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INTRODUCTION
Understanding cancer cell dormancy is a crucial challenge 

in cancer research considering the potential contribution of 
dormancy to tumor relapse, therapy resistance, and immune 
evasion (1, 2). Tumor relapse is thought to begin with the 
“awakening” of dormant persister cells within undetectable 

microdisseminated reservoirs (3–5). Tumor recurrence can 
occur over the course of 25 years after initial diagnosis (6). Dif-
ferent from other cancer types, relapse events in patients with 
estrogen receptor–positive (ER+) breast cancer do not decline 
with time (7), do not spike at the end of adjuvant ETs (8), nor 
are significantly influenced by the size of the tumor (9, 10). 
Collectively, these data indicate that the molecular events 
driving cells out from dormancy might involve reversible cell 
state transitions and led us to hypothesize that targetable epi-
genetic processes (11–13) triggered by adjuvant ETs might fuel 
adaptation and evolution in patients with ER+ breast cancer.

RESULTS
Genomic Profiling of Awakening in Patients with 
ER+ Breast Cancer

It is currently unclear if exit from dormancy, defined as 
long-term tumor quiescence, is mediated by genetic events. 
Molecular profiling of clinical relapse (local or metastatic) 
has identified a small number of recurrent genetic events only 
in 20% to 40% of patients with advanced ER+ breast cancer 
(i.e., ESR1 activating mutations; refs. 14–16). Because the 
prospective cohorts profiled in these studies were naturally 
enriched for early relapse (17), we identified a unique cohort 
of late relapses (median time to relapse 13 years, min–max 
10–35 years, n = 49) and profiled them with a targeted coding 
panel (18). Our data show that late relapses are enriched in 
KMT2C (an H3K4 methyltransferase) mutations while being 
surprisingly depleted of ESR1 activating mutations, suggest-
ing that awakening from long-term dormancy is not driven 
by classic genetic drivers of early relapse (Fig. 1A; Supplemen-
tary Fig. S1A and S1B; Supplementary Table S1).

Longitudinal genomic profiling inferred causal genetic 
events (often not from the same patient) from cancer cells that 
have undergone extensive replication, often in distinct ana-
tomic sites (14–16) before they become detectable by imaging 

ABSTRACT Patients with estrogen receptor–positive breast cancer receive adjuvant endocrine 
therapies (ET) that delay relapse by targeting clinically undetectable micrometastatic 

deposits. Yet, up to 50% of patients relapse even decades after surgery through unknown mechanisms 
likely involving dormancy. To investigate genetic and transcriptional changes underlying tumor awakening, 
we analyzed late relapse patients and longitudinally profiled a rare cohort treated with long-term neoadju-
vant ETs until progression. Next, we developed an in vitro evolutionary study to record the adaptive strat-
egies of individual lineages in unperturbed parallel experiments. Our data demonstrate that ETs induce 
nongenetic cell state transitions into dormancy in a stochastic subset of cells via epigenetic reprogram-
ming. Single lineages with divergent phenotypes awaken unpredictably in the absence of recurrent genetic 
alterations. Targeting the dormant epigenome shows promising activity against adapting cancer cells. 
Overall, this study uncovers the contribution of epigenetic adaptation to the evolution of resistance to ETs.

SIGNIFICANCE: This study advances the understanding of therapy-induced dormancy with potential 
clinical implications for breast cancer. Estrogen receptor-positive breast cancer cells adapt to endocrine 
treatment by entering a dormant state characterized by strong heterochromatinization with no recur-
rent genetic changes. Targeting the epigenetic rewiring impairs the adaptation of cancer cells to ETs.
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The genomic landscape of late relapse in ER+ BC patients
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(19). We bypassed these confounding factors by focusing 
on a rare cohort of patients (n  =  5) managed exclusively 
with ET until in situ progression (tumor expansion evalu-
ated by radiologic examination) and resampled at the same 
anatomic location at diagnosis (diagnostic biopsy) and pro-
gression (surgical biopsy). Patient 1 presented with bilateral 
ER+ breast cancer characterized by marked histologic het-
erogeneity (Supplementary Fig.  S2A and S2B). Radiologic 
examination showed partial response in both lesions, followed 
by  >6 months of stable residual disease (i.e., putative dor-
mancy) followed by radiologic progression (awakening) in the 
left breast (S1L, 21 months; Supplementary Fig.  S2C). Both 
diagnostic (pretreatment) and surgical biopsies (progression) 
were profiled by high-depth whole-genome sequencing (WGS; 
Supplementary Table  S1). In this work, we define potential 
genetic or nongenetic hits associated with resistance as pre-
existent when identified pretreatment or de novo if identified 
posttreatment. Although we could identify de novo pathogenic 
single-nucleotide variations (SNV) in bona fide breast cancer 
drivers [Functional analysis through Hidden Markov Models 
(FATHMM) >0.6; refs. 20, 21], none has been previously linked 
to ET resistance (i.e., FGFR2 S702 L; refs. 14–16; Supple-
mentary Fig. S3A and Supplementary Table S1; refs. 15–17). 
Thirty-six months after bilateral surgery, the patient expe-
rienced a loco-regional recurrence in the right breast (R1R) 
characterized by de novo mutations in ESR1 (D538G; ref. 16) 
and FGFR2 (V565 L; ref.  16) genes, potentially explaining 
resistance to the aromatase inhibitor (AI)–FGFRi combina-
tion (Supplementary Fig. S3A and Supplementary Table S1). 
Careful examination of genomic data did not find evidence of 
ESR1 (D538G) or FGFR2 (V565L) mutations at progression 
(S1 L and S1R, 63X and 69X base coverage, respectively; Sup-
plementary Table S2), meaning that these hits likely happened 
between progression and relapse or that progression and 
relapse are driven by different disseminated clones. Genomic 
characterization of four analogous clinical cases also failed 
to identify preexistent or de novo SNVs explicitly linked to ET 
resistance at the time of tumor progression in situ (awaken-
ing; Fig. 1B and C; and Supplementary Table S1). Extending 
the analysis to bona fide genetic drivers of other tumor types 
(21) did not result in additional candidates (Supplementary 
Fig. S3B and S3C; Supplementary Table S1).

Next, we sought to characterize if progression was driven by 
recurrent changes in gene expression (Fig. 1D; Supplementary 
Figs. S4 and S5). Comparing pretreatment and progression 

samples using spatial transcriptomics did not reveal con-
sistent changes in the immune component (Supplementary 
Fig.  S6). Conversely, focusing on cancer-intrinsic changes 
identified potential transcriptional evolution between pre-
treatment and awakened lesions (Fig.  1D; Supplementary 
Fig. S7A and S7B). Interestingly, transcriptional heterogene-
ity between individual regions appears to increase posttreat-
ment. A stark example was captured in patient 1 with some 
areas exhibiting features of dormancy (i.e., dormancy signa-
ture derived from ref.  2; Supplementary Table  S3) despite 
overall progression (S1R, Fig.  1D). These data suggest that 
adaptation to therapy is not driven by preexistent or de novo 
SNVs but involves divergent transcriptional reprogramming 
within individual tumors.

Tumor Awakening Dynamics Are Unpredictable 
In Vitro

Tumor relapse in patients with ER+ breast cancer is thought 
to emerge either from expansion of preexistent drug-resistant 
clones without any intermediate dormancy (16, 22, 23) or by 
de novo mechanisms appearing under therapeutic pressure 
during dormancy (1, 2, 13, 17). To capture and quantify these 
events at scale, we developed a long-term in vitro lineage-
tracing method termed TRADITIOM (TRacking Adaptation, 
Dormancy and awakening with multiomics; Supplementary 
Fig. S8A). TRADITIOM bypasses many of the common con-
founding factors that have limited previous studies (i.e., serial 
cell passaging, small populations, and short-term follow-up; 
refs. 22, 24, 25) and accounts exclusively for cancer cell-
intrinsic mechanisms. The founder population of TRADI-
TIOM contained 100,000 ER+ MCF7 cells tagged by 100,000 
unique barcodes (Supplementary Fig. S8A). Transduced cells 
were expanded for 13 days up to 90 million cells (the “POT”; 
full description of the nomenclature in the Methods section), 
which now contained barcodes at different frequencies reflect-
ing heterogeneous replicative fitness of individual lineages 
(Supplementary Fig. S8B and S8C). Extensive barcode profil-
ing shows that randomization does not introduce biases in 
baseline barcode frequencies (Supplementary Fig. S9), allow-
ing us to create 56 carbon copies (replicates). Seventeen car-
bon copies were then randomized into long-term estrogen 
deprivation (−E2), mimicking AI treatment, whereas another 
17 were assigned to long-term tamoxifen (TAM) treatment. 
An additional arm of the study followed 3 replicates of serially 
passaged untreated (UT) cells to capture de novo genetic and 

Figure 1. Genetic profile of tumor awakening in the clinical setting. A, High-depth profiling (median 105.47×) of ER+ breast cancer (BC; estrogen 
receptor–positive breast cancer) late relapses using a custom targeted panel. The simplified treatment scheme of patients is shown on the left. The 
heat map shows the mutations in ET resistance drivers in ER+ breast cancer passing the filters for allele depth ≥20, Alternate F1R2 + F2R1 ≥4, allele 
frequency ≥0.1, and consequence level of moderate or high. Time to relapse (years), recurrence in the data set, allele frequency, and relapse site are indi-
cated. Significant genes are indicated based on dN/dS analysis from the q-value of neutrality test at the gene level (*qglobal_cv ≤0.1). B, Clinical histories 
of patients 2–5. The table shows age and response time to ET for each patient (letrozole). C, Scatter plots of VAF from whole-genome sequencing (WGS) 
data. Pairwise comparisons were done for pretreatment (diagnostic biopsies) versus progression (surgical biopsies). All patients were managed with 
primary endocrine therapy until progression. Labeled genes passed two filters: bona fide breast cancer drivers and ET resistance drivers in ER+ breast 
cancer and FATHMM significant score >0.6 (predicted damaging). Detected variants are labeled and color-coded according to detection at diagnosis 
(teal), progression (magenta), or both (gray). The highlighted gene (TP53) is annotated as a variant detected in ET resistance drivers in ER+ breast cancer 
according to the comprehensive ET-resistance driver gene list compiled based on Bertucci et al. (14). Marginal histograms of VAFs are shown on the sides 
of each plot. D, Spatial transcriptomics analysis of patients 1–3. On the left, representative images of regions of interest (ROI) from patient 3, pre- and 
post-treatment, are shown with the relevant staining. Green, pan cytokeratin (CK+); yellow, immune cells (CD45+); purple, stroma. On the right side, GeoMx 
UMAPs of previously identified pre-adapted SWNE up and down signatures from (2), and G2–M checkpoint signatures are shown for patients 1–3 (CK+ 
segment). D1 L biopsy was not suitable for spatial transcriptomics analysis due to poor specimen quality and was excluded from further examinations. 
S1L: surgical biopsy in the left breast; S1R: surgical biopsy in the right breast; R1R: loco-regional relapse after surgery in the right breast.
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Figure 2. TRADITIOM genetic analysis and lineage composition. A, Cell counts for MCF7 and T47D HYPERflasks for −E2 (circle) and TAM (diamond) 
arms at their respective time of collection (teal: latency–time between the onset of the treatment and cell cycle arrest in the whole cell population; yel-
low: dormancy, magenta: awakening, early progression. α−ζ: MCF7 awakening carbon copies, A–F: T47D awakening carbon copies). B, TRADITIOM Live 
set-up: 12 replicates were seeded in a 48-well plate and imaged two times a week for 150 days using Incucyte Zoom (9 scanning windows per well) to 
monitor awakening dynamics. Awakening was defined as wells reaching a confluency of 50%. Minor differences in initial plating (violin plot) do not pre-
dict awakening times. C, Heatmap of MCF7 high-frequency barcodes (frequency ≥10%) among UT (untreated) samples’ endpoints and TRADITIOM carbon 
copies (replicates) for both TAM and –E2 arm (AI) at the time of dormancy and awakening (T30–60, AI30–60: dormancy time points, cells treated for 30 
or 60 days with tamoxifen or estrogen deprivation, respectively). (continued on following page)
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nongenetic events occurring under neutral drift (Supplemen-
tary Fig. S8A). Both TAM and −E2 triggered a period of puta-
tive dormancy after one month of treatment, as shown by live 
and floating cell counts obtained from intermediate sampling 
(Fig. 2A; Supplementary Fig. S10A) confirming that endocrine 
therapies (ET) have a dual cytotoxic and cytostatic impact on 
ER+ breast cancer cells (2, 26). ET-treated cells were maintained 
under continuous selective pressure in the absence of cell 
splitting until suspected awakening (early progression, cells 
that resumed proliferation after dormancy), which is defined 
by a sudden and exponential change in cell number (Fig. 2A). 
The first suspected awakening events occurred around day 
90 in the TAM arm (TAM η−θ  carbon copies) and day 105 
in the  −E2 arm (AIα carbon copy, Fig.  2A). The remaining 
carbon copies awakened with no obvious pattern over the 
course of the following 40 to 60 days (Fig.  2A; Supplemen-
tary Fig. S10A). Transient suspension of therapeutic pressure 
(drug holidays) did not considerably alter these dynamics, 
suggesting that dormancy is not purely the reflection of 
therapeutic pressure (Supplementary Fig.  S10B–S10F). Of 
note, dormancy and awakening signatures are not composed 
solely by cell-cycle–related genes (described later in “Tracking 

adaption in single lineages” section), indicating that cell-cycle 
arrest is not the only determinant of the dormant phenotype. 
A similar random pattern of awakening was observed in a 
second independent ER+ breast cancer cell line model (p53-
mutant L194F T47D; Fig.  2A). To corroborate these findings, 
we followed cell proliferation with continuous live imaging 
over the course of 5 months in additional 12 replicates (TRA-
DITIOM Live, nuclear-GFP tagged, Fig. 2B). All carbon copies 
entered dormancy within one month of estrogen deprivation 
(−E2) yet awakened asynchronously, with 2 replicates remain-
ing dormant after 150 days of continuous therapy (Fig. 2B). 
We found that marginal differences in seeding density were 
not associated with awakening timing (violin plots, Fig. 2B). 
Taken together, these data demonstrate that ETs can induce 
long-term dormancy in vitro with unpredictable asynchronous 
awakening dynamics.

