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Abstract

First generation immigrants to the U.S. have higher fertility rates than
natives. This paper analyzes to what extent this factor provides political
support for immigration, using an overlapping generation model with pro-
duction and capital accumulation. In this setting, immigration represents
a dynamic trade-off for native workers as more immigrants decrease cur-
rent wages but increase the future return on their savings. We find that
immigrant fertility has surprisingly strong effects on voter incentives, espe-
cially when there is persistence in the political process. If fertility rates are
suffi ciently high, native workers support immigration. Persistence, either
due to inertia induced by frictions in the legal system or through expec-
tational linkages, significantly magnifies the effects. Entry of immigrants
with high fertility has redistributive impacts across generations similar to
pay-as-you-go social security: initial generations are net winners while
latter generations are net losers.
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1 Introduction

This paper examines the political economy of immigration policy. In virtually
all democratic societies, working-age cohorts account for a large majority of
voters. Because immigration reduces the capital-labor ratio and therefore tends
to reduce wages, one might expect the working-age majority to oppose immi-
gration. Yet many countries are remarkably open to immigration, or at least
tolerate immigration by not enforcing immigration restrictions.
When immigrants have children, voting on immigration is complicated by

intertemporal considerations. Because a lower capital-labor ratio also increases
the return on capital, voters are supportive of policies that increase the working-
age population in the future, at a time when they are retired and expect to earn
capital income. A decision for or against immigrants with non-zero fertility is in
effect a decision not only about current wages but also about the future return
on capital. This motivates the paper’s question: Can high immigrant fertility
explain voter support for immigration?
We examine the dynamic trade-offs induced by immigration in a two-period

overlapping generation model with neoclassical production and capital accumu-
lation. This is arguably the most simple environment for voting with endogenous
factor prices. In the model, immigrants decrease current wages, which reduces
native workers’utility. However, immigration has two effects that decrease the
future capital-labor ratio. First, reduced wages translate into lower savings per
worker, and thus lower aggregate savings relative to a case in which wages don’t
change. Second, if first-generation immigrants have more children than natives,
the future labor force is higher relative to a case where first generation immi-
grants have the same fertility as natives. These two effects decrease the future
capital-labor ratio and raise current native workers’utility by increasing their
future return on capital.
Additional effects arise when voting decisions are linked over time, either

through game theoretic arguments or because of frictions in political decision
making, and when the saving rate responds to changes in the future interest
rate. Intertemporal linkages between voting decisions matter because future
immigration chosen by the next generation benefits the current one. We first
examine voting under log-utility, which simplifies the analysis due to a constant
savings rate, and then consider preferences with constant relative risk aver-
sion (CRRA). If relative risk aversion exceeds one, as the empirical literature
suggests, a falling saving rate magnifies the positive effect of immigration on
the next period’s capital-labor ratio and therefore increases voting support for
high-fertility immigration.
The paper makes several contributions. First, we show that if fertility rates

of immigrants are high enough, the young are in favor of some immigration irre-
spective of what future generations do. Second, voter support for immigration
is enhanced (a) if there is a positive probability that the next generation will be
unable to change the immigration quota; or (b) if voters expect the next gen-
eration to condition their vote on the current voting outcomes. Third, we use
numerical calculations to show that the model version with political frictions
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can explain immigration at rates observed in the U.S. We also show that immi-
gration policy raises game theoretic issues similar to voting over pay-as-you-go
social security. Just like social security, immigration benefits the retiree genera-
tion but imposes cost on workers. For this reason, current votes on immigration
depend importantly on expectations about future immigration.1

Related literature on political-economic equilibrium models of immigration
includes Benhabib (1996) which studies endogenous political-economic equilib-
rium immigration policy when agents are heterogeneous; Ortega (2005, 2010),
who studies the Markov political-economic equilibrium of endogenous immigra-
tion policies with skill-upgrading in the presence of differentiated labor. Russo
(2008) studies endogenous immigration policy with skilled and unskilled labor
in a model where agents display immigration aversion of unskilled labor. Dol-
mas and Huffman (2004) study the joint political decision of immigration and
redistribution policy, while Sand and Razin (2007) study the Markov equilib-
ria of immigration and a pay-as-you-go social security system. Papers on the
dynamic economic effects of specific immigration policies include Storesletten
(2000), Lee and Miller (2000), and Ben-Gad’s (2004, 2008).
A crucial assumption driving the results is that first-generation immigrants

have higher fertility rates than natives. This assumption has been used in the
theoretical model of Sand and Razin (2007), as well as in a calibrated model in
the paper of Lee and Miller (2000), who back up this assumption from cross-
section data.2 Evidence documenting higher fertility of immigrants in recent
years is provided by Livingston and Cohn (2012) who use data from the National
Center for Health statistics, the US census (1990) and the American Community
Survey (2010). Swicegood et al. (2006) use the American Community Survey
for the period 2000-2004, and Sevak and Schmidt (2008) use many data sources
for their estimates. For demographic-projection purposes, the US bureau of the
census allows fertility rates to vary over time for several racial/ethnic groups
and to converge with national levels in the long run (see Hollman et al. (2000)).
Other evidence includes Hill and Johnson’s (2002) time series analysis of to-
tal fertility rate in California that documents that first generation immigrant
women have significantly higher total fertility rates than native women for their
1982-1998 analysis period, with no significant difference of second and successive
generations; and Bean et al. (2000) cross-sectional study of fertility of Mexican
origin-women in the US which shows similar findings.
The model abstracts from fiscal policy. This is in part to show that a stan-

dard dynamic macro model augmented by political decisions and differential

1See Boldrin and Rustichini (2000) and Cooley and Soares (1999) for analogous reasoning
about social security. We abstract from social security for clarity, to avoid mixing the factor
price effects of immigration with the effects of social security.

