level emission

xt =
nX
i=1

x∗i,t =
1

b

µ
(a− pt) + θt +

P
�it
n

¶
. (16)

The last term in equation (16) is iid
³
0, σ

2
�

n

´
; since n is large, we replace σ2�

n
with 0. Thus, once

the regulator knows pt and xt, he knows θt. Under quotas the regulator chooses xt, and pt is
endogenous; under taxes the regulator chooses pt, and xt is endogenous.
Quotas. Under quotas, in each period the aggregate emissions, and consequently the pol-

lutant stock, are deterministic. Equation (16) implies the equilibrium quota price pquotat =

a + θt − bxt. By observing pquotat , the regulator learns θt. Substituting this price into equa-
tion (15) gives firm i’s emission level as xt

n
+ �it

bn
. Substituting this expression into equation

(14), summing over i, and taking expectations gives the aggregate expected cost saving under
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quotas9:

Et

nX
i=1

Bi

¡
xquotai,t , θt, �i,t

¢
= f + (a+Etθt)xt − b

2
x2t +

1

2b
σ2� . (17)

Taxes. A tax policy results in a stochastic level of aggregate emissions. Choosing a tax is
equivalent to choosing the expected aggregate emissions zt ≡ Etxt =

1
b
(a− ptaxt )+1

b
Etθt. The

actual level of aggregate emissions is xt = zt +
1
b
(θt −Etθt) . By observing xt the regulator

learns θt. Firm i’s emission level is 1
n
zt +

1
bn
(θt −Etθt) +

1
bn
�i,t. Substituting this expression

into equation (14), summing over i, and taking expectations gives the aggregate expected cost
saving under taxes:

Et

nX
i=1

Bi

¡
xtaxi,t , θt, �i,t

¢
= f + (a+Etθt) zt − b

2
z
2

t
+
1

2b
σ2� +

1

2b
V art (θt) . (18)

Taxes vs. Quotas. The firms’ individual deviations have the same effect on the aggregate
expected cost saving under taxes and quotas. These firm-specific deviations do not affect the
policy ranking.
As before, the regulator maximizes the expectation of the difference between firms’ aggre-

gate cost saving from polluting and environmental damage:

E0

∞X
t=0

βt

(
nX
i=1

Bi (xi,t, θt, �i,t)−D (St)

)
.

Under quotas, the control variable is xt and the expected aggregate benefit is (17). Under
taxes, the control variable is zt and the expected aggregate benefit is (18). The expectation is
taken over sequences of random variables {θt}∞t=0 and {�i,t}∞t=0 with respect to the information
available at the current time, t = 0.
With the open-loop policy, the regulator decides his future policy trajectory at the initial

period t = 0 and commits to it. There is no learning. All of the conclusions in Section 4 also
hold when quotas are traded. The payoff difference under taxes and quotas, ΨOL+Trade

0 , is the
same as in equation (6).
With the feedback policy, the regulator adjusts the instrument level as he learns about cost

shocks. Under both taxes and quotas, the regulator’s posterior is

θt ∼
¡
ρθt−1, γ2

¢
, ∀t ≥ 1.

9If firms are heterogeneous and each firm receives the same allocation of quotas, but there is no trade in quotas,
the expected single period benefit of emissions is given by f +(a+E0θt)xt− b

2x
2
t . The difference between this

expression with the right side of equation (17) identifies the informational advantage of trade (the fact that with
trade we have Etθt rather than E0θt) and the allocative efficiency (the presence of the term 1

2bσ
2
� ).
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The corresponding law of motion for yt ≡ Etθt under both quotas and taxes is yt+1 = ρyt +

ρµt. (Without quota trading, yt+1 = ρyt; see the appendix.) This difference identifies the
informational advantage of tradeable quotas (relative to non-traded quotas).
The optimal control, zt under taxes and xt under quotas, obeys the linear control rule (8).