The Persister Pool Is Induced Stochastically
We performed lineage tracing to chart clonal evolution 

during dormancy entrance and awakening (early progres-
sion). First, we asked if the dormant persister pool emerging 
after 30 days of ET treatment is generated via selection or 
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induction. Mathematical modeling identified a small frac-
tion of putatively dormant cells in untreated POT (treatment 
naïve) in agreement with our previous observation (ref.  2; 
Supplementary Fig. S11A). Although these cells could in prin-
ciple be selected by ET, their frequency (∼1/10,000) is neither 
sufficient to explain the size of the persister pool (Fig.  2A) 
nor the number of lineages present at dormancy (34% and 
37%, −E2 and TAM MCF7, respectively, and 18%, −E2 T47D, 
Supplementary Fig.  S11B and S11C), suggesting that most 
of the dormant pool is induced de novo by ETs. Lineage trac-
ing highlighted day 30 as a significant bottleneck in the 
evolutionary arc with lineage extinction slowing in dormancy 
(Supplementary Fig.  S10A and S11B and S11C). Our data 
show that within the first 30 days, serially passaged flasks 

(UT, untreated arm) and ET-treated unperturbed population 
lose barcodes at a similar rate. We also found that pretreat-
ment barcode frequencies were strongly predictive of lineage 
survival in all arms (Supplementary Fig.  S12A–S12D), sug-
gesting that dormancy entrance is stochastic. To formally 
test this prediction, we developed TRADITIOM Dormancy 
(see Methods; Supplementary Fig.  S12E), where we trig-
gered therapy-induced dormancy in 96 carbon copies. We 
then compared simulated data, where all cells have an equal 
probability of entering dormancy, to observed empirical data 
(Supplementary Fig.  S12E and S12F). These data strongly 
support a dormancy lottery scenario with no preexistent 
lineage poised to enter dormancy upon treatment exposure 
in vitro. These conclusions agree with a recent CRISPR-screen 
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(doi.org/10.1101/2022.02.15.480537) conducted in the context 
of estrogen deprivation which shows that replicates strongly 
diverge during the first months of estrogen deprivation, lead-
ing to stochastic enrichment of gRNA guides.

Adaptive Trajectories Are Not Driven by Genetic Hits
Considering the unpredictable timeline of awakening and 

the stochastic dormancy entry (14, 27), we hypothesized that 
awakening was unlikely the result of selection of a preexistent 
clone. Nevertheless, progressively acquired genetic hits (i.e., 
ESR1 mutations) could still explain awakening. To fully char-
acterize the contribution of genomic changes, we leveraged 
joint lineage tracing and WGS (Supplementary Fig.  S13A). 
Barcode analysis in MCF7 cells showed that on average each 
awakened carbon copy contained between 4,000 and 15,000 
persisting barcodes (−E2 and TAM, respectively) and 20,000 
barcodes in T47D cells (Supplementary Fig. S11B and S11C). 
Barcode frequencies in the untreated (UT) arm showed that a 
small set of recurrent high-frequency lineages slightly increased 
their relative frequency following the rich get richer dynamic 
(ref. 28; Fig. 2C). On the other hand, we observed clonal sweeps 
for most of the −E2 and TAM carbon copies (Fig. 2C). These 
sweeps were driven by carbon copy–specific lineages. Of note, 
drug holidays resulted in identical dynamics (Supplementary 
Fig.  S10E). Nanopore sequencing demonstrated that in the 
AIγ carbon copy (two presumptive winners) both barcodes 
integrated jointly, thus tracking a single lineage.

We next tracked all variants (germline, somatic preexist-
ent, and de novo) using Platypus (ref.  29; Supplementary 
Table  S1). Platypus identified a total of 5,963,202 variants 
(4,332,973 SNVs and 1,630,229 other variants like Indels, 
see Methods). Subclonal mutations that are subjected to 
selection (driver or passengers) are expected to change in 
their frequency within the population. For this reason, we 
identified those mutations that significantly changed in their 
variant allele frequency (VAF) across samples. A total of 
359,316 variants (6.03%) showed evidence for changing VAF 
(P  <  0.01). Most of these changes were explained by copy-
number alterations that occurred in the samples (Supple-
mentary Fig. S13B and S13C). These data suggest that most 
preexisting mutations hitch-hiked to a higher VAF within 
the awakening lineages, but we cannot exclude that some 
of these might indeed have occurred de novo and could thus 
have caused the awakening. A subset of 76,523 mutations was 
absent from at least one POT sample (pretreatment popula-
tion; i.e., average VAF < 5% across the POTs), but present in 
one or multiple samples of the UT (untreated), –E2 or TAM 
arm and we used these to reconstruct phylogenetic relation-
ships of samples (Fig.  2D). All replicates including the UT 
arm showed genetic divergence, suggesting that acquisition 
of resistance occurred independently in genetically unre-
lated lineages. Also, winner barcodes followed independent 
trajectories in all carbon copies, suggesting that individual 
lineages do not follow reproducible adaptive paths (Sup-
plementary Fig.  S14A–S14C). Previous large-scale genomic 
studies suggest the existence of over 90 potential drivers for 
ER+ breast cancer (30), we therefore considered the possibility 
that each carbon copy acquired individual resistance driv-
ers. The analysis of all breast cancer driver genes showed the 
presence of three ESR1 mutations (Fig.  2E; Supplementary 

Fig. S15A). Two of these, p.K268N and p.A64D, are neutral 
with p.K268N possibly already present in the POTs, whereas 
the p.H524L mutation might be associated with TAM resist-
ance (31) but emerged exclusively in the TAMβ carbon copy 
before becoming subclonal in TAMβ TEP (terminal endpoint 
or late progression, obtained from awakening samples kept 
in culture 1 more month with the introduction of serial 
passaging), raising doubts on its link to the awakening line-
age (Fig. 2E). None of the other de novo SNVs (i.e., BCL11A, 
BCOR, and COL1A1) was recurrent in more than one sample 
nor has been linked to treatment failure in breast cancer, 
leaving the evolution of resistance unexplained in 12 of 13 
replicates (Supplementary Table S1). We next looked at copy-
number variants and again found no recurrent alternations 
besides ESR1 amplification in TAMη, TAMθ, and TAMα-TEP 
(late progression; Supplementary Fig.  S13C). We could not 
identify recurrent hits in potentially damaging noncoding 
SNVs (doi.org/10.1101/2022.02.15.480537; Supplementary 
Fig. S15B) as well. Joint barcode and mutational profiling of 
an independent model (p53-mutant T47D cells) confirmed 
that awakening occurs in single lineages and is not driven by 
preexistent or recurrently acquired genetic events (Fig. 2F–H; 
Supplementary Fig.  S15C). Overall, these data suggest that 
the independent awakening observed in TRADITIOM carbon 
copies cannot be traced back to genetic drivers.

Adaptation Involves Divergent Transcriptional 
Reprogramming

TRADITIOM carbon copies awakened with evident mor-
phologic differences and proliferation rates (Supplementary 
Fig.  S16A–S16C). Unexpectedly, TAM-TEP carbon copies 
(TAM arm-late progression replicates) also exhibit vastly dif-
ferent drug responses to increasing doses of TAM (Fig. 3A). 
Divergent collateral drug resistance was even more evident 
in the −E2 TEPs (estrogen deprivation arm-late progression 
replicates) and involved carbon copy–specific sensitivities to 
most second-line treatments, including fulvestrant, CDK4/6i, 
and CDK7i; Fig. 3A). TEPs also displayed varying growth rates 
in response to E2 reintroduction with drug holiday and −E2 
carbon copies being particularly susceptible to E2 (Supple-
mentary Figs. S10F and S16D). These data demonstrate that 
awakening involves divergent endpoint phenotypes.

We next asked if these divergent traits correspond to increased 
transcriptional heterogeneity between different carbon cop-
ies, analogously to what we observed in spatially resolved 
transcriptomes (Fig.  1D). RNA-seq data confirmed the line-
age sweep in all carbon copies (Supplementary Fig.  S17A). 
The induced RNA-seq profile of dormant cells appeared to 
be reproducible and stable over the course of months with 
consistent downregulation of cell-cycle and metabolic path-
ways (Fig. 3B–D; Supplementary Tables S4–S7). Awakenings 
(early progression) and TEPs (late progression) exhibited 
significant divergence, in line with morphologic and drug-
resistance profiles (Fig. 3B and C; Supplementary Figs. S16D 
and S17B). TEP carbon copies continued to evolve past the 
awakening phenotype (Fig. 3B and C) in agreement with our 
cis-regulatory screen, which shows that different from treat-
ment-naïve MCF7, awakened cells’ fitness can be improved 
(doi.org/10.1101/2022.02.15.480537). On the other hand, 
six months of neutral drift did not significantly alter the 
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Figure 3. Adaptation is driven by divergent transcriptional reprogramming. A, Tamoxifen resistance analysis of the TAM TEPs (late progression) to 
increasing doses of 4-OHT is depicted in the left. Growth rates of –E2 (AI) TEPs in response to treatment with different drugs: Tamoxifen (Tam, 4-OHT), 
fulvestrant (Fulv), CDK7 inhibitor (CDK7i), CDK4/6i (palbociclib) are depicted on the right. Representative graphs are shown as normalized confluency 
fold change upon 7 days of compound treatment (n = 3). (continued on next page)
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transcriptional profile of the UT arm despite the significant 
loss of lineages and the associated clonal expansion of four 
recurrent clones (Figs. 2C and 3B and C; Supplementary 
Fig.  S11B). These data challenge the idea of long-term pas-
saging as a source of transcriptional variability in MCF7, at 
least for cells maintained in identical culturing conditions 
(32). Collectively, these data strongly support the notion that 
ET corners cells in dormancy but awakening propels dormant 
cells into an unpredictable phenotypic landscape.

Tracking Adaption in Single Lineages
Both spatial transcriptomics of patients and lineage tracing 

suggest that awakening clones coexist with dormant persister 
cells and/or that awakened cells can spontaneously reconvert 
to a dormant cell state (Figs. 1D and 2B, C, and F). Moreover, 
our data cannot formally exclude that different winner line-
ages emerge from a common phenotypic clone which was 
tagged by different barcodes at the start of the experiment. 
To tackle these concerns, we implemented TRADITIOM Live 
Single-Cell (TRADITIOM LSC), where we combined live imag-
ing and lineage tracing with single-cell RNA-seq (Fig. 4A). We 
reduced the complexity of TRADITIOM LSC by subsampling 
100 lineages from the original TRADITIOM to match the 
sampling capacity of 10×  chromium (targeting 10,000 cells 
from each timepoint; Fig. 4A). We optimized a protocol allow-
ing for joint barcode detection and high depth phenotyping 
that enabled profiling on average more than 3,500 genes and 
barcode call in ∼95% of scRNA-seq data sets (Supplementary 
Fig.  S18A–S18E). None of the original TRADITIOM win-
ners was featured in TRADITIOM LSC, highlighting the 
stochastic nature of adaptation. TRADITIOM LSC carbon 
copies awakened unpredictably between 77 and 154 days, 
with the final carbon copy collected at day 270 (Fig. 4B; Sup-
plementary Fig.  S19A and S19B). Barcode dynamics closely 
matched the one observed in TRADITIOM (Supplementary 
Fig. S11B), with ∼22% to 49% of lineages still present at awak-
ening (early progression) despite a full clonal sweep (Fig. 4C; 
Supplementary Fig. S20A and S20B). We also confirmed that 
adaptation to  −E2 (AI) and TAM follows different routes 
with AI driving the clonal expansion of unique lineages 

in each carbon copies, whereas TAM has weaker sweeps, 
partial barcode overlaps, and a higher proportion of cells 
still in dormancy at the time of awakening (Supplementary  
Fig. S21A–S21C).