2Lee and Miller’s assumption come from the calculations by the panel on the demographic
and economic impacts of immigration made for the book "The New Americans" (1997). The
data source used to compute fertility of different groups is the June 1994 Current Population
Survey and tabulations from the National Center for Health and Statistics. The cross section
analysis implies higher fertility for the first-generation immigrants, with roughly the same
fertility for the third-generation immigrants and natives, while the 2nd generation immigrants
has a number between the two.
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fertility has the potential to explain immigration without having to invoke re-
distributional concerns. In part we exclude fiscal issues because they could enter
in so many ways that the paper would lose focus.3

The paper is organized as follows. Section 2 describes the economic environ-
ment for the dynamic voting games. Section 3 introduces the baseline model
that identifies the main trade-offs faced by the median voter, using logarith-
mic utility to simplify the exposition. Section 4 presents two variations of the
baseline model that both create persistence in immigration policy. One ver-
sion assumes inertia in the political process, motivated by the idea that there
are often “checks and balances” embedded in the political system that make
it diffi cult to change laws. The second version assumes that each generation
votes on whether to continue or not an immigration policy set in the past, and
where a generation has the option to restart the system (choose the quota) if the
previous generation did not allow immigration. Section 5 examines the model
with more general CRRA preferences. The analysis is more complicated and
the conceptual insights are similar to log-utility, but the generalization is quan-
titatively important: a low elasticity of intertemporal substitution turns out to
strengthen the impact of high immigrant fertility. Section 6 concludes. Proofs
are presented in the appendix.

2 The Economic Framework

Economic agents live for two periods. In the first period (young age) they work,
earn a wage and choose how much to consume and save. In the second period
(old age) they retire and consume out of their first-period savings. We refer to
the period-t young as generation t.
The labor force at time t, denoted Lt, consists of Nt young natives plus Mt

immigrants, which are assumed to be young4 :

Lt = Nt +Mt = Nt (1 + θt) (1)

where

θt =
Mt

Nt
(2)

3Considerations of fiscal policy might increase or decrease voter support for immigration.
Potentially relevant issues include the existence and design of public pensions, the design
of (static) redistributional taxes and transfers, and the nature of public goods. As noted
in the literature discussed above, public pensions have different ramifications depending on
pay-as-you-go versus funded designs and defined contributions versus defined benefits. For
redistributional taxes or transfers, it matters to what extent immigrants qualify for benefits
and/or they have a different income distribution than natives. Public goods interact with
immigration if there are economies or diseconomies of scale in their production. It is beyond
the scope of this paper to address all these issues adequately; social security and redistribu-
tional taxes are arguably studied well enough that their inclusion would complicate the model
without providing much new insight.

4This assumption is consistent with the age distribution of US immigrants, which is heavily
skewed toward working years. See for example Smith and Edmonston (1997), editors. Pp 55.
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is the ratio of immigrant workers to native workers. We assume that the pool
of potential immigrants is large enough that θt is generally determined by a
limit (the immigration quota) imposed by the host country. In cases when
immigration is unlimited, we assume that Mt/Nt takes an exogenous “large”
but finite value denoted θ̄.5

A key assumption is that natives have η children per agent whereas immi-
grants have εη children, where ε > 1 parameterizes the fertility of immigrants
relative to natives. Second generation immigrants (children of immigrants) are
considered naturalized and identical to natives.6 Given these assumptions, the
evolution of the young native cohort is given by

Nt+1 = η (1 + εθt)Nt (3)

Production is Cobb-Douglas with capital share α:

F (Kt, Lt) = Kα
t L

1−α
t .

Factors are paid their marginal products: Rt = α (Lt/Kt)
1−α and wt = (1 −

α) (Kt/Lt)
α. We assume capital depreciates fully after one generation, so Rt is

the gross return to capital. The young supply one unit of labor and earn a wage
wt.
The consumption/saving problem of individuals is

Ut = Max
c1t ,c

2
t+1,st

{
u(c1t ) + βu(c2t+1)

}
(4)

s.t. c1t + st = wt and c2t+1 = Rt+1st,

where c1t and c
2
t+1 are consumption when young and old during periods t and

t + 1, respectively. The period utility u is assumed to have constant-relative-
risk-aversion (CRRA):

u(ct; γ) =
(ct)

1−γ

1− γ if 0 < γ & γ 6= 1

= ln ct if γ = 1

where γ can be interpreted as relative risk-aversion and 1
γ as elasticity of in-

tertemporal substitution. Maximizing Ut yields savings st = σtwt with optimal
savings rate

σt =
β

1
γ (Rt+1)

1
γ−1

1 + β
1
γ (Rt+1)

1
γ−1

. (5)

5The country is assumed to be “rich” enough that individuals from other countries try to
immigrate. One may think of the upper bound θ̄ as determined by the supply of migrants or
by physical constraints on the country’s ability to absorb immigrants.

6We abstract from the possibility of differential labor supply in order to keep the model
simple. Empirically, there is evidence (see for example, Ribar (2012)) that shows that first
generation male immigrants to the US tend to devote more time to market labor activities
than natives. However, women tend to devote less time than natives. Since these forces go in
opposite directions, the net effect is ambiguous.
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The maximum utility for given (wt, Rt+1) defines an indirect utility function
that can be written as

U (wt, Rt+1) =

(
1 + β

1
γR

1
γ−1

t+1

)γ
w1−γ
t

1− γ if 0 < γ & γ 6= 1 (6)

= (1 + β) lnwt + β lnRt+1 if γ = 1

Aggregate capital next period equals savings per worker times the number
of workers:

Kt+1 = Nt (1 + θt) st. (7)

Let κt = Kt
Nt

denote the capital stock per native worker and let kt = Kt
Lt

=
Kt

Nt(1+θt)
denote capital divided by the entire labor force. Then the evolution of

capital per worker is given by

kt+1 =
κt+1

1 + θt+1
=

(1 + θt)

η (1 + εθt) (1 + θt+1)
σtwt. (8)

where the component (1+θt)
η(1+εθt)

wt is pre-determined from period-t savings and
immigration.
The wage

wt = (1− α)

(
κt

1 + θt

)α
(9)

depends positively on κt and negatively on current immigration θt.7 The return

Rt+1 = α

(
1 + θt+1

κt+1

)1−α
(10)

depends on κt+1 and on the future immigration quota θt+1. Hence the indirect
utility of the young depends on their own voting decision when young, θt, and on
the voting decision of the next generation, θt+1; it can be written as a function

Vt = V (θt, θt+1, κt) . (11)

Whenever V is invoked below, the first argument is θt and the second argument
is θt+1; when dependence on κt is inessential, we omit the third argument for
simplicity. Because θt+1 enters (6) positively via Rt+1, ∂V

∂θt+1
> 0 always holds

(given θt). The sign of dVdθt is ambiguous, however, and to be determined in the
analysis.