The regulator has the same amount of information about costs under taxes and quotas, although
in general the realization of S is different under the two policies. Consequently, the optimal
controls are identical, for a given value of S:

z∗t = x∗t . (19)

Note the qualitative difference between equations (10) (E0z∗t = x∗t ) and (19) (z∗t = x∗t ). By
observing the price of emissions permits, the regulator has the same information about costs
under taxes and quotas in every period, not just at time t = 0.
Although – as previously noted – the first moment of stocks and flows are the same under

taxes and quotas, their second moments differ, leading to different expected payoffs:

ΨFB+Trade
0 = JT

0

¡
S0, θ̄0

¢− JQ
0

¡
S0, θ̄0

¢
=

1
2b

³
σ20 +

γ2β
1−β
´
(1−β

b
V11)(1−ρβ∆+β

b
V11)

1−ρβ∆−β
b
V11

.
(20)

V11 < 0 is given in equation (9).
The payoff under taxes is higher than under quotas if and only if

1− ρβ∆+
β

b
V11 ≥ 0.

This inequality implies

Remark 3 With efficient quota trading, changes in parameters b, g, β, ∆, and ρ have qualita-
tively the same effect on the policy ranking under open-loop and feedback policies.

The qualitative differences in policy ranking between open-loop and feedback policies depend
only on the informational advantage of taxes under feedback policies. Emissions trading elim-
inates this informational advantage. Again, we emphasize the effect of cost autocorrelation:

Proposition 4 With quota trading, more positively autocorrelated cost shocks (higher ρ) favors
the use of quotas under both open-loop and feedback strategies. Feedback taxes dominate
tradeable feedback quotas iff

ρ ≤ 1

β∆

µ
1 +

β

b
V11

¶
.
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7 Sensitivity of the ranking

This section identifies the region of parameter space where the open-loop and feedback assump-
tions lead to different policy rankings We define the critical ratio of g

b
as the value of the ratio

that makes the regulator indifferent between taxes and quotas. The critical ratio is obtained by
setting the differences in payoffs equal to 0 and solving for g

b
. The preference for quotas is

monotonically increasing in g
b
under both open-loop and feedback policies, so the quota is the

right instrument if and only if the actual value of the ratio of slopes exceeds the critical value.
The critical values in the open-loop and feedback cases are respectively³g

b

´∗OL
=
³g
b

´∗OL+Trade
=

µ
1− ρβ∆

1 + ρβ∆

¶µ
1

β
−∆2

¶
,

³g
b

´∗FB
=
(1− ρβ∆)

n
(1− ρβ∆) + (1− β∆2)

p
1− ρ2β

o
β
n
(1− ρ2β) + (1− ρβ∆)

p
1− ρ2β

o ,

³g
b

´∗FB+Trade
= (1− ρβ∆)

µ
1

β
− ∆2

2− ρβ∆

¶
.

In the static model, the critical ratio of g
b
is 1. When both ρ = 0 and ∆ = 0, the critical

ratio under both open-loop and feedback policies is β−1 rather than 1, since (by assumption)
the current flow of pollution causes damages in the next period. The following Propositions
describe the relation between the critical ratio of g

b
and ρ.

Proposition 5 The critical ratio of g
b
is monotonically decreasing in ρ under both an open-loop

policy and a feedback policy with tradable quotas. Under a feedback policy without tradable
quotas, the critical ratio of g

b
is nonmonotonic in ρ:

∂
¡
g
b

¢∗FB
∂ρ


< 0, if ρ < ∆

= 0, if ρ = ∆

> 0, if ρ > ∆.

Proposition 6 Without efficient quota trading, the critical ratio of g
b
under feedback policies is

always greater than or equal to the open-loop level:³g
b

´∗FB
≥
³g
b

´∗OL
, ∀ ρ. (21)
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Figure 1:

With efficient quota trading, the critical ratio of g
b
under feedback policies is greater than the

open-loop level only for a subset of parameters:³g
b

´∗FB+Trade
≥
³g
b

´∗OL+Trade
, iff ρ ≥ ρ̃; (22)

where ρ̃ is a function (of only β and∆) that satisfies −1 ≤ ρ̃ < 0.