Next, we created a transcriptional atlas of adapting cells 
focusing our attention on the  −E2 (AI) arm (68,342 single 
cells) because AI currently represents the standard of care for 
most patients and the previous lineage-tracing experiment did 
not include AI treatment (24, 33). Clustering analyses identi-
fied 13 cell states after stringent batch correction (Fig.  4D). 
Clusters were significantly associated with distinct cell states 
(i.e., cluster 3–6–8 enriched exclusively in pretreatment sam-
ples, cluster 1–2 dominating dormant samples). A significant 
upregulation of dormant features emerged and persisted after 
30 days of treatment with most cells entering a potential G1 
arrest (Fig.  4D and E; and Supplementary Fig.  S22A–S22C). 
Cells from awakening time points, on the other hand, occupy 
a rather heterogenous set of cell states (Fig. 4D). Despite shar-
ing active cell-cycle features, pretreatment and awakening cells 
exhibited dramatic differences in line with our patient-derived 
spatial transcriptomics analyses (Fig. 1D).

Joint barcode-phenotyping allowed us to track adaptation 
with single-cell resolution and demonstrate that awaken-
ing and dormant lineages coexist at the time of awakening 
(Fig. 4D). Additionally, awakened clones potentially gain plas-
ticity because they can reacquire dormant features (Fig.  4E). 
These data also explain the sharp lineage extinction observed 
in the original TRADITIOM TEPs, which can be ascribed to the 
loss of dormant persisters during serial replating, highlighting 
the crucial advantage of our experimental setting in preserv-
ing population heterogeneity up to cell awakening (Supple-
mentary Fig. S11B and S11C). Our data do not support the 
notion that winner lineages belong to a preexistent epigenetic 
clone because they are indistinguishable from non-winner 
lineages in treatment-naïve samples (Fig. 4E). Finally, all line-
ages enter dormancy with comparable dynamics, suggesting 
that awakening happens as the result of a stochastic transition 
within the dormant pool (Fig. 4E; Supplementary Fig. S23A 
and S23B). Intriguingly, T47D shows a stronger association 
between lineages and the choice of dormant cell state (cluster 
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0 vs. cluster 3; Supplementary Fig. S23C). Of note, regressing 
out cell-cycle genes from the analysis confirmed our findings, 
demonstrating that the dormant cell state is not simply a 
reflection of the cell-cycle arrest (Supplementary Fig.  S24A 
and S24B). Dormancy features appear to be conserved across 
treatments (−E2 and TAM) and cell lines (T47D and MCF7; 
Fig.  4F–4G). In conclusion, our data strongly suggest that 
adaptation to therapy is driven by acquired nongenetic cell 
state transitions within single lineages.

Adaptation Involves a Series of Failed Awakenings
Barcode analyses suggest that one lineage can sweep through 

the entire carbon copy; however, these data cannot distin-
guish between simultaneous multiple awakenings of the same 
lineage (global), consecutive localized- or a singular local 
event. TRADITIOM Live images (Fig.  2B) showed that in 8 

of 9 awakened −E2 carbon copies (replicates), the final clonal 
sweep emerged in a single area of the plate (Fig. 5A; Supple-
mentary Fig. S25A). As expected, persister colonies across the 
plates showed dormant features with almost complete absence 
of cell proliferation. Interestingly, most carbon copies, includ-
ing all dormant ones, contained clones transiently reentering 
the cell cycle before partial extinction and generation of new 
dormant persisters, a process we labeled failed awakening 
(Fig.  5B; Supplementary Fig.  S25A). Failed awakenings were 
also documented in TRADITIOM LSC for both MCF7 and 
T47D models (Fig.  5C). These data suggest that lineages 
might attempt awakening several times, but plasticity alone is 
insufficient to support the evolution of full resistance.

To validate the existence of failed awakening, we developed 
a cell-cycle reporter cell line that can be tracked by live imaging 
(Fig. 5D). Long-term live imaging of adapting cells confirms 
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that dormancy state corresponds to a prolonged G1 arrest 
(low Geminin). More importantly, we could capture sporadic 
cycling in a random subset of cells that eventually regressed 
to cell-cycle arrest (often followed by partial extinction). 
These data suggest that the presence of S–G2–M cells during 
dormancy does not considerably contribute to an increase in 
total cell number and represents failed awakenings.

To gain more insights on this phenotype, we retrospectively 
classified single cells from TRADITIOM LSC based on their 
cell-cycle state and compared S/G2–M cells from the untreated 
time point (T0) to S/G2–M cells from dormant (failed awaken-
ings) and awakening timepoints (bona fide awakenings; Supple-
mentary Fig.  S25B). First, we validated that our classification 
accurately captured the cell-cycle activity (Fig.  5E). Then we 
clustered cell-cycle regressed cells based on their transcriptional 
profile and confirmed the presence of cycling cells during 

dormancy (Fig. 5F). This analysis also showed that cycling cells 
acquire different phenotypes while adapting to ET as shown 
by different occupancy of transcriptional states of cycling cells 
in dormant samples compared with those in treatment-naïve 
and fully awakened conditions (Fig. 5F). Finally, we compared 
the transcriptional landscape of failed awakenings (dormant 
S/G2–M scRNA-seq from all barcodes) to bona fide awakening 
(awakening S/G2–M scRNA-seq from winner barcodes). Cells 
captured in a failed awakening cell state were enriched for 
apoptotic and EMT pathways, whereas bona fide awakening 
involves clearing the cell-cycle G2–M checkpoint and reacti-
vating estrogen signaling despite the lack of available ligand 
(ref. 34; Fig. 5G). Collectively, these data strengthen the hypoth-
esis that nongenetic cell state transitions are required for bona 
fide awakening, and reentering the cell cycle is necessary but not 
sufficient to acquire a bona fide awakening phenotype.
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ency of each scanning area at T0 (onset of estrogen deprivation). The T0 confluency of the awakening area is highlighted in purple. C, Heat map of winner 
barcodes’ frequency for TRADITIOM LSC carbon copies for –E2 (AI) arm at the time of awakening, in the POT population (pretreatment), at the start of 
the experiment (T0, time zero) and at early [1 month (1 mo)] and late dormancy [2 months (2 mo)] stages derived from either genomic barcode sequencing 
(g) or scRNA-seq (sc). D, UMAP projections of MCF7 TRADITIOM LSC –E2 (AI) arm of T0, early [1 month (1 mo)] and late dormancy [2 months (2 mo)] and 
awakening samples. (continued on next page)
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Adaptation Is Characterized by Epigenetic 
Reprogramming and Erosion

Both the in vivo and in vitro arms of the study strongly 
indicate that adaptation to ET involves heritable nongenetic 
transitions leading cells into a dormant state before drug 
resistance emerges within one lineage. In the absence of 
heritable genetic drivers, these transitions might be driven 
and stabilized by epigenetic change. We recently reported 
that ER+ breast cancer evolution includes epigenetic repro-
gramming at enhancer elements, as shown by the differen-
tial distribution of Histone 3 Lysine 27 acetylation marks 
(H3K27ac) across the genome. We hypothesized that post-
translational histone modifications (PTM) could be an ideal 
candidate for inducible and heritable cell state transitions 
during adaptation. To test this, we used super-SILAC mass 
spectrometry to quantify changes in histone modifications 
during adaptation in an unbiased manner. Carbon copies 
from both models (MCF7 and T47D) show reproducible epi-
genetic changes during adaptation (Fig. 6A; Supplementary 

Fig.  S26A and Supplementary Table  S8). ET triggered the 
accumulation of H3K9me2, H3K27me3, and H4K20me3 
heterochromatin marks and reduction in H3K4me3 and 
H3K9/14ac during dormancy entrance. The heterochro-
matin state is partially reversed at awakening (early pro-
gression) and TEPs (terminal endpoints, late progression) 
but their epigenome remained distinct from the baseline 
(Fig.  6A; Supplementary Fig.  S26A). These observed epige-
netic changes were validated with independent assays (Sup-
plementary Fig. S26B and S26C).

These data raised the question if the dormancy-associated 
heterochromatin state is essential for dormancy entrance 
and maintenance or is a passenger event. To discriminate 
between these two possibilities, we treated MCF7 with small-
molecule inhibitors targeting EZH2 (catalyzing H3K27me3), 
G9a (EHMT2, catalyzing H3K9me2), and KMT5B/C (aka 
SUV420H1/2, catalyzing H4K20me2-3) in two contexts: first, 
in combination with estrogen deprivation (−E2) to study their 
impact on dormant persister formation, and second by adding 
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awakening (early progression). Pie charts depict the occupancy of miscellaneous UMAP clusters for each lineage. The approximate awakening time of 
each carbon copy (replicate) is shown with arrows. F, UMAP projections of T47D TRADITIOM LSC samples at T0 and dormancy [1 month (1 mo)]. G, Dot 
plot indicates similarity of transcriptional space occupied by MCF7 cells under −E2 treatment (AI) with those under TAM (tamoxifen) and with T47D coun-
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Figure 5. Failed awakenings. A, TRADITIOM Live awakening topography analysis depicting the awakening dynamics. Twelve carbon copies (cc; repli-
cates) were seeded in a 48-well plate and imaged two times a week for 150 days using IncuCyte Zoom (9 scanning windows per well) to monitor awakening 
dynamics. Awakening was defined as wells reaching a confluency of 50% (FA: failed awakening; D: dormant; AW: awakening; GA: global awakening; LA: local-
ized awakening; 1LA: 1 localized awakening; >1LA: more than 1 localized awakening). B, IncuCyte time-lapse images from a failed and a bona fide awaken-
ing are shown as an example. C, Proliferation dynamics of a representative MCF7 [AI (−E2) awakening 2] and T47D TRADITIOM LSC sample determined by 
weekly IncuCyte time-lapse imaging until awakening. Pink lines indicate failed awakenings. Magenta lines follow the growth dynamics of main awakening 
areas. D, MCF7 Geminin-mCherry NLS-GFP cells were treated with estrogen deprivation (−E2) for 3 months to establish a detailed understanding of 
long-term dormancy–awakening dynamics. Image sets were analyzed using Essenbio Sartorius software from daily imaging. 35% of replicates (n = 60) 
had dormant persister cells/small colonies until day 88. The proportion of Geminin-mCherry-positive (S/G2–M; pink lines) is indicated normalized to total 
count which was quantified by NLS-GFP (gray lines). E, Distribution of Ki-67 expression levels in winner and non-winner (others) lineages associated 
with either G1 or S/G2–M states across T0, dormancy, and awakening samples of MCF7 TRADITIOM LSC cell-cycle regressed data set. (continued on  
next page)
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the inhibitor after 30 days of pretreatment to evaluate the 
impact on established dormant cells (Fig.  6B). All inhibitors 
exhibited activity against their respective targets (Supplemen-
tary Fig.  S26D–S26F). Blocking the activity of EZH2, G9a 
(EHMT2), or KMT5B/C did not affect the cell proliferation 
dynamic of treatment-naïve cells (Fig.  6C). However, target-
ing heterochromatin writers severely hampered the formation 
of therapy-induced persister dormant cells (Fig.  6D). Similar 
results were obtained in ER+ T47D cells (Fig. 6E and F). These 
data prompted us to investigate if tumors characterized by 
low expression of heterochromatin writers would have limited 
adaptive potential and therefore increased susceptibility to sin-
gle-agent ET. To test these, we stratified ET-treated ER+ breast 
cancer patients for a G9a-EZH2-KMT5C signature and observed 
that patients with low expression have a significantly lower risk 
of relapse over the course of 15 to 20 years as compared with 
high expressors (Fig.  6G; and Supplementary Fig.  S27A and 
S27B). Of note, the same signature did not stratify system-
atically untreated ER+ breast cancer nor ER-negative patients 
strongly supporting our hypothesis that epigenetic adaptation 
is therapy induced (Fig.  6G; Supplementary Fig.  S27C and 
S27D). We next targeted heterochromatin writers in dormant 
cells and observed a progressive eradicating effect for G9a 
(EHMT2) inhibition (Fig. 6H), despite bulk and spatial tran-
scriptomics data indicating a significantly lower expression 
of the target during dormancy (Supplementary Fig.  S28A–
S28C). This prompted us to investigate the expression pat-
tern of heterochromatin writers at the single-cell resolution. 
Interestingly, TRADITIOM LSC revealed the expression of 
G9a (EHMT2) during dormancy spikes in S–G2–M cells (puta-
tive failed awakening, Supplementary Fig.  S28D). Our data 
would then suggest that G9a is important for the adaptive 
potential of failed awakenings. Collectively, these observa-
tions indicate that targeting epigenetic reprogramming can 
interfere with the evolutionary processes required to adapt  
to ETs.