7The empirical literature is not unanimous in whether an immigration flow decreases the
average wages of natives. Borjas (2003) and Aydemir and Borjas (2007) find that immi-
gration decrease the wages of natives. Card (2001) and Friedberg (2001) do not find any
effects. Ottaviano and Peri (2012) find a positive effect on native’s wages and negative on
previous immigrants’wages. To keep the model tractable, we follow the macroeconomic liter-
ature in assuming that the average wage depends negatively on labor supply (see for example
Storesletten (2000), Dolmas and Huffman (2004), Sand and Razin (2007), Boldrin and Montes
(2015)).
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3 A Baseline Model of Immigration

For this and the next section, we assume logarithmic utility (case γ = 1). This
simplifies the analysis considerably and provides the main conceptual insights,
as we will verify later. Notably, it turns out that the optimal immigration quota
under log utility does not depend on capital per worker or on expectations about
future policy.

3.1 Voting in the Log-Utility Case

With log-utility, (5) implies a constant savings rate β/(1 +β). The evolution of
capital-per-worker and capital per native worker can be written in closed form
as

kt+1 =
β (1− α)

(1 + β)

(1 + θt)

η (1 + εθt) (1 + θt+1)
kαt (12)

and

κt+1 =
β (1− α)

(1 + β)

(1 + θt)
1−α

η (1 + εθt)
καt . (13)

After substituting wt (κt, θt) and Rt+1 (kt+1 (κt, θt, θt+1)) into (6), indirect
utility can be written as

V (θt, θt+1) = A+χ lnκt− (1 + χ) ln (1 + θt)+ ln (1 + εθt)+ ln (1 + θt+1) (14)

where κt is omitted as argument in V because it enters separably and therefore
does not influence voting incentives, and where

χ =
α (1 + αβ)

β (1− α)
(15)

and A are constants (A is unimportant; see appendix for derivation.) Inspection
of the indirect utility shows that V is unambiguously increasing in the future
quota of immigration (θt+1), reflecting a reduced future capital-per-worker ra-
tio, whereas the current immigration quota (θt) has terms going in opposite
directions. The intuition for the former is the positive effect of a lower future
capital-per-worker ratio on the return on capital; the intuition for the latter is
explained below.
Allowing immigrants decrease current wages (wt), which impacts negatively

the native workers. There are, however, two forces that will decrease the future
capital-labor ratio, and this ultimately impacts positively the current gener-
ation. First, the lower wages translate into lower savings per worker, which
decreases aggregate savings relative to the case in which wages don’t change.
Second, as immigrants are assumed to have more children than natives by a
factor ε > 1, the future labor force is higher (relative to a case of same number
of children as natives), which also decreases the future capital-labor ratio. We
can therefore summarize the trade-offs of immigration: lower current wages in
exchange of a higher future return on capital at the time of retirement. The net
effect in lifetime utility depends on the relative magnitudes of χ and ε.
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We maintain throughout the paper that voting outcomes are determined by
the young generation. This captures the empirical fact that even in countries
with very low birth rates, a large majority of voters are working-age.8 Thus
immigration θt is chosen to maximize the utility of a representative generation-
t voter. Voters rank allocations by immigration quotas, and they favor the one
that maximizes their indirect utility.
Maximizing the indirect utility (14) yields the optimal policy

θt = θ0 ≡ max

[
0 ,

ε− χ− 1

ε · χ

]
(16)

taking into account the constraint θt > 0.9 Therefore the most preferred im-
migration level for the young is (i) positive if ε > 1 + χ, (ii) increasing in
the fertility rate of immigrants, and (iii) bounded above by 1

χ . Because each
generation has the dominant strategy to choose this specific (constant) level of
immigration, the system is also politically sustainable.
Over time, an economy with immigration rate θ0 > 0 converges to a lower

steady state capital-labor ratio. Provided the economy is dynamically effi cient
(which requires χ > 1 − α; see appendix), steady state utility is lower than
without immigration. Thus starting from a steady state without immigration,
some “transitional” generations enjoy increased utility, but later generations
would be better off without immigration. This pattern of transitory welfare
gains followed by longer term welfare losses is similar to the welfare effects of
a pay-as-you-go social security system; both immigration and social security
redistribute welfare from future generations to the earlier ones.

3.2 Simple Calculations for the U.S. (and Europe)

In the basic model, immigration occurs if the fertility rate of immigrants exceeds
1 + χ. This turns out to be a high hurdle for empirically plausible parameters.
Swicegood et al. (2006) estimate that the total fertility rate of U.S. immi-

grant women is 27% higher than fertility of native women using 2000-2004 data
from the American Community Survey (ACS). Sevak and Schmidt (2008) esti-
mate a total fertility rate that is 56% higher for immigrants in 1990, and 43%

8For simplicity, the model assumes working age and retirement periods of equal length and
no early mortality. Taking these assumptions literally, η > 1 is required for a working-age
majority. Empirically, a working-age majority is a robust finding when mortality is modeled
more realistically, e.g., by assuming stochastic mortality at the start of retirement (which
stays within a two-period setting). We show in the appendix that such an extended model
reduces to the same economic framework as our model provided β is suitably reinterpreted,
and that a working-age majority is obtained for the US for η > 1/2.
Note that immigration cycles (as in Ortega 2005) are ruled out when the majority is working-

age.
9Note that the optimization treats θt+1 as given and as being unaffected by θt. This

is rational because the resulting optimal quota θ0 applies for all initial conditions (all κt).
Put differently, the constant function θt = θ0 can be interpreted as equilibrium in Markov
strategies, because θt = θ0 is optimal if the next generation follows the same strategy θt+1 =
θ0. Hence the seemingly myopic solution (taking θt+1 as given) is Markovian. Taking θt+1
as given also rules out trigger strategies (see Section 4.2).
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higher in 2000 than for natives using census data; and Lee and Miller (2000)
have used a fertility factor of 1.35 for first generation immigrants with 1994
cross-section data from the ACS for the demographic projections of their model
asessing the fiscal impacts of immigration.10