The equality in (21) holds only if ρ = ∆ = 0, i.e. with a flow externality and uncorrelated
cost shocks. The function ρ̃ (β,∆) used in equation (22) equals −1 only if β = ∆ = 1, i.e.
where both discount rate and stock decay rate are zero. The proposition implies

Corollary 2 Taxes will necessarily be the right instrument choice in the feedback setting if
taxes dominate quotas in the open-loop setting, provided that

• there is no quota trading; or

• there is quota trading, and cost shocks are non-negatively autocorrelated.

With negatively correlated shocks and quota trading, there exist parameter values such that it
is optimal to choose taxes under the open-loop policy but quotas under the feedback policy –
or vice versa.

Figure 1 plots the critical ratios of g
b
against ρ, holding β = 0.9512 and∆ = 0.9548. Since

a period is one year, these values imply a continuous discount rate of 0.05 and a half-life of 15
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years. The left panel shows the case without quota trading, and the right panel shows the case
with quota trading. In both panels, the solid curve graphs the critical ratio under the feedback
policy and the dotted curve graphs the ratio under the open-loop policy. The tax is better than
the quota if and only if the actual ratio of g

b
lies below the critical ratio. The left panel of Figure

optimal instrument choice
without quota trading with quota trading

region open-loop feedback region open-loop feedback
A tax tax A tax tax
B quota tax B quota tax
C quota quota C quota quota

D tax quota

Table 1: Feedback vs. open-loop optimal instrument choice.

1 illustrates equation (21) and the right panel illustrates equation (22). Table 1 summarizes the
different ranking possibilities.

8 An Application to Global Warming

There is little agreement about the likely magnitude of abatement costs and environmental
damages related to greenhouse gasses. Using a linear-quadratic formulation, we can construct
a simple model that incorporates – in a transparent manner – a particular belief about these
magnitudes. If we had a good knowledge of the physics and economics of global warming,
it would be worth constructing complex models. At this stage we know little more than that
there is a probable connection between greenhouse gasses and global warming, and that the
economic consequences of this relation may be important. The extent of the uncertainty and
disagreement about these magnitudes makes the simplicity of the model very important. It
is easy to see how policy conclusions depend on beliefs about the unknown parameters. For
example, we can determine whether a particular conclusion would change if we increase our
estimate of environmental damages by a factor of 10 or 100. Of course, since these experiments
maintain the assumption of the linear-quadratic structure, they tell us nothing about whether the
policy conclusions are sensitive to functional form.

17



A number of papers use the linear-quadratic structure, together with existing estimates of
costs and benefits of greenhouse gas abatement, to examine particular policy issues. We briefly
review these papers. Under the assumption of zero autocorrelation of cost shocks, Hoel and
Karp (2002) show that taxes dominate quotas even if environmental damages associated with
greenhouse gasses are much more severe than is commonly believed. This conclusion holds
under open-loop and feedback policies, with a period of commitment of anywhere from one
to ten years. Newell and Pizer (in press) find that taxes dominate quotas under open loop
policies with positive autocorrelation. Hoel and Karp (2001) compare feedback taxes and
quotas with multiplicative (rather than additive) and serially uncorrelated cost shocks. The
multiplicative structure means that the Principle of Certainty Equivalence does not hold, and
thus raises issues that are not present in the previous papers. Subsequent papers examine more
complicated (feedback) models, where the regulator learns about environmental damages (Karp
and Zhang 2002b) or where there is endogenous investment that reduces abatement costs (Karp
and Zhang 2002a). Those papers review previous integrated assessment models that have been
used to study greenhouse gas abatement.
We use a time period of one year. Many economic studies (Kolstad 1996), (Nordhaus 1994)

use an annual decay rate of 0.0083 ( a half-life of 83 years) for atmospheric concentrations of
the primary greenhouse gas, CO2, implying ∆ = 0.9917. We set β = 0.9704 (a continuous
discount rate of 0.03). Using these values, Table 2 shows the critical values of the ratio g

b
for five

values of ρ, under open-loop and feedback policies with either homogenous or heterogenous
firms.10