DISCUSSION
Mounting evidence suggests that nongenetic heritable cell 

state transitions play a central role in cancer evolution (12, 35, 
36), but how they contribute to ER+ breast cancer adaptation 
to ETs is still elusive. Adjuvant ETs target microdisseminated 
cancer cells in different organs, which remain undetectable 
until clinical progression. This has limited our ability to study 
the impact of long-term ET in vivo. Our work focusing on a 
rare set of patients exposed to long-term ET in the absence 
of surgery allowed us for the first time to study adaptation in 
situ. Multiregion spatial profiling coupled with WGS suggests 
that awakening from therapy-induced dormancy occurs asyn-
chronously and does not involve recurrent genomic changes. 
The size of our patient cohort, however, does not preclude the 
existence of some unknown genetic mechanism.

These findings were recapitulated and modeled in vitro 
in an evolutionary study mapping cell state transitions at a 
single lineage resolution over the course of months. Previ-
ous lineage-tracing studies did not model AI treatment, used 
smaller populations, shorter time frames, and were heavily 
confounded by cell passaging, which could have resulted 
in a rapid loss of dormant persister cells possibly leading 
to biased lineage representation (24, 37). Our unperturbed 
experimental setup has allowed us to track at-scale cell-intrin-
sic dynamics of dormancy and awakening and to highlight 
some unexpected principles controlling these processes. First, 
we could model the cytotoxic–cytostatic impact of ET (2) to 
show that dormant persister cells emerge with a marked epi-
genetic reprogramming occurring within a fraction of cancer 
cells. Our data suggest that lineages contribute stochasti-
cally to the minimal residual disease. Second, dormant cells 
attempt sporadically to reenter the cell-cycle, but these efforts 
often end up in cell death or a return to a dormant cell state 
(failed awakening). Bona fide awakening is a distinct phenotype 
from failed awakening, demonstrating that reactivation of the 
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cell-cycle is not sufficient for the evolution of drug resistance. 
Taken together, lineage tracing and failed awakening also 
highlight the role of nongenetic mechanism in adaption to 
ET, which is distinct from pure transcriptional plasticity. The 
discovery that the formation of therapy-induced dormant 
persisters and their awakening requires epigenetic reprogram-
ming has potential clinical implications. Targeting genetically 
fueled evolutionary process (mutagenesis) has proven to be 
difficult, with standard chemotherapy possibly transiently 

increasing genetic heterogeneity (38). On the other hand, our 
data show that long-term ETs bottleneck a random subset of 
lineages into a dormant persister cell state with reduced epige-
netic heterogeneity. Although our matched genomic analysis 
did not identify any explicit convergent genetic mechanisms, 
we observed reproducible and functional epigenetic changes 
during adaptation. More specifically, we found that ther-
apy-induced dormancy is characterized by a global increase 
in heterochromatin-associated modifications (H3K9me2, 

Figure 6. Targeting the dormant epigenome. A, Clustered heat maps of histone posttranslational modifications of super-SILAC mass spectrometry for 
TRADITIOM MCF7 and T47D samples [time zero (T0), latency (time between treatment onset and dormancy entry), dormancy, awakening (early progres-
sion), and TEPs (late progression)]. Significantly enriched (dormancy 30 days vs. TEPs, two-tailed t test: *, P < 0.01; **, P < 0.001; ***, P < 0.0001) modifica-
tions are depicted in bold, and the ones found to be associated with dormancy are highlighted in yellow. B, Schematic representation of small-molecule 
inhibitor experiments. Inhibitors against G9a (H3K9me2), EZH2 (H3K27me3), and KMT5B/C (H4K20me3) were used either alone or in combination. 
Start time of the inhibition was either at the beginning of estrogen deprivation to target persister pool generation or at 30 days of estrogen depriva-
tion (dormancy) to target established dormant cells. C, Proliferation dynamics of MCF7 cells in E2-supplemented conditions (+E2) after treatment with 
inhibitors against EHMT2, EZH2, KMT5B/C, dual combinations of each and vehicle. D, Proliferation dynamics of MCF7 cells in estrogen-deprived condi-
tions (−E2) after treatment with inhibitors against G9a, EZH2, KMT5B/C, dual combinations of each and vehicle. Proliferation dynamics of T47D cells in 
E2-supplemented (+E2; E) and deprived (−E2) conditions (F) after treatment with inhibitors against G9a, EZH2, KMT5B/C, dual combinations of each and 
vehicle (one-way ANOVA with Dunnett correction: *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001). Error bars represent standard deviation (n = 3). 
(continued on next page)
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Figure 6. (Continued) G, Relapse-free survival (RFS) curves for ER+ breast cancer patients stratified based on the expression of the epigenetic 
dormancy signature (high vs. low EHMT2/EZH2/KMT5C expression). Left: no adjuvant treatment; middle: adjuvant endocrine therapy (TAM/AI); right: 
AI adjuvant treatment. Multivariate analysis for clinically relevant prognostic biomarkers is shown in the onset table. H, Proliferation dynamics of 
MCF7 dormant cells (pretreated for 30 days with –E2) after treatment with inhibitors against G9a, EZH2, KMT5B/C, dual combinations of each and 
vehicle (one-way ANOVA with Dunnett correction: *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001). Error bars represent standard deviation (n = 3). 
I, Model: endocrine therapy-induced dormancy is characterized by a consistent epigenetic reprogramming involving a global increase in histone repres-
sive marks (H3K9me2, H3K27me3, and H4K20me3). The dormant epigenome is unstable and through a progressive loss of the histone repressive marks 
(erosion), cells resume proliferation in a process that mimics patient relapse (awakening). Epidrugs (G9a/EZH2/KMT5B/C inhibitors) can interfere with 
epigenetic reprogramming and block the formation of persister dormant clones. During adaptation, dormant cells engage in sporadic cycling (failed 
awakening) while under therapeutic stress possibly forcing cells into a subsequent round of epigenetic reprogramming that could also be antagonized 
with epidrugs.

H3K27me3, and H4K20me3). Interestingly, we could suc-
cessfully target this dependency on heterochromatin repro-
gramming to reduce the formation of dormant persisters. 
Intriguingly, targeting G9a (EHMT2) in fully dormant cells 
was effective with delayed response, despite an apparent strong 
downregulation of its target. Single-cell profiling revealed, 
however, that a subset of dormant cells sporadically reenters 
the cell-cycle (failed awakenings) and reexpress EHMT2. It is 
tempting to speculate that cells undergoing failed awakening 
require G9a to attempt reentering a dormant cell state and 
further persist within the population. The progressive eradi-
cation of dormant cells with G9a inhibition would fit with 
the cumulative increase in failed awakening observed in our 
cell-cycle reporter model (Fig.  5D). We hypothesize that an 
erosion process might be required to resume cell-cycle dynam-
ics despite the continuous presence of therapy due to the lack 
of EHMT2, EZH2, and KMT5C in dormancy. Indeed, awak-
ening lineages are characterized by an almost complete epi-
genetic reversal. We also find intriguing the specific increase 

in H3K36me1 and H3K27me1 in awakened lineages, two 
understudied histone marks thought to be involved in tran-
scriptional memory and fidelity (39, 40). Future long-term 
longitudinal studies mapping heterochromatin changes and 
their association with chromatin 3D structure might shed 
additional light on the adaptive process (41). Targeting dor-
mant cells could have a broad clinical application, considering 
that the potential addition of CDK4/6 inhibitors in standard-
of-care ET might extend the frequency of therapy-induced 
dormancy. Additionally, dormant cells carry specific but tran-
sient vulnerabilities (doi.org/10.1101/2022.02.15.480537), 
leaving a largely unexplored space for drug discovery (23). 
Notably, epigenetic modifiers-based signatures might be use-
ful to stratify patients with ER+ breast cancer who would 
benefit from combinatorial epigenetic therapy. On the other 
hand, our data suggest that some tumors have lower adaptive 
potential (i.e., cannot transition to a dormant cell state) and 
might be resolved by ET alone. Lastly, we show that awaken-
ing lineages coexist with dormant ones, which maintain an 
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intrinsic potential for additional awakenings. Considering the 
divergent phenotypes generated within our experiment, one 
prediction would be that the subsequent awakenings would 
generate extensive phenotypical heterogeneity with implica-
tions for second-line treatment. This scenario fits with clini-
cal observations where consecutive lines of treatment have  
progressively shorter responses.

We propose that in treatment-naïve patients, exponen-
tially growing cancer populations can generate sufficient 
genetic heterogeneity to fuel Darwinian genetics (cancer 
drivers; refs. 21, 30, 42). After surgery, ETs and CDK4/6i 
induce a widespread epigenetic cell state transition creating 
a microdisseminated dormant pool. Nevertheless, dormancy 
is inherently unstable, and cells can acquire transient states 
(i.e., failed awakenings) before drug resistance becomes her-
itably selected at awakening (Fig.  6I). Taken together, our 
data strongly support an effort toward targeting dormant 
persister cells (doi.org/10.1101/2022.02.15.480537). Current 
strategies have focused on combinatorial treatments with 
limited success (43). Our data would offer an alternative 
explanation, where the first signs of metastatic progression 
act as a whistle-blower for additional sequential awakening 
events within the residual dormant persister cells. We argue 
that this reflects the difficult task of drugging a moving 
target and advocates for sequential intervention designed to 
minimize transcriptional heterogeneity via AI-CDK4/6i fol-
lowed by targeted approaches tailored to dormant persisters. 
Although further studies incorporating in vivo and ex vivo 
models will help to elucidate the contribution of tumor 
microenvironment in the fine-tuning of dormancy dynam-
ics, we believe that this study provides a significant leap 
forward and advances the understanding of therapy-induced 
dormancy laying the groundwork for future research in  
this area.

METHODS
Cell Culture

Breast cancer cell lines MCF7 and T47D were kindly provided 
by Philippa Darbre. Cells were cultured in Dulbecco’s Modified 
Eagle Medium (DMEM) supplemented with 10% FCS, 100 units/mL 
penicillin, 50 μg/mL streptomycin sulfate, 2.5 mmol/L L-glutamine 
(1% (v/v) PSG, Sigma), and 10−8 mol/L 17-ß-estradiol (E2, Sigma-
Aldrich) and were kept at 37°C with 5% CO2 in a humidified atmos-
phere with a subculturing ratio of 1:3 three times or twice a week 
for MCF7 and T47D, respectively. Cells were routinely tested for 
Mycoplasma contamination.

Cell Culture in Hyperflasks
MCF7 cells were grown without passaging in High Yield PERfor-

mance Flasks (HYPERflask) cell culture vessel (Corning, CLS10034) 
and maintained either in 100 nmol/L 4-Hydroxytamoxifen (TAM, 
Sigma-Aldrich, H7904) or kept in phenol red-free DMEM (Gibco, 
11880028) supplemented with 10% charcoal-stripped FCS (−E2, 
Estrogen deprivation). Similarly, T47D cells were kept under estro-
gen deprivation in HYPERflasks. The medium was changed weekly, 
and cells were monitored twice a week for apparent growth changes 
and harvested upon awakening (resumption of cell proliferation eval-
uated by visual inspection using EVOS cell imaging system, Thermo 
Fisher Scientific). The untreated arm of TRADITIOM was main-
tained in E2-supplemented media and underwent serial passaging.

Floating Cell Harvesting
Floating (dead) cells were collected from media at each collection 

point from the large volume of media (550 mL) of the HYPERflask 
culture system. MCF7 is an adherent cell line, with cells that detach 
from the flask surface upon death. By centrifuging the culture media at 
1,200 rpm for 5 minutes in Corning 250-mL centrifuge tubes (Corning), 
we collected cells that had died within the week. Collected cells were 
counted with a hemocytometer and trypan blue to measure cell viability.

WGS of Patient Samples
This study was approved by the Institutional Review Boards (Imperial 

College London and Istituto Nazionale Tumori). Each subject gave 
written, informed consent prior to enrolment, and the study was con-
ducted in accordance with recognized ethical guidelines (e.g., Declara-
tion of Helsinki, CIOMS, Belmont Report, U.S. Common Rule).

Extraction of DNA from fresh frozen (Buffy Coat and Drug-
Resistant Tumor) samples was carried out using a DNeasy Blood 
and Tissue kit (Qiagen, 69506). Extraction from FFPE samples was 
conducted using GeneRead DNA FFPE Kit (Qiagen, 180134). Qual-
ity and quantity of DNA were determined using the TapeStation 
2200 System (Agilent) with the Genomic DNA ScreenTape Analysis 
(5365). To improve the proportion of DNA fragments at the optimal 
length for library preparation, samples were sonicated for 10 cycles 
using the Bioruptor Pico Sonication Device (Diagenode). FFPE DNA 
samples were treated with the NEBNext FFPE DNA-repair Mix (NEB, 
M6630L). DNA libraries for Illumina sequencing were prepared with 
the NEBNext Ultra 2 DNA Library Kit for Illumina (NEB, E7645L) 
using 200 ng of DNA and custom-made unique dual indices (8 bp), 
a kind gift from Dr. Paolo Piazza (British Research Council Genom-
ics Facility). DNA libraries were quantified using the TapeStation 
2200 System with the High-Sensitivity D1000 ScreenTape Analysis 
(Agilent, 5584). Samples were pooled based on the type of the origi-
nal material; FFPE, Fresh Frozen. Normal DNA was pooled at a 1:3 
ratio to tumor material. Pooled DNA libraries were sequenced with 
NovaSeq using the S2 50-bp paired-end flow cell chemistry (output 
333–417 Gb).