More recently, Livingston and Cohn (2012) estimate with census data that
the general fertility rate is 70% higher for immigrants in 1990 and 49% higher
in 2010.11 Since the general fertility rate doesn’t take into account the age-
composition of women, we construct total fertility rates with the data they
present. This yields total fertility rates of 1.96 children for native-born women
and 3.37 children for foreign-born women in 1990, while numbers for 2010 are
1.755 for native-born women and 2.696 for foreign women. These numbers imply
fertility factors of 1.72 in 1990 and 1.53 in 2010.
In summary, the empirical evidence for the U.S. suggests values of ε between

1.3 and 1.7. We take ε = 1.5 as baseline for calibration.
Sobotka (2008) summarizes the fertility rates of native citizens and immi-

grants in several European countries, using data from several sources. Taking
ratios from his values, we obtain implied values for ε that range from 1.17 for
Sweden to 2.07 for Italy. (See appendix for details.) Taking a simple average
across the European data, the average ratio of immigrant to native fertility
is 1.53. While we focus on the U.S. (to maintain a coherent calibration), its
worth noting that ratios of immigrant-to-native fertility of 1.5 (or higher) are
not special to the U.S.
Regarding immigration, Ben-Gad (2008) reports that the net rate of U.S.

immigration between 1991 and 2000 was 3.2 per thousand annually.12 Lee and
Miller (2000) assume 900,000 immigrants annually in net immigration, in line
with census projections. That rate also represents 3.2 immigrants per thousand
natives in year 2000. This represents a flow of 8.3% for a generational period
of 25 years and includes illegal immigration. Thus a successful model should
explain values for θ of around 8%.
Optimal immigration in the model (θ0) generally depends on α and β, which

determine χ. We follow the literature in setting the capital share at α = 1
3 .

For the calibration of β, we exploit that under log utility and Cobb-Douglas
production, the gross return to capital in steady state is given by R = α(1+β)

(1−α)β ·
η (1 + εθ). This can be solved for β to obtain:

β =
α

(1− α) r − α , where r ≡
R

η (1 + εθ)

10Using the general fertility rate, Swicegood et al. estimate that the difference is 40%, as
opposed to 27% when the total fertility rate is used. Sevak and Schmidt in turn estimate
general fertility rates that are 56% higher in 1990 and 57% higher in 2010. The fertility
estimates for Lee and Miller’s are more thoroughly discussed in Smith and Edmonston (1997).
11Livingston and Cohn report birth rates in 1990 of 66.5 children for each 1000 native born

women, and 112.8 children for each 1000 foreign-born women. The implied fertility factor is
112.8/66.5 = 1.696. Similarly for 2010 they report birth rates of 58.9 children for each 1000
native-born women, and 87.8 for each 1000 foreign-born women. We estimate total fertility
rates with the information on children per women disaggregated by age.
12That number includes illegal immigration to the US.
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The ratio r relates the return on capital to the rate of economic growth
and turns out to be an insightful moment to match with data because it can
be measured directly and because this approach will help maintain a consistent
calibration for β when we consider general CRRA preferences. If the annual dif-
ference between the return on capital and the growth rate is around .01− .03 (as
empirically reasonable for broad concepts of capital, accounting for productivity
growth), compounding for 25 years implies an r-ratio in the range 1.0125 = 1.28
to 1.0325 = 2.09. We use r = 1.5 as baseline for calibration. Together with
α = 1

3 , this implies β = 1
2 and χ = 7

6 = 1.17.

Using the equation for θ0, the baseline values ε = 1.5 and χ = 1.17, the
young optimally choose zero immigration. Non-zero immigration in this simple
model would require ε > 2.17; an optimal level of 8% immigration would require
ε = 2.39.
Alternatively, if one considers the entire range [1.28, 2.09] for r, implied

values for β are in [0.24, 0.69] and values for χ are the range [0.95, 1.76]. For
χ ≥ 0.95, the basic model requires ε ≥ 1.95 to explain immigration. While
χ < 0.95 may be relevant for economies with strong desire to save (perhaps
aging societies in the future), and ε ≥ 1.95 may be relevant for countries with
very low domestic fertility (e.g. in parts of Europe), neither is empirically
plausible for the United States.
Thus, while the baseline model explains conceptually why high immigrant

fertility favors immigration, an expanded model will be needed to explain U.S.
immigration quantitatively.

4 Persistence in the Political Process

This section shows that intertemporal linkages in the voting decisions signif-
icantly strengthen the impact of immigrant fertility. We study two types of
linkages. One version considers persistence of the law and the other considers
trigger strategies. We will show that both versions can produce voting equilibria
with positive immigration at empirically observed levels of immigrant fertility.

4.1 Persistence of the Law and Immigration

Some nations like the US have multiple “checks and balances” embedded in
their political systems that make it diffi cult to enact new laws, as would be
required to change immigration rules. In the U.S., for example, a new law must
be approved by the House, the Senate, and the President, each of which are
separately elected; in addition, there are procedural rules (e.g. the filibuster in
the Senate) that allow minorities to block new laws. The main visa program
in the US was enacted in 1965 and although there have been some changes,
it still regulates the bulk of (legal) immigration. This section examines the
ramification of political frictions that create persistence in immigration rules.
To model persistence in immigration law, assume that opportunities to

change the law arise at uncertain times. Every period, there is an exogenous
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probability p that new legislation cannot be enacted, so the immigration quota
remains at the previous value, θt = θt−1. This restriction influences the choice
of a new quota because voters know that with positive probability, their choice
will remain in effect during their own retirement.
The specific timing is as follows. At the beginning of a period, before indi-

viduals take economic and political decisions, nature reveals the state, which is
either that immigration law can be changed (state I) or not (state II). If the law
can be changed, then the young choose their most preferred immigration level,
so θt = θIt is optimally chosen. Otherwise, θt = θIIt = θt−1 is predetermined.