This table shows that for | ρ |≈ 1 the ranking depends primarily on whether taxes have an
informational advantage over quotas – as they do only if firms are homogenous so that there is
no trade in quotas. The critical ratios under open-loop and under feedback with heterogenous
firms and tradable quotas are similar; these ratios are quite different than the critical ratio under
feedback without tradable quotas. That is, when costs are highly (positively or negatively)
autocorrelated, the ranking of policies is not particularly sensitive to the open-loop versus feed-
back distinction provided that quotas are traded; if quotas are not traded, this distinction is
important for ranking policies. For moderate values of ρ (i.e. | ρ |≤ .5), the ranking depends
10Recall that in the absence of trade there is no allocative inefficiency because (by assumption) firms are ho-

mogenous; the quota is always efficient. The reader interested in comparing taxes and inefficient quotas can carry
out the calculations using the single period benefit function described in footnote 9. This calculation requires an
additional parameter that measures the extent of firm heterogeneity, given by σ2� .
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open-loop feedback & homogenous firms feedback & heterogenous firms
(no trade) (with trade)

ρ = −0.99 1.9427 8.2154 1.3619
ρ = −0.5 0.1343 1.1344 0.9393
ρ = 0 0.0470 0.5388 0.5388
ρ = 0.5 0.0165 0.2470 0.1987
ρ = 0.99 0.0011 0.0471 0.0043

Table 2: The critical ratio g/b

primarily on whether the regulator uses a feedback or an open-loop policy; allowing trade in
quotas causes a relatively small change in the critical ratio. That is, when costs are not highly
autocorrelated, the open-loop versus feedback distinction is important in ranking the policies;
current information on cost shocks is not particularly important, so the possible informational
advantage of taxes
has little effect on the ranking.
The survey in Hoel and Karp (2002) suggests a point estimate of g

b
= 1. 406 2×10−5 (based

on the estimate that doubling carbon stocks causes a 5% reduction in Gross World Product
(GWP) and that a 50% reduction in emissions causes a 1% reduction in GWP).11 The estimated
value of g

b
is linearly related to the estimate of environmental damages. (A ten-fold increase in

the estimated reduction in GWP associated with a doubling stocks leads to a ten-fold increase
in the estimate of g

b
.) This evidence suggests that in the case of greenhouse gasses, the serial

correlation of cost shocks does not overturn the preference for taxes. This conclusion does not
depend on whether the regulator uses feedback policies and learns about the cost shock.

9 Summary

This paper provides a criteria for ranking taxes and quotas for the control of a stock pollutant in
a linear-quadratic model. We extended previous results by including serially correlated abate-
11We cannot assess the plausibility of these estimates. A reader who thinks that the damage estimate understates

actual damages by, for example, a factor of 10, should magnify the point estimate of g
b by a factor of 10. The

lack of “reliable” estimates of costs and damages is, as we have emphasized, one of the main attractions of using
a simple linear-quadratic model.
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ment costs under either open-loop or feedback policies, with or without trading in emissions
quotas.
Under a tax policy, or under a quota policy with efficient quota trading among polluting

firms, the regulator learns about the industry’s abatement cost schedule by observing the ag-
gregate emission response. The feedback strategy, unlike the open-loop strategy, enables the
regulator to use new information to adjust his policy level, leading to higher welfare.
With feedback policies, the ranking of taxes and non-traded quotas may be nonmonotonic

with respect to both the autocorrelation parameter and the discount factor. In contrast, the
effects of the other parameters (the relative slopes of marginal costs and damages, and the
decay rate) on the ranking are monotonic and are qualitatively the same under the open-loop
and feedback assumptions. A large absolute value of autocorrelation increases the potential for
learning, thus increasing the advantage of feedback taxes relative to both the non-traded quota
and to open-loop taxes. When quota trading occurs, the feedback tax loses its informational
advantage over feedback quotas, and more autocorrelated cost shocks favor the use of quotas.
Without quota trading, taxes will certainly be the right instrument choice in the feedback