Clinical information: Patient 1: Metastases—fresh frozen material. 
Patient 2: Normal—buffy coat—fresh frozen, untreated diagnostic 
biopsy—FFPE, drug-resistant tumor—fresh frozen. Patient 3: Normal—
buffy coat—fresh frozen, untreated diagnostic biopsy—FFPE, drug-
resistant tumor—fresh frozen. Patient 4: Normal—buffy coat—fresh 
frozen, untreated diagnostic biopsy—FFPE, drug-resistant tumor—
FFPE. Patient 5: Normal—buffy coat—fresh frozen, untreated diagnos-
tic biopsy—FFPE, drug-resistant tumor—fresh frozen.

WGS Data Analysis for Patient Samples
Raw reads were trimmed for adapters using skewer (sequence: 

ACGCTCTTCCGATCT; trimming mode: head; length: 35; strin-
gency:  −r  =  0.1,  −d  =  0.03; quality: 10; ref.  44). The trimmed reads 
were mapped to GRCh38 with BWA mem (v-0.7.15; ref. 45). This was 
followed by sorting the alignment maps, marking duplicates and vali-
dating with Picard (v-2.20.6). GATK (v-4.1.3.0) mutect2 best practices 
pipeline was then used for somatic variant calling (–af-of-alleles-not-
in-resource 0.0000025). The calls from noncanonical chromosomes 
and those that do not have PASS as filter criteria were removed. The 
variants with allele depth greater than 20 and at least 6 read pairs in 
the F1R2 and F2R1 configurations supporting REF and ALT alleles 
were used for further analysis. Filtered calls were then annotated 
with variant effect predictor (VEP). Dot plots were prepared for logi-
cal pairs of patient samples to represent VAF in genes with variants 
within each sample. Gray dots represent all filtered variants. Variants 
with VAF ≥0.1, FATHMM >0.6, and VEP consequence MODERATE 
or HIGH were color coded based on the sample in which they are pre-
sent [diagnosis (teal), progression (magenta)] and dark gray if identi-
fied in both samples. Variants in Intogen breast cancer driver genes 
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are labeled according to the same color code and highlighted if they 
are among the resistance drivers (comprehensive ET resistance driver 
gene list compiled based on Bertucci et al., ref. 14). Similar plots are 
created for variants that are identified in Intogen driver genes other 
than the breast cancer drivers.

Targeted Sequencing of Late Relapse Patients
DNA was extracted from 10 μm FFPE slices using the Qiagen 

GeneRead DNA FFPE extraction kit (Qiagen, cat no. 180134) follow-
ing the manufacturer’s instructions. Briefly, paraffin was removed 
from the samples, cells were lysed, and DNA was treated with 
the Uracil N Glycosylase enzyme. DNA was then purified using a 
column-based method. The quantity and quality of DNA between 
100 and 50,000 bp was assessed using an Agilent Tapestation 2200 
instrument using the Genomic DNA screenTape and reagents (Agi-
lent, cat no. 5067-5365 and 5067-5366). Samples were sonicated 
with Covaris E220 to reach an average fragment size of 250 bp 
and sonication efficiency was assessed using the Tapestation 2200 
instrument with the Genomic DNA screenTape and reagents. A 
threshold of 60% of fragments between 100 and 500 bp was set to 
ensure efficient library preparation. Samples that did not pass this 
threshold were sonicated further and reassessed. Samples underwent 
DNA-repair treatment with the NEBNext FFPE DNA-Repair Mix 
(NEB, cat no. M6630) following the manufacturer’s instructions. 
Briefly, the repair mix and provided buffer were added to DNA and 
incubated at 20°C for 15 minutes. Library preparation was carried 
out using the NEBNext Ultra II DNA Library Kit (E7645L) following 
the manufacturer’s instructions. Post-library DNA concentrations 
were assessed using the Agilent Tapestation 2200 with the High 
Sensitivity D1000 screenTape and reagents as previously described. 
Any contamination with persisting adapters was removed through 
size selection using SPRI size-selection beads. The libraries from 
patients were pooled and captured with the custom panel (18) 
produced by Twist Biosciences using the Twist Custom Capture 
Panel Protocol. Pools of libraries were dried in a ThermoFischer 
Scientific SPD120 SpeedVac Vacuum Concentrator until less than 
3 μL volume was remaining. Capture probes were mixed with the 
hybridization mix and heated at 95°C for two minutes. Dried library 
pools were mixed with provided blockers and heated at 95°C for 
five minutes. After both reactions had cooled to room temperature 
they were mixed and left to hybridize overnight at 70°C. The next 
day, the DNA and probe mix was mixed with streptavidin beads to 
enrich capture probe-bound DNA. The pure capture probes and 
bead-bound DNA complex underwent a PCR amplification using the 
KAPA HiFi Hot Start PCR ReadyMix Kit (KAPA Biosystems, cat no. 
KK2601) following the manufacturer’s instructions. The minimal 
number of PCR cycles possible was used to reduce the introduction 
of PCR duplicates that could significantly affect sequencing quality. 
Post-captured quality of DNA was assessed and quantified using 
both the Qubit and Tapestation. Captured pools were sequenced 
by Novogene (Cambridge, UK) using the NovaSeq6000 platform  
(Illumina; paired-end 150 bp).

Raw reads were trimmed for adapters and quality (Phred qual-
ity ≥ 30) with trim_galore(v-0.6.4_dev). After confirming the qual-
ity of processed reads with FastQC (version v-0.11.9), they were 
mapped to the human reference genome (hg38) using BWA mem 
(v- 0.7.17-r1188) with default settings. The alignment maps were 
then parsed to convert into binary maps marking PCR duplicates, 
sorting, and indexing using sambamba (v-0.7.1). Depth of cover-
age was then assessed using the gatk DepthOfCoverage function 
considering the list of targeted regions that were sequenced. After 
adding read groups with picard (v-2.27.5), further postprocessing 
(base quality recalibration, CollectSequencingArtifactMetrics) and 
variant identification were performed using the Genome Analysis 
Toolkit (GATK; v- v4.3.0.0; refs. 46, 47) best practices. Somatic 
variant calling was performed on each sample individually using 

Mutect2 with a GATK-provided panel of normals (1000g_pon.
hg38.vcf.gz) while also collecting F1R2 metrics. A threshold of 
0.001 was used for population allele frequency assigned to alleles 
that are not found in germline resource and read filter for mates on 
the same contig or no mapped mates was disabled. Reported variant 
calls were then filtered based on the read orientation model.

Further filtering of variants was performed to keep those with PASS 
or germline annotations from mutect2, followed by the sum of allele 
depth for reference and alternate supported by ≥20 reads, sum of F1R2 
and F2R1 for alternate  ≥4 and allele frequency  ≥0.1. These variants 
were then analyzed with VEP (v-105.0) and filtered for MODERATE or 
HIGH consequence. DN/DS ratios were then analyzed with the dndscv 
package in R, and significance levels were reported based on the global 
q-value of the neutrality test at the gene level (qglobal_cv ≤0.1) as well 
as confidence intervals for the dN/dS ratios per gene (CI for missense 
and truncating mutations that do not span through the value of 1). 
Heat maps were plotted for Intogen breast cancer driver genes and ET 
resistance drivers reported by Bertucci and colleagues (14).

GeoMx
Spatially resolved transcriptomic analyses were carried out on the 

GeoMx platform (NanoString Technologies) with the Human Whole 
Transcriptome Atlas; NanoString Technologies), following the man-
ufacturer’s recommendations. In situ hybridization was performed 
on 4-μm FFPE tissue slides. After deparaffinization, rehydration, and 
washing with PBS (Sigma-Aldrich P-5368), slides were incubated for 
20 minutes in 1 ×  Tris-EDTA pH 9.0 buffer (Invitrogen, Life Tech-
nologies, CA 00-4956-58) at 100°C in a steamer, washed and then 
incubated in proteinase K (Thermo Fisher Scientific, AM2546) for 
RNA target exposure. Tissue sections were post-fixed in 10% neutral-
buffered formalin (NBF) and NBF stop buffer (0.1M Tris Base, 
0.1 mol/L Glycine, Sigma-Aldrich), and then washed for 5 minutes 
in PBS. Sections were then incubated overnight at 37°C with GeoMx 
RNA Probe mix in Buffer R (NanoString Technologies) using a 
Hybridazer (Dako). Two 25-minute stringent washes were performed 
in 50% formamide at 37°C. Sections were thereafter washed with 
2×  SSC and then blocked in Buffer W (NanoString Technologies) 
for 30 minutes in the humidity chamber at room temperature. 
Slides were subsequently stained with morphology markers solution 
(Syto13, PanCK, and CD45−; NanoString Technologies) and then 
loaded on the GeoMx Digital Spatial Profiler (DSP). Slide images 
were acquired and digitalized with the GeoMx, and 71 circular ROIs 
with 300 diameter were selected by a breast pathologist. Within each 
ROI, the GeoMx software was used to define areas of interest (AOI) 
relying on immunoreactivity to fluorescent markers used: epithelial 
cell (CK+, CD45−, Syto13 independent), lymphocytes (CK−, CD45+, 
Syto13 independent), and “stroma” (i.e., tumor stroma, CK−, CD45−, 
Syto13 independent). After AOI definition, oligonucleotides within 
each AOI were photocleaved by the DSP and collected. Barcoded oli-
gonucleotides were then dispensed in a 96-well plate, dried overnight, 
and resuspended in 10 μL of DEPC-treated water. Sequencing librar-
ies were then prepared by PCR with unique i7 and i5 sample indices. 
Purified and pooled libraries were sequenced at 2  ×  27 base pairs 
and with the dual-index workflow on an Illumina NovaSeq 6000. 
bcl2fastq2 Conversion Software (Illumina) was used to generate 
FASTQ sequencing files. GeoMx NGS Pipeline software (v2.3.3.10) 
was applied to automatically process FASTQ sequencing files to 
GeoMx readable digital counts (DCC) files.

DSP-provided DCC files were analyzed with GeomxTools R pack-
age. Preprocessing was done by filtering the data with segment-based 
QC, probe-based QC, and limit of quantification followed by data 
normalization. Segment-based QC involved keeping segments with at 
least 1,000 reads per segment, at least 80% of aligned, trimmed, and 
stitched reads, sequencing saturation of more than 50%, and mini-
mum segment area of 5000. To remove gene targets for which there 
are multiple probes, the next filtering was set to remove probes with a 
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minimum probe ratio of 0.1 and if it is an outlier as per Grubb’s test 
in at least 20% segments. Segments and genes with abnormally low 
signals were then filtered based on the threshold of at least 5% detec-
tion limit. The filtered data were then normalized based on the upper 
quartile (Q3). Finally, dimensionality reduction and clustering of dif-
ferent ROIs from each segment were performed based on their expres-
sion profiles using UMAP projections. Average z-scores of genes in 
dormancy up, dormancy down, and G2–M signatures were then plot-
ted on UMAP for each ROI of CK+ segment to show transcriptional 
heterogeneity in multiregion biopsies across diagnostic and surgical 
biopsies. Cell type deconvolution was done using the SpatialDecon 
package using Human Primary Cell Atlas data as reference. Average 
differences in groups of segments based on a linear mixed-effect 
model using test variable and random intercept. Volcano plots were 
labeled by color-coding differentially expressed genes (DEG) in logical 
comparisons based on their significance levels. DEGs with absolute 
log fold change >0.5 and P < 0.005 were checked for enrichment in 
MSgiDB Hallmark gene sets using the enrichr package in R.

Cell Barcoding
The CloneTracker XP 10M Barcode-3′  Library with RFP-Puro 

(BCXP10M3RP-P) was purchased from Cellecta. Production of len-
tiviral particles and MCF7 transduction was performed following 
the CloneTracker XP Lentiviral Expressed Barcode Libraries online 
manual (https://manuals.cellecta.com/clonetracker-xp-lentiviral-bar-
code-libraries). Briefly, HEK-293T cells were transfected with Cellecta 
CloneTracker XP library and ready-to-use lentiviral packaging plas-
mid mix (Cellecta, CPCP-K2A) using Lipofectamine (Thermo Fisher 
Scientific, 18324020) and Plus reagent (Thermo Fisher Scientific, 
11514015). Viral particles were collected 48 hours upon transfec-
tion and precipitated overnight with PEG-IT Precipitation Solution 
(SBI System Bioscience, LV810A-1-SBI). Lentiviral titration was per-
formed by flow cytometry using RFP as reporter. 10 × 106 MCF7 and 
T47D cells were transduced with 0.01 multiplicity of infection (MOI) 
using 0.8 mg/mL polybrene to get a final number of 1–2 × 105 dif-
ferentially barcoded cells. For selection, 1 mg/mL or 2 mg/mL puro-
mycin (Selleckchem) was added to the culture media of MCF7 and 
T47D, respectively, for two cycles of 72 hours. Cells were maintained 
with 0.1 μg/mL (MCF7) or 0.2 μg/mL (T47D) puromycin during the 
TRADITIOM experimental period.