Consider the optimization problem of the period-t young in state I, when
they can set θIt . Current consumption depends on immigration as in the previous
section, c1t = c1t (θ

I
t ). With probability 1−p, state I is realized in period-t+1, so

θt+1 = θIt+1 will be determined by the young in period-(t+ 1). Then as in the
previous section, c2t+1 = c2t+1(θIt , θ

I
t+1) depends on both generations’choices (via

Rt+1). With probability p, state II is realized in period-t+ 1. Then θt+1 = θIt
is determined by generation t, so c2t+1 = c2t+1(θIt , θ

I
t ).

Thus voting behavior is obtained by maximizing

Max
θIt≥0

ln
[
c1t (θ

I
t )
]

+ β(1− p)
[
ln c2t+1(θIt , θ

I
t+1)

]
+ βp

[
ln c2t+1(θIt , θ

I
t )
]

(17)

taking θIt+1 as given. Using the closed-form solutions for factor prices, capital-
per-worker, and savings, the objective function can be written as indirect utility
over voting decisions:

V (θIt , θ
I
t+1) = −(1 + χ− p) ln(1 + θIt ) + ln(1 + εθIt ) + (1− p) ln(1 + θIt+1), (18)

where an intercept and a separable κt-term are omitted (see appendix).
Depending on parameters, three cases may apply: (i) If p ≤ ε− 1− χ, then

θIt = 0 is optimal, so there is no immigration. (ii) If p > ε− χ− 1 and p < χ,
then there is an interior optimum: θIt = ε−χ−1+p

ε(χ−p) . (iii) If p ≥ χ (which implies
1−p < ε−χ because ε > 1), then unrestricted immigration is optimal, so θIt = θ̄
is bounded only by the immigrant pool. Since the numerical calculation suggest
χ ≥ 1, we henceforth disregard case (iii). Then the model implies immigration
quotas of

θt = θp ≡ max

[
0 ,

ε− χ− 1 + p

ε (χ− p)

]
. (19)

The higher the probability p that future generations cannot change the law,
the higher is the immigration quota. A higher probability p also expands the
set of parameters (ε, χ) for which immigration is positive. Thus persistence of
the law unambiguously favors more immigration.
To illustrate this numerically, consider again α = 1

3 , β = 1
2 (so χ = 1.167)

and suppose ε = 1.5. Then positive immigration occurs for probabilities p >
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ε− 1− χ = 2
3 . We obtain 8% immigration (the U.S. value) for a persistence of

p = 0.72.13

The magnitude of θ is quite sensitive to the parameter p and to the difference
ε−χ. For example, p = 0.695 would imply 4% immigration and p = 0.76 would
imply 16% immigration.14 If ε is high and χ is small, immigration occurs even
when p is relatively low; e.g., for all p > 0.3 when ε = 1.7 and χ = 1. If ε is
relatively low, there are empirically plausible values for χ that do not support
immigration for any p; e.g., θp = 0 for all p when ε = 1.3 and χ ≥ 1.3.

4.2 Expectational Linkages

Expectational linkages are an alternative mechanism to generate persistence.
For this section, we consider a simple set of trigger strategies and implied ex-
pectations: each generation expects the next generation to leave the immigra-
tion quota unchanged, provided the immigration quota remains unchanged in
the current period. If the quota is changed, however, the next generation is
expected to disregard expectational linkages, i.e., to optimize as in the base-
line model. The underlying immigration quota is set by some initial “starting”
generation t0.15

In game-theoretic terms, the task is to show under what conditions immigra-
tion can be sustained as a subgame-perfect equilibrium of this repeated voting
game. Much of the reasoning is analogous to voting over social security (Coo-
ley and Soares (1999), Boldrin and Rustichini (2000)), and here adapted to
immigration.16 Hence the exposition is brief.
The new element of this game is that decisions can be conditioned on history,

and so we define V (θt, θt+1|ht−1) as the utility that a member of generation-t
obtains when the equilibrium immigration quotas are θt and θt+1, given the his-
tory ht−1 of previous generations’immigration choices. We continue to assume
logarithmic utility, so κt is separable in the utility function and irrelevant for
voting incentives.
In general, the optimal strategy of generation t0 involves choosing a sustain-

able policy that is utility maximizing. By sustainable we mean one that future
generations will not repudiate along an equilibrium path. As candidate for the
starting generation’s optimal choice, let θ1 be the utility-maximizing immigra-
tion quota for generation t0 if sustainability is taken for granted. That is, let θ

1

13We discuss the history of U.S. immigration law in section 5.4 below and explain why p
is diffi cult to calibrate. Hence we calibrate other parameters and use implied values of p to
illustrate the magnitude of the effects involved.
14This sensitivity applies mostly to log-utility. Sensitivity to p is substantially less under

CRRA preferences with lower elasticities of substitution; see analysis in Section 5.3.
15One may assume that if policy is changed and a generation reoptimizes, the following

generation is allowed to restart the dynamic game, but this is immaterial because it will not
occur in equilibrium.
16The interaction of immigration and pay-as-you-go social security is much discussed in the

literature (e.g., Sand and Razin (2007)). Without disputing that social security would affect
voting over immigration, social security is excluded here because it would obscure the factor
price effects caused by immigration per se.
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maximize
V (θ, θ) = −χ ln (1 + θ) + ln (1 + εθ) .