setting if taxes dominate quotas in the open-loop setting. However, this conclusion does not
hold if firms can trade quotas. With tradeable permits, endogenous learning occurs under
quotas. In this case, a regulator who is required to use an open-loop policy might want to
use one instrument, where a regulator who is able to use a feedback policy would use the
other instrument. Using estimates of greenhouse gas-related damages and abatement costs, we
provide evidence that taxes dominate quotas for the control of greenhouse gasses regardless of
the opportunities for learning.
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A Appendix

A.1 General Solution for a Linear Quadratic Dynamic Programming Problem

We set up the dynamic programming equations in general matrix notation as:

Jt (Xt) = Max
Yt

½
U0 +

1

2
X 0
tQXt + Y 0tWXt +M 0Xt + U 01Yt −

1

2
Y 0tU2Yt

+U3V art (θt) + βEtJt+1 (Xt+1)} , (23)

s.t. Xt+1 = AXt +BYt + Cµt +D.

The subscript t in Jt denotes the change in V art (θt): V art (θt) = σ20 when t = 0; and
V art (θt) = σ2µ when t > 0.

Xt is a n×1 vector of state variables; Yt is am×1 vector of control variables; µt is a white
noise. Dimensions for those coefficient matrices are: Q is n× n symmetric;W ism× n;M is
n× 1; U0 is 1× 1; U1 ism× 1; U2 ism×m; U3 is 1× 1; A is n× n; B is n×m; C is n× 1;
D is n× 1.
Given the quadratic value function Jt (Xt) = V0,t+V

0
1Xt+

1
2X

0
tV2Xt , the first order condition

with respect to Yt is

WXt + U1 − U2Yt + βEt

£
B0V1 +B0V2 (AXt +BYt +Cµt +D)

¤
= 0.

The optimal feedback control rule is

Y ∗t =
¡
U2 − βB0V2B

¢−1 £
U1 + βB0 (V1 + V2D) +

¡
W + βB0V2A

¢
Xt

¤
, (24)

a linear function of state variables. Substituting Y ∗t back into the dynamic programming equa-
tion and equating coefficients gives the algebraic Riccati matrix equation for V2:

V2 = Q+ βA0V2A+
¡
W 0 + βA0V2B

¢ ¡
U2 − βB0V2B

¢−1 ¡
W + βB0V2A

¢
. (25)

V2 is a n× n symmetric negative-semidefinite matrix. After obtaining V2, we can solve for the
n× 1 coefficient matrix V1:

V1 =
h
I − βA0 − β (W 0 + βA0V2B) (U2 − βB0V2B)

−1
B0
i−1

h
M + βA0V2D + (W 0 + βA0V2B) (U2 − βB0V2B)

−1
(U1 + βB0V2D)

i
, (26)

and the constant term V0,t

V0,t = ηt

µ
U3 +

β

2
C0V2C

¶
+

1

1− β

½
U0 + βV 0

1D +
β

2
D0V2D

+
1

2
[U1 +B0 (V1 + V2D)]

0
(U2 − βB0V2B)

−1
[U1 +B0 (V1 + V2D)]

¾
(27)
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where ηt depends on the second moment of cost shocks: ηt = σ20 +
β
1−βσ

2
µ when t = 0, and

ηt =
1
1−βσ

2
µ when t > 0. The first moment of the cost shock affects both the value function and

the optimal control, but the second moment affects only the constant term of the value function.

A.2 Feedback Policy

First we write the law of motion for yt ≡ Et (θt). For the feedback quota policy, no new
information becomes available over time, and

yt+1 = Et+1θt+1 = E0 (Et+1θt+1) = E0θt+1 = ρt+1θ̄0 = ρyt.