TRADITIOM Longitudinal Cell Tracking
Differentially MCF7 barcoded cells were expanded for 13 days from 

1 × 105 cells to reach a POT (pretreatment) population of ∼90 × 106 
cells and plated based on the following scheme: (i) 34 hyperflasks 
were seeded (1.2 × 106 and 2.8 × 106 cells for −E2 and TAM condi-
tions, respectively) including Drug Holiday flasks; (ii) 2  ×  106 cells 
were kept in culture as untreated arm (UT, 3 replicates) ; (iii) 8 × 106 
were expanded to 90 × 106 and harvested as triplicate POT samples; 
(iv) 5 × 106 cells were expanded to 40 × 106 cells for plating of 20 time 
zero (T0) samples (replicates at the onset of treatment reflecting 
initial seeding density). and collected after 48 hours; (v) the rest of 
the barcoded MCF7 population was frozen. Cell treatment of the 
34 aliases, with either E2 or TAM, started 48 hours after seeding. 
Harvesting of each HYPERflask was performed at the indicated time 
points (shared time points for 2 replicates at day 7, day 14, 1 month, 
2 months, and diverging time points for individual awakenings). At 
the time of collection, cells were snap-frozen in multiple pellets for 
subsequent DNA and RNA extraction (for WGS, genomic barcode 
sequencing and RNA-sequencing, respectively). Following awaken-
ing, TAM α−ζ and AI α−ε samples were further cultured for 1 month 
in T150 flasks (Corning) with cell passaging giving rise to TEPs. Seve-
ral aliquots of cells were frozen at awakening and TEP time points.

Differentially T47D barcoded cells (∼200K barcodes) were expanded 
for 12 days to reach a POT (pretreatment) population of ∼20 × 106 

cells and plated based on the following scheme: (i) 8 HYPERflasks 
were seeded (1.1  ×  106 cells) for  −E2, (ii) 1.1  ×  106 cells were kept 
in culture as untreated arm (UT, 3 replicates), (iii) 3.5  ×  106 were 
expanded to 20  ×  106 and harvested as triplicate POT samples 
(5 × 106 cells each) with the rest of the barcoded population frozen, 
(iv) 4.4  ×  106 cells were used for plating of four zero (T0) samples 
(1.1 × 106) and collected after 48 hours. Estrogen deprivation of the 
8 HYPERflask carbon copies (−E2) started 48 hours after seeding. 
Harvesting of each HYPERflask was performed at the indicated time 
points (shared time points for 2 replicates of 1 month and diverging 
time points for individual awakenings). At the time of collection, cells 
were snap-frozen in multiple pellets for subsequent DNA and histone 
extraction (for targeted sequencing panel, genomic barcode sequencing, 
and super-SILAC MS, respectively). Following awakening (early progres-
sion), AI A-F samples were further cultured for 1 month in T150 flasks 
(Corning) with cell passaging giving rise to TEP (late progression). 
Several aliquots of cells were frozen at awakening and TEP time points.

Drug Holiday
For drug holiday, two MCF7 carbon copies in HYPERFlasks were 

reexposed to E2-supplemented media after 1 month (namely, dor-
mancy entry stage) of either tamoxifen (DH 7d TAM) or estro-
gen deprivation (DH 7d –E2). Cells were monitored for a week 
for resumption of cell proliferation evaluated by visual inspection 
using an EVOS cell imaging system (Thermo Fisher Scientific). 
After 1 week of the drug holiday (when cells started to grow expo-
nentially), ET conditions were reintroduced for these flasks (TAM 
or estrogen deprivation, respectively). To evaluate the effect of drug 
holiday on late dormancy, one estrogen-deprived carbon copy was 
reexposed to estrogen-supplemented media (DH 14d –E2). The expo-
nential growth phase for this carbon copy was spotted after 2 weeks 
by visual inspection, when the media were reverted to estrogen-
deprived condition, thus ending the drug holiday period. Samples 
for genomic barcode sequencing and RNA-seq were collected at the 
time of awakening (early progression). Terminal endpoints (TEP; 
late progression) for carbon copies (replicates) that underwent drug 
holiday were generated in a similar fashion to other awakenings 
and proliferation dynamics under drug exposure were measured as  
described below.

Drug–Response Curves and Proliferation Assay
UT, TAM, or AI (−E2) TEPs were seeded (1,000 cells per well) in 

96-well standard plates (Corning). Following overnight incubation, 
UT and TAM-TEP cells were treated with 10-fold increasing concen-
trations of 4-OHT (1 nmol/L–10 μmol/L), vehicle control (EtOH) 
or reexposure to E2 (10 nmol/L) in five independent replicates. On 
the other hand, UT and  −E2 TEPs underwent several treatment 
conditions in five independent replicates:  −E2, 100 nmol/L TAM, 
100 nmol/L fulvestrant (Fulv, Sigma I4409), 50 nmol/L CDK7 inhibi-
tor (CDK7i, kindly provided by Prof. Simak Ali), 100 nmol/L palboci-
clib (Palbo, SIGMA PD 0332991) and reexposure to E2 (10 nmol/L). 
The percentage of confluency was assessed and automatically calcu-
lated based on the images acquired with IncuCyte Zoom Live-Cell 
Analysis System (Sartorius) both on the day of compound addition 
(day 0) and 7 days of incubation in a 37°C and 5% CO2 cell culture 
incubator. Day 7 data were normalized to day 0, and overall data were 
represented as confluency fold changes over time.

TRADITIOM LSC
A low-complexity (100 barcodes) MCF7 cell population was generated 

by subsampling the high-complexity (100K barcodes) founder popula-
tion to be able to trace every barcode (lineage) over time by scRNA-
seq where a maximum of 10K cells can be profiled for each sample. 
Briefly, 100 cells were seeded and expanded to 8 × 106 cells. The result-
ing number of barcodes and their frequencies were verified by genomic 

https://manuals.cellecta.com/clonetracker-xp-lentiviral-barcode-libraries
https://manuals.cellecta.com/clonetracker-xp-lentiviral-barcode-libraries
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barcode sequencing (NGS). Cells were seeded based on the following 
scheme: (i) 16 T75 flasks (Corning) were seeded as 0.35 × 104 and 1 × 104 
cells for –E2 (8 flasks) and TAM (8 flasks) conditions, respectively; 
(ii) 2 T75 flasks were seeded as T0 and collected after 3 days (seeding 
density = 1.5 × 104 cells); (iii) 1.5 × 106 cells were expanded to 9 × 106 
and harvested as triplicate POT (pretreatment) for TRADITIOM LSC 
and genomic barcodes were analyzed by NGS; (iv) the rest of the low-
complexity barcoded MCF7 population was frozen. Cell treatment of 
the 16 aliases, with either E2 or TAM, started 48 hours after seeding. 
Harvesting of each flask was performed at the indicated time points 
(shared time points for 2 replicates at 1 month, 2 months, and diverg-
ing time points for 4 individual awakenings for each ET condition). 
Cells were imaged weekly starting from the onset of ET conditions and 
monitored until awakening (collection time for scRNA-seq procedure) 
using IncuCyte Zoom Live-Cell Analysis System (except for initial 
42 days for AI sc3 sample for technical reasons). Percentage of conflu-
ency was assessed in 108 scanning windows covering each T75 flask and 
automatically calculated based on the acquired images.

For T47D a low-complexity (∼200 barcodes) cell population was 
generated by subsampling the high-complexity (200K barcodes) 
founder population. Cells were seeded based on the following 
scheme: (i) 5 T75 flasks (Corning) were seeded with 0.5 × 104 cells 
for –E2 treatment, (ii) 2 T75 flasks were seeded as T0 and collected 
after 3 days (seeding density = 5 × 104 cells), (iii) the rest of the low-
complexity barcoded T47D population was frozen. Cell treatment 
of the 5 aliases, with E2 deprivation, started 48 hours after seeding. 
Harvesting of each flask was performed at the indicated time points 
(shared time points for 2 replicates at 1 month, 3 flasks are still in 
culture at the time of submission, waiting for awakening events). 
Cells were imaged weekly starting from the onset of ET and moni-
tored until awakening (collection time for scRNA-seq procedure) 
using IncuCyte Zoom Live-Cell Analysis System. The percentage of 
confluency was assessed in 108 scanning windows covering each T75 
flask and automatically calculated based on the acquired images.

Single-Cell RNA-Sequencing Library Preparation
Cells were collected at the indicated time points (T0, early and late 

dormancy, and awakening) and resuspended in HBSS buffer (Invit-
rogen, 14065049) supplemented with 0,037% sodium bicarbonate 
(Gibco), 10 mmol/L HEPES (Gibco), and 0.5% BSA. Single-cell sus-
pensions were generated by passing the cells multiple times through 
30 μm and 20 μm separation filters (Miltenyi) in succession. The 
viability and singularity of cells were determined using a Luna-FL 
Dual Fluorescence cell counter (Logos Biosystems). 10K single cells 
were loaded into Chromium Single-Cell Platform (10×  Genomics). 
Library preparation was performed following the Chromium Next 
GEM Single-Cell 3′ Reagent Kits v3.1 manual. For better detection 
of expressed Cellecta lineage barcodes in scRNA-seq, a custom PCR 
approach was implemented. After adaptors ligation and cDNA clean 
up, libraries were divided into two. Three-fourths of the material 
was used for standard indexing PCR whereas one-fourth of the 
material was used for breast cancer–specific amplification using a 
custom two-step nested PCR. PCR1: 13 cycles (Primers: Cellecta FBPI:  
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTCCGAC 
CACCGAACGCAACGCACGCA, 10X read1: ACACTCTTTCCCTAC 
ACGACGCTCTTCCGATCT). PCR2: 6 amplification cycles (standard 
P5 and P7 10× primers). scRNA-seq libraries were sequenced with 285M 
reads and breast cancer–specific libraries were sequenced with 15M 
reads using the NovaSeq 6000 platform (Novogene Cambridge, UK).

TRADITIOM Live and TRADITIOM Dormancy
Barcoded MCF7 EGFP-NLS cells (100 barcode complexity) were 

generated via lentiviral transduction of the pTRIP-SFFV-EGFP-
NLS plasmid (Addgene, #86677). This was performed following a 
procedure similar to that of cell barcoding, although now using 

the pMD2.G (Addgene, #12259) envelope and psPAX2 (Addgene, 
#12260) packaging plasmids for HEK293T transfection. Finally, effi-
cient EGFP-NLS-expressing clones were selected using fluorescence-
activated cell sorting (FACS). Cell seeding density in a 6-well for 
TRADITIOM Dormancy was 1.5k cells/well (45 replicates) and 4.5k 
cells/well (45 replicates). All 90 carbon copies were subjected to 
estrogen deprivation 48 hours post-seeding. Cells were imaged weekly 
starting from the onset of estrogen deprivation, using IncuCyte Zoom 
Live-Cell Analysis System. EGFP-NLS signal was used for precise cells 
counting. Cells were collected at 1 month for genomic barcode detec-
tion by NGS. 18 libraries were successfully generated and analyzed.

These cells were also used for the TRADITIOM Live study (1,500 
cells/well in 48-well plate format): 12 replicate carbon copies were 
exposed to estrogen deprivation and imaged, using IncuCyte Zoom 
Live-Cell Analysis System, twice a week over 5 months to monitor 
dormancy–awakening dynamics.

For topological determination of awakening dynamics, cell num-
ber changes in 9 scanning windows in single 48-wells were meas-
ured (cell numbers were calculated with NLS-EGFP reporter) by the 
IncuCyte Zoom Live-Cell Analysis System. Awakening was defined as 
wells reaching a confluency of 50%. Awakenings were recorded with 
the number of days passed from the onset of estrogen deprivation. 
Awakenings were considered localized (localized awakening: LA) 
when they originated from 1 scanning window (or 2 when they were 
detected in adjacent scanning windows and temporal image analysis 
confirmed the expansion from one to the adjacent scanning window 
or when they were detected simultaneously in adjacent scanning 
windows and temporal image analysis confirmed a single awaken-
ing expanding in 2 adjacent scanning windows at the same time). 
They were considered global (global awakening: GA) when they were 
detected in multiple scanning windows around the same time span-
ning the entire well. Awakening attempts that regressed in succes-
sive scans were coined as failed awakenings (FA), whereas scanning 
windows with no sign of awakening during 5 months of estrogen 
deprivation were termed dormant (D). Scanning windows with no 
cells detected were marked as clearance.