This implies

θ1 = max

[
0 ,

ε− χ
ε (χ− 1)

]
. (20)

for χ > 1, and θ1 = θ̄ for χ ≤ 1.
Notice that θ1 equals the limiting value of (19) as p→ 1. The immigration

quota is positive for lower values of ε than in the previous sections. For ε > χ,
θ1 is strictly greater than the immigration quotas in (16) and in (19) for all
p < 1.
It is straightforward to verify that θ1 is sustainable. If a generation t deviated

and set θt 6= θ1, it must expect θt+1 to be given by (16), which means θt+1 = θ0.
Because conditional on θt 6= θ1, θt+1 does not depend on θt, generation t would
also choose θt = θ0 according to (16), so θt = θt+1 = θ0. The best deviation from
θ1 thus yields utility V (θ0, θ0). Because θ0 is in the feasible set for maximizing
V (θ, θ) and θ0 6= θ1 whenever θ1 > 0, V (θ1, θ1) > V (θ0, θ0) holds for all θ1 > 0.
Thus generation t0 sets θt0 = θ1. All subsequent generations follow the

strategy of setting θt = θ1 if θt−1 = θ1 and setting θt = θ0 if θt−1 6= θ1. Hence
the voting outcome is θt = θ1 for all t.
Quantitatively, expectational linkages are capable of producing extremely

high immigration quotas for empirically plausible fertility rates. In the setting
with ε = 1.5, α = 1

3 , and β = 1
2 , one finds θ

1 = 1.33.
One objection to trigger strategies is that they may not be perfectly credible

in reality. We have in effect analyzed this objection already, because imperfect
credibility can be modeled as a positive probability 1−p that the game re-starts.
Then the analysis of the previous section would apply, and immigration would
be determined by (19).
In summary, the analysis suggests that a model with persistence in setting

immigration policy —through legislative frictions, expectational linkages, or a
combination thereof —can explain voter support for positive immigration quotas.

5 CRRA Preferences: More Support of Immi-
gration if γ > 1

In this section we examine voting over immigration under more general CRRA
preferences. The analysis is more complicated because savings generally de-
pend on expectations about the returns to savings, which are endogenous. This
extension is important, however, because elasticity of intertemporal substitu-
tion regulates to what extent invidual utility is affected by immigration-induced
changes in the returns to savings.
The problem of young voters with general CRRA utility (γ 6= 1) is to maxi-

mize Ut in (6), where Rt+1 is determined implicitly by (10), (8), and (5).
There are two critical differences to logarithmic utility. First, the maximiza-

tion problem of voters is not separable in capital per native worker (κt) and
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the immigration quotas (θt, θt+1). Even if expectations about θt+1 are taken as
given, θt is generally a function of κt and not a constant. Second, since θt+1

will generally depend on κt+1, and κt+1 will depend on the time-t savings rate,
period-t voters may recognize that their savings have an impact on θt+1 even in
absence of other expectational linkages.
To separate these two issues, we consider two scenarios for voting. First we

consider optimal choices when voters take θt+1 as given. Second, we consider
voting when voters recognize the functional dependence of θt+1 on the capital
per native worker. The latter is formalized as voting over Markov strategies.
We introduce both scenarios without persistence and then add persistence to
the Markov setting.

5.1 Voting with Static Expectations

Voters have an incentive to approve immigration because immigration raises the
return on capital Rt+1. Under CRRA preferences, the saving rate responds to
changes in this return; and since current immigration affects Rt+1, the choice
of θt will affect the saving rate. This effect is given by

dσt
dθt

=
dσt
dRt+1

dRt+1

dθt
=

(
1

γ
− 1

)
σt(1− σt)
Rt+1

dRt+1

dθt
(21)

where σt(1− σt)/Rt+1 > 0 and dRt+1/dθt > 0.
If the intertemporal substitution 1/γ is less than one (i.e., if γ > 1), the

saving rate responds negatively to higher Rt+1 and hence to higher θt. In turn,
reduced savings raise Rt+1, so the impact of immigration on Rt+1 is greater than
under log-utility. The incentive to accept high-fertility immigrants is increased.
In contrast, if 1/γ > 1, the savings rate would respond positively to Rt+1 and
to θt, so the the impact of immigration on Rt+1 is reduced, and the incentive
to accept high-fertility immigrants is also reduced. Empirical evidence favors
an intertemporal substitution less than one.17 Hence CRRA preferences tend
to strengthen voter incentives to approve immigration.
In more detail, suppose for this section that generation t takes future immi-

gration θt+1 as given (static expectations). An interior solution to their voting
problem implies the first order condition

β−
1
γ α1− 1

γ

(
1 + θt+1

κt+1

)φ
=

(1−α)
α

(ε−1)
(1+εθt)

− α
1− φ (22)

where φ = (1 − α)(1 − 1
γ ) > 0,18 and that capital per native worker can be

written as

κt+1 =
α [(1− α) + αγ] (1 + θt)

1−α

η [εα (1 + θt) + (γ − α) (ε− 1)]
καt . (23)

17Classic references are Hall (1988) and Ogaki and Reinhart (1998).
18All derivations are in the appendix. Corner solutions (θt = 0) are omitted here; they

apply if the interior solution would imply θt < 0.
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These difference equations define a perfect foresight path for {θt, κt}t≥t0 . The
system is saddle-path stable for a wide range of parameters and hence converges
to a steady state. Given convergence, most insights derive from comparing
steady states.
The primitive parameters in the CRRA model are {α, β, γ, η, ε}. We use

γ = 4 as baseline value, and again assume α = 1
3 and set β to match r = 1.5.

The latter is more subtle than under log-utility because r is influenced by all five
parameters. It turns out, however, that all combinations of β and of population
growth η(1+ εθ) that imply a common steady state value for r also imply the
same dynamics around the steady state. Hence population growth becomes
irrelevant when β is calibrated to match r. For reporting β, we assume η(1+
εθ) = 1.25 (about 1% population growth per year); then using the equation
for calibrating β (see the appendix for details), one obtains β = 0.412,. Using
ε = 1.5 and θ = 0.08 (as discussed in Section 3.2) η is calibrated as η =

1.25
1+1.5·0.08 = 1.116.
For these baseline parameters, we find that the model requires ε = 1.78

to obtain 8% immigration in steady state. This is substantially less than the
corresponding value under log-utility (recall ε = 2.39 in Section 3.2), though
still greater than the empirical fertility ratios in most countries.19

To characterize immigration policy out of steady state, we compute log-
linearized approximations to the policy function around the steady state. Im-
portantly, immigration varies positively with deviations of κt+1 from its steady
state; e.g., for the baseline parameters and ε = 1.78, we find an elasticity
∂ ln(1+θt+1)
∂ ln(κt+1) = 0.077. Since κt+1 depends on θt, current immigration affects
θt+1, and this conflicts with the assumption of static expectations.