Under the feedback tax policy, the regulator infers θt by observing the firm’s emissions, and

yt+1 = Et+1θt+1 = Et+1

¡
ρθt + µt+1

¢
= ρθt =

(
ρθ0 = ρy0 + ρµ0, t = 0

ρ (ρθt−1 + µt) = ρyt + ρµt, t ≥ 1
(28)

with µ0 ≡ θ0 − θ̄0. The distribution of cost shocks in the initial and subsequent periods have
different variances:

Vart (θt) =

(
σ20, t = 0

Vart (µt) = γ2, t ≥ 1. (29)

Under both feedback taxes and quotas, the equation of motion for the state variable yt ≡ Etθt

is independent of the regulator’s actions. However, there is a qualitative difference in yt under
taxes and quotas because of endogenous learning.
Under feedback tax policies, using equation (5), the expected benefit in period t, is

Et {B [x∗t (zt, θt) , θt]} = f + (a+ Etθt) zt − b

2
z2t +

1

2b
V art (θt) .

The regulator’s value function under taxes, TFB (St, yt), solves the dynamic programming
equation

TFB (St, yt) = Max
zt

©
EtB [x

∗
t (zt, θt) , θt]−D (St) + βEtT

FB (St+1, yt+1)
ª

= Max
zt

½
f + (a+ yt) zt − b

2
z2t +

1

2b
V art (θt)

−
³
cSt +

g

2
S2t

´
+ βEtT

FB (St+1, yt+1)
o

s.t. St+1 = ∆St + zt +
1

b
µt

yt+1 = ρyt + ρµt.
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Under quotas, the regulator’s value function, Q (St, yt), solves the dynamic programming
equation

Q (St, yt) = Max
xt
{EtB (xt, θt)−D (St) + βEtQ (St+1, yt+1)}

= Max
xt

½
f + (a+ yt) xt − b

2
x2t −

³
cSt +

g

2
S2t

´
+ βQ (St+1, yt+1)

¾
s.t. St+1 = ∆St + xt

yt+1 = ρyt.

Solving the Dynamic Programming Equations. Using a two-dimensional state vectorXt = (St, yt)
0,

the dynamic programming equations (DPE) can be written in general matrix notations as in the previous
subsection. The control variable is zt under taxes, and xt under quotas. Those coefficients are

Q =

Ã
−g 0

0 0

!
, W = (0 1) , M =

Ã
−c
0

!
,

A =

Ã
∆ 0

0 ρ

!
, B =

Ã
1

0

!
, C =

(
Ctax =

¡
1
b , ρ

¢0 (tax)
Cquota = (0, 0)

0 (quota)
, D =

Ã
0

0

!
,

U0 = f, U1 = a, U2 = b, U3 =

(
1
2b (tax)
0 (quota)

.

We see the DPE for taxes and quotas only differ in U3 and C. Thus at any time with the same state
vectorXt, the payoff difference between feedback taxes and quotas is

TFD (Xt)−Q (Xt) = V tax
0,t − V quota

0 = ηt

µ
U3 +

β

2
C 0taxV2Ctax

¶

=


1
2b

³
σ20 +

γ2β
1−β

´
(1 + bβC 0taxV2Ctax) , t = 0;

γ2

2b(1−β) (1 + bβC 0taxV2Ctax) , t ≥ 1.

With Ctax =
¡
1
b , ρ

¢0, expanding C 0taxV2Ctax leads to

TFD (X0)−Q (X0) =
1

2b

µ
σ20 +

γ2β

1− β

¶µ
1 +

β

b
V11 + 2βρV12 + βbρ2V22

¶
. (30)

where V11, V12, V22 are elements of V2 which can be solved for from equation (25). Substituting

Q, A, B, W into (25) and equating elements of matrices at different side of the “=” sign, we get the
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following system of equations for V11, V12, V22.