Barcode Amplification and Next-Generation 
Library Preparation

Barcoded MCF7 and T47D cell lines were harvested and pelleted at 
indicated time points (POT (pretreatment), latency (only for MCF7), 
dormancy, awakening (early progression), and TEP (late progression). 
Genomic DNA isolation was performed using a DNeasy Blood and 
Tissue DNA extraction kit (Qiagen) according to the manufacturer’s 
recommendations. Qubit (Life Technologies) was used to quantify 
genomic DNA. Genomic barcode amplification was performed using 
Titanium Taq DNA polymerase (Clontech-Takara 639208) with a 
maximum of 50  ng of DNA per reaction. When DNA extraction 
resulted in more than 50 ng, multiple reactions were performed to 
amplify the whole material, and the PCR products were combined 
before library preparation. The following primer sequences were used 
for amplification: Fwd: ACCGAACGCAACGCACGCA, Rev: ACGA 
CCACGACCGACCCGAACCACGA. TapeStation 2200 (Agilent) was 
used to detect 151-bp PCR amplicon including the 48-bp semir-
andom barcode sequence. After purification with SPRIselect beads 
(Beckman Coulter), NGS libraries were prepared using the NEBnext 
Ultra II DNA library preparation kit for Illumina (New England Bio-
labs) according to the manufacturer’s recommendations. Libraries 
were detected and quantified using TapeStation and Qubit. NGS was 
performed at Novogene (Cambridge, UK) using the NovaSeq6000 
platform (Illumina; paired-end 150 bp).

WGS of Cell Lines
DNA was extracted using a DNeasy Blood and Tissue DNA extrac-

tion kit (Qiagen) according to the manufacturer’s recommendations. 



Lineage Tracing of Dormant Breast Cancer Cells RESEARCH ARTICLE

 MAY  2024 CANCER DISCOVERY | 885 

Qubit (Life Technologies) was used for quantification. Quality con-
trol and library preparation (28/30 samples prepared using PCR-
free library protocol) were performed by Novogene, where 150 bp 
paired-end sequencing (30× coverage) was performed on the Illumina 
NovaSeq6000 platform. Trim Galore (v-0.6.4) was used for adapter 
trimming of reads. Alignment to the hg38 human genome reference 
was performed using BWA mem (v-0.7.15; ref.  45). Conversion to 
binary, removal of PCR duplicates, sorting, and indexing were per-
formed using sambamba (v-0.7.0; ref. 48). Postprocessing and variant 
identification were performed using the Genome Analysis Toolkit 
(GATK; v- 4.1.3.0; refs. 46, 47) best practices: adding read groups using 
picard (v-2.20.6) and base quality recalibration using gatk BaseRecali-
brator and gatk ApplyBQSR algorithms. Somatic variant calling was 
performed on each sample individually using Mutect2 using time 0 
bam file POT1 (pretreatment) as normal, using the population ger-
mline resource af-only-gnomad.hg38.vcf.gz from the GATK resource 
bundle, with parameter–af-of-alleles-not-in-resource set as 0.001 and 
disabling MateOnSameContigOrNoMapped-MateReadFilter filter. 
Mutect2 variants were filtered using gatk FilterMutectCalls and only 
PASS mutations were further analyzed. BRCA driver gene mutations 
were found to have some supporting reads in the generated BAMs; 
however, they could not be detected de novo during the variant calling 
using Mutect2 due to a lack of sufficient evidence. To complement 
this, we downloaded a list of all coding variants identified in BRCA 
tissues deposited in the COSMIC database. We subset these to vari-
ants altering genes present in the IntOGen BRCA driver list or the 
pan-cancer IntOGen driver list.

As the Mutect2 analysis only offers information on de novo vari-
ants, we also used a germline caller, Platypus (29), on all samples 
including the POTs (pretreatment), to also identify any preexisting 
variants that might have undergone selection following the initiation 
of treatment. Platypus variants were annotated with VEP. All vari-
ants for which a Fisher exact test suggested a change in VAF across 
samples at a significance level of P  <  0.01 were included. Variants 
that had an average VAF  <  5% were absent from the POTs. Those 
that had a VAF > 10% were present in a specific sample. Variants that 
had at least one supporting read in either of the tumor samples were 
selected, while excluding germline mutations by dropping variants 
with a VAF > 0.1 in matched patient buffy coats. Using these variants, 
we produced heat maps outlining significant changes in VAF during 
treatment of either preexistent or de novo mutations found in breast 
cancer driver genes and all cancer driver genes, respectively. Maxi-
mum parsimony phylogenies were reconstructed from mutations 
absent in the POTs with methods from the R package phangorn (49).

Subsequently, we used the same postprocessed bam files to estimate 
copy-number profiles. This analysis was performed using sequenza 
(50). We first produced seqz files using sequenza−utils bam2seqz 
and then binned them using sequenza−utils seqz_binning with size 
of windows set to 50. We then added average coverage values of nor-
mal WGS reference samples of a study of 30 colorectal cancers (51) 
to the files and recalculated the depth ratios. Integer copy-number 
values were then estimated based on the modified depth ratios using 
sequenza. For this, we used default parameters, nonoverlapping win-
dows of 5e5, and a parameter space that was restricted to tumor cell 
content above 0.9.

Targeted Sequencing of Cell Lines
DNA from TRADITIOM T47D samples was extracted using a 

DNeasy Blood and Tissue DNA extraction kit (Qiagen) according to 
the manufacturer’s recommendations. Extracted DNA was sonicated 
and processed further as described above except for the FFPE DNA-
repair part (see “Targeted sequencing of late relapse patients” sec-
tion) to capture the libraries with the bespoke targeted panel probes. 
Captured pools were sequenced by Novogene using the NovaSeq6000 
platform (Illumina; paired-end 150 bp).

Noncoding Variant Analysis
Noncoding variants were selected via OpenCravat (all SNV exclud-

ing Exome). Noncoding SNVs were filtered with the ENCODE Cis 
Regulatory Element function and sorted for the LINSIGHT score. 
Noncoding SNVs called in 3 carbon copies and with a LINSIGHT 
score >0.4 were overlapped with our unpublished noncoding CRISPR-
KRAB Screen (repression of CRE under estrogen deprivation).

Genomic Barcodes Bioinformatic Analysis
Raw reads were trimmed for adapters and quality (Phred Quality 

≥30) with trim_galore(v-0.6.4_dev). After confirming the quality of 
processed reads with FastQC (version v-0.11.9), they were mapped to 
the Cellecta CloneTracker XP 10M Barcode library with BWA mem 
(v- 0.7.17-r1188) using default settings. The alignment maps were then 
parsed with samtools (v-1.9) to filter out all the reads with supplemen-
tary alignments and alignment quality less than 30. The filtered and 
sorted alignment maps were used to count the number of reads per 
barcode. For the barcodes supported by at least 10 reads, read counts 
were normalized with library size for each sample to get barcode fre-
quencies. Heat maps were plotted for all the barcodes with frequency 
greater than 0.1. The similarity between POTs (pretreatment popula-
tion) and T0s was shown with correlation plots supported with signifi-
cance values reported from the Spearman correlation test for each pair.

Survival dynamics was studied based on the number of barcodes with 
nonzero frequency in each sample. The POT was divided into quartiles 
to color code and create barcode subsets with low, low–mid, mid–high, 
and high frequencies. Frequency distribution at dormancy was rep-
resented with violin plots where surviving barcodes were color coded 
based on initial frequencies. The evolution of winner barcodes was 
represented with the frequency of each winner highlighted on the violin 
plot in POTs, Dormancy, and the respective awakening hyperflasks.

For TRADITIOM Dormancy, unlike TRADITIOM High, all the 
barcodes supported with at least 3 reads were considered for further 
analysis. Distribution of survival ratio (number of barcodes surviving 
in the 18 wells at month 1 to those observed in the POT) was used to 
simulate survival dynamics at month 1 with stats package in R. Mean 
and the standard deviation of the actual distribution were used in rnorm 
function to simulate random normal distribution for 20 and 1,000 
instances. Initial frequencies for 100 barcodes were simulated using 
POT frequency distribution with sample function. Random binomial 
distribution for the corresponding initial cell count was estimated using 
rbinom function with 100,000 as the POT size and simulated frequency 
as probabilities. To simulate month 1 survival in each instance, POT size 
was reduced with the simulated survival ratio for that instance. Random 
binomial distribution was again simulated for month 1 cell counts 
using rbinom function with the initial frequency as probability and the 
reduced POT size. The number of instances where that barcode had 
nonzero value were identified and plotted against the initial cell count.

We estimated doubling time for cells during the expansion phase 
of the experimental design, where we started from  ∼100,000 cells 
with 1 barcode per cell and got ∼90 million cells with a broad range 
of frequency values after 13 days in culture under unperturbed condi-
tions. Considering in “nt” days, a cell expands to 2n−1 cells, to reach “x” 
number of cells in 13 days, the cells need “t” days as described below:

t = 13 ∗ log10(2−2x)

where t is the time (in days), and x is the number of cells.
Doubling time in hours was calculated using this formula cor-

responding to all the barcodes in POT samples where the relative 
number of cells was calculated with frequency values to add up to 90 
million in each replicate.

RNA-Sequencing Analysis
Total RNA was extracted using QIAzol (Qiagen) and the RNeasy 

Mini Kit (Qiagen). Quality control, mRNA library preparation (polyA 
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enrichment), and sequencing were done at Novogene using the 
NovaSeq6000 platform (paired-end 150 bp). Raw reads for all the 
RNA-seq samples were trimmed for adapters and quality (Phred qual-
ity ≥30) with trim_galore (v-0.6.4_dev). After quality check with FastQC 
(v- 0.11.5), the reads were pseudoaligned to reference transcriptome 
(GRCh38.96) with Kallisto (v-0.46.2; ref. 52). Estimated transcript abun-
dance values reported by “kallisto quant” (number of bootstrap sam-
ples = 100) were imported by the “tximport” package in R (v-3.6.1) and 
gene-level summarization was performed using EnsDb.Hsapiens.v96 
(ignoreAfterBar  =  T, ignoreTxVersion  =  T). DESeq data set was then 
created with “DESeqDataSetFromTximport,” and lowly expressed genes 
were filtered based on having at least 10 counts in more than 3 samples. 
The filtered data set was then normalized with variance stabilizing trans-
formation (VST) to perform principal component analysis (PCA) using 
plotPCA function of DESeq2. The filtered data set was then normalized 
with VST to perform PCA using the plotPCA function of DESeq2.

Differential expression for POT (pretreatment) versus the samples 
at the latent phase and Dormant versus the awakening samples was 
estimated with DESeq2 (53). Shrunken log fold changes were calcu-
lated, to identify DEGs in all logical comparisons, with the lfcShrink 
function using “apeglm” as shrinkage estimator. Genes with a fold 
change of at least 1.5× and adjusted P values less than 0.01 were selected 
as significantly differentially expressed.

DESeq2 Wald statistic (stat) values were used to create the ranked 
lists of genes based on the expression profiles. These were used to 
analyze gene set enrichments for up- or downregulated genes in each 
comparison using gene set enrichment analysis (GSEA) software (v-3.0; 
ref. 54). The enrichments were observed with a background of hallmark 
gene sets that represent well-defined biological processes curated by 
aggregating various MSigDB gene sets (h.all.v7.4.symbols.gmt). Addi-
tionally, preadapted SWNE up and down signatures identified by Hong 
and colleagues (2) were manually added to the hallmark gene sets before 
performing the enrichment analysis. Significantly enriched gene sets 
were reported with a false discovery rate (FDR) of 25% as a threshold.

To compare awakening flasks and their TEPs (for which the repli-
cates diverge a lot), we considered each flask independently. Missing 
the replicate information in this case, we estimated DEGs using the 
edgeR package (55) with a recommended pipeline for samples without 
replicates. Common negative binomial dispersion was estimated with 
“estimateGLMCommonDisp” function with a robust option, “devi-
ance” method, and without a design model. A negative binomial gen-
eralized log-linear model was then fit to the read counts for each gene 
based on the defined contrast. This was followed by the likelihood ratio 
test with the “glmLRT” function, and the results were then parsed to 
keep DEGs with P value of less than 0.001. A ranked gene list for GSEA 
in case of these comparisons was created using the reported P value 
multiplied by the sign of the fold change.