5.2 Voting with Markov Strategies

Voters who understand the model’s dynamics should expect future generations
to condition the immigration quota θt+1 on κt+1. Assuming no other expecta-
tional linkages, optimal voting behavior is then defined by a voting equilibrium
under Markov strategies.
Without persistence, the analysis of Markov strategies is straightforward.

A voting equilibrium is a function g : θt = g(κt) such that θt is optimal for
any κt under the expectation that θt+1 = g(κt+1) is determined by the same
function g. In technical terms, g must solve a functional problem in the space
of functions that map the state κ into an immigration quota θ:

g (κ) = arg max
θ≥0

U(κ, θ) (24)

19Comparisons between CRRA and log-utility are similar for other parameters (details
omitted). Numerical analysis (also not reported in detail) shows that when immigration is
increased, the utility of the first few “transition”generations is higher than the utility of later
generations, and (as under log-utility) the steady state utility with optimal immigration (for
current voters) is lower than in an economy without immigration.
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where U(κ, θ) =
1

1− γ

{
1 + β

1
γ α( 1

γ−1)
(

1 + g (Ψ (κ, θ))

Ψ (κ, θ)

)−φ}γ (
κ

1 + θ

)α(1−γ)

is indirect utility and

Ψ (κ, θ) =
(1− α) (1 + θ)

1−α
κα

η (1 + εθ)

(
1 + β−

1
γ α1− 1

γ

(
1+g(Ψ(κ,θ))

Ψ(κ,θ)

)φ)
specifies the next period’s capital per native worker as a function of the current
state κ and an immigration quota θ, κt+1 = Ψ (κt, θt).
Assuming g is continuous and differentiable, an interior solution to voters’

utility maximization problem implies a first-order condition that involves the
derivative of g:

β−
1
γ α1− 1

γ

(
1 + θt+1

κt+1

)φ
=

[
1− α+

(
1−α
α

) (ε−1)
(1+εθt)

]
(1− λt+1)− 1

1− φ(1− λt+1)
(25)

where λt+1 = g′(κt+1) κt+1

1+g(κt+1) captures voters’recognition that current immi-
gration will impact next period’s capital per worker and hence the next gener-
ation’s vote on immigration. If g′(κ) = 0, (25) reduces to (22).
We obtain numerical solutions for g using projection methods similar to

den Haan and Marcet’s parameterized expectations approach. (See appendix
for specifics). Once an approximate solution for g is obtained, the functions
g and Ψ imply sequences {κt, θt} from any starting value κt0 . Provided the
sequences converge, the objects of main interest are the steady state values,
denoted (κ∗, θ∗).
Our numerical findings are as follows. For the baseline parameters, we find

that ε = 1.80 is required for θ∗ = 4% and that ε = 1.93 is required for θ∗ = 8%.
These fertility factors are higher than under static expectations but less than
under log-utility.
The key insight for the intuition is that the policy function g has a positive

derivative, so g′ > 0 in (25).20 Recall that (i) generation-t voter benefit from
high immigration in the next period, which raises the return on capital; and
(ii), period-t immigration reduces capital per native worker in the next period
(∂κt+1/∂θt < 0 in (23)). When g′ > 0, higher θt, by reducing κt+1, has an un-
desirable negative impact on θt+1, and this discourages voting for immigration.

We have explored to what extent the baseline results are sensitive to parame-
ters. To illustrate the role of CRRA preferences, Figure 1 shows the immigrant
fertility ratios required to explain immigration rates of 4% and 8% for different
levels of intertemporal substitution. Required fertility ratios drop sharply as γ
rises above one and then flatten out. Hence the baseline case (γ = 4) is broadly
representative for substitution elasticities in the empirically plausible range (say,
γ ≥ 2).

20This finding is robust across parameter settings provided γ > 1.
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Figure 1. Parameter combinations of intertemporal substitution
and fertility that provide voter support for immigration

5.3 Voting with Markov Strategies and Persistence

Persistence is modeled as an exogenous probability p that political frictions
prevent a change in immigration policy in any given period, as in Section 4.1.
With persistence, rational voters will anticipate that if a vote about immi-

gration takes place in the next period (in state I), future voters will set θIt+1

as function of the state variable κt+1. Hence optimal voting behavior is again
defined by a Markovian function gp such that θt = gp(κt) is optimal under the
expectation that with probability 1 − p, θIt+1 = gp(κt+1) is determined by the
same function, and that with probability p, θIIt+1 = θt is predetermined. Interior
solutions again imply a first-order condition that can be solved numerically (see
appendix).
We present our analysis of this case in two steps. In the first step we study the

persistence required by the model in order to be consistent with US immigration
rates. In the second step, presented in the following section, we discuss the US
historical record of immigration reforms and show that the spacing of reforms
is broadly consistent with the persistence required by the model.
For the baseline calibration, we obtain θ∗ = 8% for persistence p = 0.303.

That is, the observed U.S. immigration is optimal in the model, if voters believe
that there is about a 30% chance of no change in immigration policy within the
next generation.

The exact persistence required to explain observed immigration depends of
course on model parameters, but the p-values turn out to be quite robust. Figure
2 illustrates the dependence of persistence on preferences, showing values of p
that explain θ∗ = 8% and (for comparison) θ∗ = 4% for a range of γ-values.

The figure suggests that for a broad range of preference parameters, U.S. im-
migration is consistent with optimal voting when voters expect political frictions
and estimate odds of no policy change between 20% and 40%.
To explore sensitivity to other parameters, we consider several parametric

variations from the baseline and compute persistence values required for 8%
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immigration. For the capital share, we find p = 0.28 for α = 0.3 and p = 0.35
for α = 0.4. For the return-to-growth ratio r, we find p = 0.20 for r = 1.3 and
p = 0.40 for r = 1.7. These p-values are again in the 20% to 40% range. For
the fertility ratio, we find p = 0.45 for ε = 1.3 and p = 0.16 for ε = 1.7. The
latter confirms that the fertility ratio—our key variable—has indeed a substantial
impact. Since [1.3, 1.7] is the empirically relevant range for the fertility ratio,
we find that some persistence is needed for the fertility argument to provide a
positive theory of immigration.