V11 = −g + β∆2V11 + (b− βV11)
−1 β2∆2V 211; (31)

V12 = ρβ∆V12 + (b− βV11)
−1 β∆ (1 + βρV12)V11; (32)

V22 = ρ2βV22 + (b− βV11)
−1 (1 + βρV12)

2 . (33)

Given that the value function is quadratic in St and bounded above, V11 < 0. V22 < 0 is not required
since the equation of motion for yt is not affected by the regulator’s actions. Obtaining the negative root
of equation (31) and then solving the linear equations (32) and (33) recursively lead to the expression

for V11, V12, and V22:

V11 =
− ¡bβ∆2 + βg − b

¢−q(bβ∆2 + βg − b)2 + 4βgb

2β
< 0;

V12 =
β∆V11

b (1− ρβ∆)− βV11
< 0;

V22 =

³
1− β

b V11

´
(1− ρβ∆)2

b (1− ρ2β)
³
1− ρβ∆− β

b V11

´2 > 0.

Similarly we obtain elements (v1, v2) of matrix V1 from equation (26) by substituting in V2, M, A, B, W :

v1 =
−c+ (b− βV11)

−1 aβ∆V11
1− β∆− (b− βV11)

−1 β2∆V11
< 0;

v2 =
1

1− ρβ

a (1− β∆)− βc

(b− βV11)− bβ∆

(1− ρβ∆) (b− βV11)

b− βV11 − bρβ∆
.

After obtaining V2 and V1, we can get the constant term V0,t. The constant term under quotas is

V quota
0 =

1

1− β

½
f +

1

2

[a (1− β∆)− βc]2

(b− βV11)− 2bβ∆+ (b− βV11)
−1 b2β2∆2

¾
.

We obtain the optimal control rule (equation (8) in the text) by substituting matrices V1, V2, A, B, W

into equation (24); and the payoff difference (equation (11) in the text) by substituting V11, V12, V22

into equation (30).

The procedure for solving the DPE with quota trading is similar. The only necessary change for the

coefficient matrices is to replace Cquota by Cq+Trade = (0, ρ)
0.

Proof. (Remark 2) Feedback emission taxes are preferred to quotas if and only if

(1− ρβ∆)2 − β2

b2
V 211

¡
1− ρ2β

¢ ≥ 0. (34)

4



Given V11 < 0, equation (34) is equivalent to

V11
b
≥ − 1− ρβ∆

β
p
1− ρ2β

⇐⇒
¡
β∆2 + β g

b − 1
¢
+
q¡

β∆2 + β g
b − 1

¢2
+ 4β g

b

2
≤ 1− ρβ∆p

1− ρ2β
. (35)

It is easy to see that the left-hand-side of the above inequality is monotonically increasing in g,∆, β, and

monotonically decreasing in b. The right-hand-side of the above inequality is independent of g and b,

and monotonically decreasing in∆. Hence, higher g and∆ and lower b all make quotas more attractive,

relative to taxes.
Proof. (Proposition 2) Equation (34) can be transformed to

f (ρ) ≡ ρ2β2
µ
∆2 +

β

b2
V 211

¶
− 2ρβ∆+ 1− β2

b2
V 211 ≥ 0. (36)

f (ρ) is a convex quadratic function in ρ, and symmetrical with respect to

ρ0 =
∆

β
³
∆2 + β

b2
V 211

´ ≥ 0.

Proof. (Corollary 1) The inequality in (36) will always hold if

(2β∆)2 − 4β2
µ
∆2 +

β

b2
V 211

¶µ
1− β2

b2
V 211

¶
< 0

⇐⇒ 4β3
V 211
b2

µ
−1 + β∆2 + β2

V 211
b2

¶
< 0

⇐⇒ 4β3
V 211
b2

µ
1− β

b
V11

¶³
β∆2 + β

g

b
− 1
´

< 0

⇐⇒ 1− β∆2

β
>

g

b
.