For identifying dormancy-associated gene lists, significantly DEGs 
were selected (abs(log2FoldChange)>1 and Padj < 0.01) while comparing 
the expression profiles of replicates during dormancy in both −E2- and 
TAM-treated arms (AI: days 30, 60, 90 and TAM: days 30, 60) to the 
POTs. Z-scores were then calculated in this subset of genes across 
POTs and dormancy samples. For the dormancy-up specific gene list, 
the genes showing positive z-score ≥0.1-quantile in at least 6 dormancy 
samples were selected and ordered based on the coefficient of variation 
and cumulative z-scores. Similarly, the dormancy-down specific gene 
list was curated with genes showing negative z-scores  ≤0.9-quantile 
value of the distribution in at least 6 dormancy samples. Transcription 
profile was shown for these genes using a heat map extending the plot 
to report z-scores across all samples including UT (days 30, 120, and 
170), awakening, and TEPs of TAM and −E2 (AI) samples.

scRNA Sequencing Analysis
Quantification of genes and expressed barcodes was performed 

with the cellranger count pipeline (v-6.0.2) using GRCh38 as the 

reference transcriptome and a feature reference corresponding to 
the Cellecta CloneTracker XP 10M Barcode library. The unified fil-
tered feature-barcode matrix was imported into the Seurat package 
(v-4.1.0; ref. 56) with the Read10X function for each sample and the 
Seurat object was created for at least 200 features detected in at least 
3 cells. As very few genes indicate low-quality cells or empty droplets, 
aberrantly high gene count indicates cell doublets, and extensive 
mitochondrial contamination indicates low-quality or dying cells, 
further analysis was done on a filtered matrix after removing cells 
with very low (<200) or high (outliers) counts for feature RNA and 
a high percentage of mitochondrial contamination (>20%). Features 
with high cell-to-cell variations were then identified from the filtered 
matrix after normalization (log normalization with 10,000 as scaling 
factor) using “VST” as the selection method. Matrix with top 2,000 
highly variable features was then scaled with linear transformation 
and DoubletFinder package (v-2.0.3; ref. 57) was then used to identify 
doublets and select only singlets for further analysis.

The Cellecta barcode profile was then added to the Seurat object 
for singlets using the “Custom” tag. The list of barcodes for each cell 
was then parsed to identify cells with single or occasional multiple 
barcodes. Cells with single barcodes were annotated with the cor-
responding ID. Cells with multiple barcodes were checked for the 
frequency range of constituent barcodes. For cells with multiple 
barcodes, the barcodes above 90 percentiles in frequency range were 
chosen for their annotation. If all the barcodes were supported by 
the same number of reads and the count was greater than 3, the cell 
was annotated as “complex,” and all the rest were finally annotated 
as “others.” Another level of annotation was provided for each cell 
(only with a new single barcode annotation) marking those with the 
winning barcode as “winners” and the rest as “others.”

Logical combinations were prepared by merging samples of choice 
followed by normalization, identifying the most highly variable 
features and batch-effect correction with fastMNN. Euclidian dis-
tance from the first 30 PCs was further used to find neighbors and 
group cells together with the findCluster function. The Uniform 
Manifold Approximation and Projection (UMAP) method with the 
first 30 dimensions was used for dimensionality reduction and plot-
ted for selected subsets. Feature plots with gene sets were prepared 
based on scores derived for each gene set with the AddModuleScore  
function.

To ensure the clustering results are not influenced by cell-cycle 
genes, cell-cycle phase scores were estimated based on canonical 
markers for S and G2–M phases. The signal was then regressed from 
the fastMNN-based batch-effect corrected expression matrix while 
scaling the data. UMAPs were then performed again using the first 
10 dimensions. Cycling cells that were initially estimated in G2–M 
or S phase were then subset to plot UMAPs for understanding 
potential changes in transcriptional profiles of bona fide awakening 
(S/G2–M in awakening carbon copies) from FA (cycling cells in dor-
mancy samples). Significantly DEGs (FindMarkers: p_val_adj = 0.001, 
only.pos = TRUE) were identified for all cells during dormancy (yellow 
and golden clusters) in comparison with cells with winning barcodes 
at awakening (purple cluster) and vice versa. Functional enrichment 
analysis was then performed for the identified significant DEGs using 
enrichR package with MSigDB Hallmark gene sets (overlap count ≥ 3,  
res$Adjusted.P.value ≤ 0.05).

Nanopore Data Analysis
Nanopore sequencing was done for 2 POTs, AIα, AIγ, TAMα, and 

TAMγ. Reads passing the quality control were converted in fasta 
format and aligned to the Cellecta CloneTracker XP 10M Barcode 
library using Blast Like Alignment Tool (BLAT v-36; ref. 58). BLAST8 
format output was parsed to filter hits with alignment length greater 
than 45 (93.75% of the barcode length) and alignment percentage 
greater than 95%.
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MCF7 Geminin-mCherry NLS-GFP Cell Line Generation
To generate retroviral particles for mCherry-Geminin integration, 

HEK293-GP2 viral packaging cells were seeded into 0.1% gelatin-
coated T75 flasks. TransIT-LT1 (mirusbio) transfection reagent:DNA 
mixture was prepared using 7 μg of pLNCX2-FUCCI plasmid (Takara-
Bio) and 7 μg of pVSV-G (#138479; Addgene) plasmid, parental MCF7 
cells were transfected following the manufacturer’s instructions. Ret-
roviral particles were harvested by filtering the media through a 0.45 
μm with Millipore syringe filter and adherent target cells were trans-
duced at MOI 0.6, seeded at 300,000 cells/well in a 6-well plate for 
48-hour incubation. Cells were expanded and screened for mCherry 
expression using the EVOS XL Core Imaging System (Thermo Fisher) 
prior to geneticin treatment (600 μg/mL) over 3 weeks for neomycin 
selection. To incorporate the NLS-GFP nuclear marker, lentiviral par-
ticles were generated using the previously described method, except 
with HEK293-FT transfected with pTRIP-SFFV-EGFP-NLS plasmid 
(Addgene, #86677), pMD2.G (Addgene, #12259) envelope and psPAX2 
(Addgene, #12260) packaging plasmids. Finally, efficient eGFP-NLS 
and Geminin-mCherry-expressing cells were selected using FACS.

Continuous Live IncuCyte Imaging of MCF7 Geminin-
mCherry NLS-GFP Cells during −E2 (AI) Treatment

MCF7 Geminin-mCherry NLS-GFP cells were seeded at 350 cells/
well in 96-well format in E2+ supplemented conditions for 48 hours 
before switching to −E2 conditions (AI; using FluoroBrite DMEM as 
a replacement for standard DMEM). The IncuCyte live-cell analysis 
system was used to for automated imaging over 3 months, images 
were acquired once daily at 10× objective. Quantification of mCherry 
and NLS-GFP fluorescence was performed using automated machine 
learning algorithms within IncuCyte software.

Histone PTMs Mass Spectrometry Analysis
Histones were enriched from 0.2 to 4 × 106 MCF7 or T47D cells 

as previously described (59). Approximately 4 μg of histone octamer 
were mixed with an equal amount of heavy-isotope labeled histones, 
which were used as an internal standard (super-SILAC mix; ref. 60) 
and separated on a 17% SDS-PAGE gel. Histone bands were excised, 
chemically acylated with propionic anhydride, and in-gel digested 
with trypsin, followed by peptide N-terminal derivatization with 
phenyl isocyanate (PIC). Peptide mixtures were separated by reversed-
phase chromatography on an EASY-Spray column (Thermo Fisher 
Scientific), 25-cm long (inner diameter 75 μm, PepMap C18, 2 μm 
particles), which was connected online to a Q Exactive HF instru-
ment (Thermo Fisher Scientific) through an EASY-Spray Ion Source 
(Thermo Fisher Scientific). The acquired RAW data were analyzed 
using EpiProfile 2.0, selecting the SILAC option, followed by manual 
validation. For each histone-modified peptide, the percentage relative 
abundance (%RA) for the sample (light channel: L) or the internal 
standard (heavy channel: H) was estimated by dividing the area 
under the curve of each modified peptide for the sum of the areas 
corresponding to all the observed forms of that peptide and multi-
plying by 100. Light/heavy (L/H) ratios of %RA were then calculated 
and are reported in Supplementary Table  S8. Only peptides that 
could be reliably quantified in at least 50% of the samples for each 
condition tested were included in the analysis. The mass spectrom-
etry data have been deposited to the ProteomeXchange Consortium 
(61) via the PRIDE partner repository with the data set identifier  
PXD038030.

Histone Extraction
Cells were harvested with trypsin, centrifuged (12, 000 × g, 5 min-

utes, 4°C) and pellets were washed twice with ice-cold PBS. Histones 
were extracted using the Abcam histone extraction kit (ab113476), 
sonicated (2 pulses, 30 seconds, on Bioruptor Pico, Diagenode) 

during lysis stage and pH adjusted with Balance-DTT buffer. BCA 
(PierceTM, 23225) was used for histone quantification following the 
manufacturer’s instructions.

Cell Lysis and Western Blotting
Cell pellets were collected with trypsin, centrifuged (1,200  ×  g, 5 

minutes, 4°C), and washed with ice-cold PBS. Protein lysates were 
obtained by lysing cells in RIPA buffer (15 minutes, on ice) sup-
plemented with protease and phosphatase inhibitors. Lysates were 
sonicated (2 pulses, 30 seconds, on Bioruptor Pico, Diagenode) 
and centrifuged (14,000 × g, 15 minutes, 4°C) to remove cell debris. 
Supernatants were collected and protein concentration analyzed 
by BCA assay (Pierce, 23225). Equal amounts of protein were sepa-
rated on precast SDS-PAGE gels (Invitrogen Bolt 4%–12% Bis-Tris) 
in MES running buffer and transferred (wet transfer, 1 hour at 100 
V or overnight at 35 V) to methanol activated (5 minutes at RT) 
PVDF membrane (Immobilon-P). Membranes were blocked with 
5% BSA in phosphate-buffered saline containing 0.1% Tween-20 
(PBS-T) and incubated with primary antibodies (diluted in 5% BSA 
in PBS-T) targeting EZH2 (Cell Signaling Technology CS5246), G9a 
(EHMT2; Cell Signaling Technology CS3306), H4K20me3 (Abcam 
ab9053), H3K9me2 (Abcam 1220), H3 total (Cell Signaling Technol-
ogy CS9715), H4 total (Active Motif 61300), and β-actin (Cell Signal-
ing CS 4967). After 4 washes (RT, 10 minutes, PBS-T), membranes 
were incubated with appropriate horseradish peroxidase-conjugated 
secondary antibodies (diluted in 1% BSA in PBS-T), membranes were 
washed (4 washes, 10 minutes at RT in PBS-T), and protein bands 
were visualized using enhanced chemiluminescence (Pierce ECL) 
detection. If necessary, membranes were washed in PBS and stripped 
with Thermo Fisher Restore Western Blot Stripping Buffer (30 min-
utes, RT), washed in PBS and reblocked for further reprobing.

Inhibitor Experiments
An optimal number of cells (MCF7: 200 cells per well; T47D: 800 

cells per well) was seeded in 96-well standard plates (Corning). Fol-
lowing 2 days of incubation in E2-supplemented media, cells were 
treated with small-molecule inhibitors (1 μmol/L for MCF7 cells and 
1.5 μmol/L for T47D cells) GSK343 (EZH2 inhibitor, Sigma-Aldrich 
SML0766), HKMTi-1-005 (G9a inhibitor, kindly provided by Rob-
ert Brown), A-196 (KMT5B/C inhibitor, Sigma-Aldrich SML1565), 
or with appropriate vehicle control in six independent replicates 
and grown in estrogen-supplemented (+E2) or estrogen-deprived 
(−E2) media. Confluence was automatically assessed and calculated 
with IncuCyte Zoom software based on the phase contrast images 
acquired with IncuCyte Zoom Live-Cell Analysis System (Sartorius) 
both at the day of compound addition (day 0) and indicated days of 
incubation, in a 37°C and 5% CO2 humidified cell culture incubator. 
Data were normalized to day 0 for each time point, and conflu-
ency fold changes over time were used to represent data. One-way 
ANOVA was used for statistical analysis with the significance level 
set at P  <  0.05. Increasing statistical significance is indicated with 
asterisks (*, P < 0.05; **, P < 0.01; ***, P < 0.005; ****, P < 0.0001). 
GraphPad Prism version 9.3.1 was used to analyze and visualize  
the data.

Survival Analyses
Kaplan–Meier analysis was performed as described previously (62). 

Three main cohorts were considered for this manuscript. A meta-
cohort including several Affymetrix profiled individual cohorts, 
which were reprocessed as a single cohort, the TCGA cohort, and the 
METABRIC cohort (63). For the analysis, patients were dichotomized 
based on the median expression of EZH2, EHMT2, and KMT5C, and 
a Cox regression analysis was run (where possible, using covari-
ates). The Kaplan–Meier survival plot, and hazard ratio with 95% 
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confidence intervals and log-rank P value were calculated and plotted 
in R using Bioconductor packages.

Data and Code Availability
Data are available at the Gene-Expression Omnibus under acces-

sion number GSE234185. This includes raw and processed data for 
RNA-seq (GSE234171), genomic barcodes (GSE234174), scRNA-seq 
(GSE234181), and WGS (GSE234173). The rest of the data can be 
made available from the corresponding authors upon request.

The code for all the analyses except WGS is accessible at the github 
repository https://github.com/hd4git/traditiom. The WGS code used 
in this manuscript is equivalent to the one published in (36, 51).
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