Otherwise, there will be two real roots

ρ1,2 =

∆±
r

β
b2V

2
11

³
1− β

b V11

´ ¡
β∆2 + β g

b − 1
¢

β
³
∆2 + β

b2
V 211

´
satisfying the equality, and the turning point

0 ≤ ρ0 =
∆

β
³
∆2 + β

b2V
2
11

´ ≤ ∆.
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Proof. (Proposition 3) The effect of β on the right hand side of (35) is given by

∂

µ
1−ρβ∆√
1−ρ2β

¶
∂β

=
ρ

2

ρ2β∆− 2∆+ ρ

(1− ρ2β)
3
2

which is non-positive if β ≤ 2∆−ρ
ρ2∆

when ρ ≥ 0 or β > 2∆−ρ
ρ2∆

when ρ < 0. Otherwise, higher β will

increase both sides of the inequality (35) and make the effect of higher discount factor on the ranking
more complicated. We obtain the left hand side of equation (13) in the text by taking partial derivative
of the left hand side of equation (35) with respect to β. The condition β ≤ 2∆−ρ

ρ2∆
is satisfied if

0 ≤ ρ ≤ ∆ =⇒ 2∆ ≥ 2ρ ≥ ρ+ ρ2∆ =⇒ 2∆− ρ

ρ2∆
≥ 1 ≥ β.

Proof. (Remark 3) With quota trading, feedback taxes are preferred to quotas if and only if

1− ρβ∆+
β

b
V11 ≥ 0 (37)

⇐⇒ 1− ρβ∆−
¡
β∆2 + β g

b − 1
¢
+
q¡

β∆2 + β g
b − 1

¢2
+ 4β g

b

2
≥ 0.

It is easy to see that the left-hand-side of the above inequality is monotonically decreasing in g, ∆, β,

and monotonically increasing in b. Hence, higher g, β and∆ and lower b all make quotas more attractive

relative to taxes, qualitatively the same as under open-loop policies.

Proof. (Proposition 4) It is straightforward from equation (37).

A.3 Comparison of Ranking

Proof. (Proposition 5)
∂
¡g
b

¢∗OL
∂ρ

=
−2β∆

(1 + ρβ∆)2

µ
1

β
−∆2

¶
< 0.

∂
¡g
b

¢∗FB
∂ρ

=
2 (ρ−∆)
(1− ρ2β)

3
2

q¡
β∆2 + β g

b − 1
¢2
+ 4β g

b¡
β∆2 + β g

b + 1
¢
+
q¡

β∆2 + β g
b − 1

¢2
+ 4β g

b

with the sign depending on the sign of ρ−∆.

∂
¡g
b

¢∗FB+Trade
∂ρ

=
∆
h
β∆− (2− ρβ∆)2

i
(2− ρβ∆)2

< 0

since in general 0 < β∆ < 1 < 2− ρβ∆.
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Proof. (Proposition 6)³g
b

´∗FB ≥ ³g
b

´∗OL
⇐⇒ (1− ρβ∆) +

¡
1− β∆2

¢p
1− ρ2β

(1− ρ2β) + (1− ρβ∆)
p
1− ρ2β

≥ 1− β∆2

1 + ρβ∆

⇐⇒ ¡
1− ρ2β2∆2

¢− ¡1− ρ2β
¢ ¡
1− β∆2

¢ ≥ −2ρβ∆ ¡1− β∆2
¢p

1− ρ2β

⇐⇒ ρ2β
¡
1− β∆2

¢
+ β∆2

¡
1− ρ2β

¢ ≥ −2ρβ∆ ¡1− β∆2
¢p

1− ρ2β

which holds in general.

³g
b

´∗FB+Trade
≥
³g
b

´∗OL+Trade
⇐⇒ ρ2β∆− 2 ¡1− β∆2

¢
ρ−∆ ≤ 0

⇐⇒ ρ̃ ≤ ρ ≤ ρ̄

with

−1 ≤ ρ̃ ≡
1− β∆2 −

q
(1− β∆2)2 + β∆2

β∆
< 0,

ρ̄ ≡
1− β∆2 +

q
(1− β∆2)2 + β∆2

β∆
≥ 1.
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