Figure 2. Parameter combinations of intertemporal substitution
and persistence (p) that provide voter support for immigration

5.4 US Immigration Law and Persistence

To infer persistence from historical data, note that if there is a constant annual
probability qa that immigration law will change, the number of years that the
law remains unchanged (denoted X) is distributed geometrically with mean
E[X] = 1/qa. One may estimate qa by average number of years that the law
remains unchanged, and one may infer q = (1− qa)

25 as the probability that
the law remains in place for a generation (the base period in our model).
Immigration to the US at the end of the 19th century and in the early 20th

century was largely unregulated, though Congress enacted several laws aim-
ing to excluding certain groups of people, including Asians (1875 and 1917),
poligamists and sick people (1891), the Chinese specifically (1882), and anar-
chists, beggars and importers of prostitutes (1903)).21

In 1921, Congress attempted to limit and regulate immigration by passing
the Emergency Quota Act, which set numerical quotas for immigration based on
nationality and the composition of US population. These quotas were set at 3%
of the foreign-born population of the respective nationalities in the 1910 census
and total annual immigration was capped at 350,000. This law was revisited

21See Cohn (2016) for a summary of these laws.
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in 1924 when the National Origins Quota Act was passed, which revised the
quotas at a level of 2% and total annual immigration was capped at 165,000.
The reforms in the 1920’s determined immigration until 1965, when the Im-

migration and Nationality Act replaced the quota system and which created
different immigration categories with an emphasis in family reunification and
skilled immigration. Current immigration policy is in large part still determined
by the architecture of this law. The Immigration Act of 1990 revised somewhat
the preference categories, created temporary visas H1B for skilled workers and
H2B for seasonal, non-agricultural workers, and increased the annual immigra-
tion cap in the total number of visas where the majority are designated for
family sponsored immigration. In addition, there were smaller reforms aimed at
solving particular temporary problems like the bracero program (1942 - 1964)
and the Immigration Reform and Control Act of 1986 (IRCA) which provided
a path for illegal immigrants to regularize their status.
The U.S. experience shows that immigration laws changed quite frequently

in the 1875-1925 period, but only rarely since then, suggesting a break in persis-
tence. Using data since World War II to estimate persistence in modern times,
one finds three reforms (1965, 1986, 1990) in the 72-year period of 1945-2016,
suggesting q̂a = 1/24 = 4.2% and p̂ = 35%. Alternatively, if one uses the Great
Depression as starting point, one finds four reforms (1942, 1965, 1986, 1990)
over 87 years (1930-2016), suggesting q̂a = 4.6% and q̂ = 31%. These values are
well within the range of p-values required by the model.
One major caveat is that unchanged immigration law might not indicate fric-

tions but deliberate political choices not to make changes. Hence we interpret
q̂ cautiously as upper bound for p and do not attempt to calibrate p. However,
there are indications of frictions, especially since World War II. For example, the
bracero program started in 1942 as a solution to wartime labor shortages but
was left unchanged until long after the war (1965). More recently, there were
major attempts at overhauling immigration policy in 2006 (Comprehensive Im-
migration Reform Act which passed the US Senate but not the House), in 2007
(Secure Borders, Economic Opportunity and Immigration Reform Act which
was introduced but never voted on) and in 2013 (Border Security, Economic
Opportunity, and Immigration Modernization Act which passed the Senate but
was not considered by the House).22

This history of failed reforms suggest that persistence is significantly due to
exogenous frictions, so the model parameter p is close to q̂. In this sense, our
quantitative model is consistent with the U.S. experience.

22 In addition, the executive decisions by the Obama administration in 2012 (Deferred Action
for Childhood Arrivals) and 2014 (Deferred action for Parents of Americans and Lawful
Permanent Residents) that give temporary relief from deportation to persons brought to the
US illegally as children and for parents that have small children born in the US, respectively,
attest to the diffi culty of passing comprehensive immigration reform and thus consistent with
a view that the law is persistent.
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6 Conclusions

The paper shows that a fertility differential between immigrants and natives
rates can help explain voter support for immigration. In the model, the median
voter is a young worker who trades off the negative wage effects of current
immigration against the higher returns to savings implied by an increase in
next period’s labor force. High immigrant fertility favors immigration because
more children imply a greater increase in next period’s labor force per current
(working) immigrant.
High immigrant fertility is empirically relevant. According to a variety of

sources, U.S. immigrants have fertility rates about 50% higher than U.S. natives
(±20%); similar differences have been found in Europe.
Persistence in immigration policy is a quantitatively important supporting

factor. We model persistence in two ways, as political friction that may, with
positive probability, prevent a policy change, and as result of expectational
linkages. Regardless of the underlying causes, persistence favors immigration
because it magnifies the impact of voting for immigration on future labor supply
and hence on voters’returns to savings.
We first present the conceptual points in a simple setting with log-utility.

Log-utility simplifies the analysis significantly because the savings rate is then
constant, capital drops out as state variable, and so optimal immigration is a
number. Log-utility is quantitative unappealing, however, because it under-
states the utility value of high returns to savings, as compared to preferences
with lower elasticity of intertemporal substitution. Put differently, explain-
ing observed U.S. immigration rates (about 8% per generation) in a log-utility
model requires rather high persistence—probabilities of no policy change of 70%
or more.
Hence we also examine immigration in a more general setting with CRRA

preferences, focusing on empirically relevant cases of elasticities of intertemporal
substitution less than one. Optimal immigration is then a function of the initial
capital per native worker. If voters expect that future immigration is deter-
mined similarly, a voting equilibrium is defined by a Markovian policy function
that is optimal under the expectation that future voters use the same function.
Compared to log-utility, low elasticities of substitution favor immigration, but
the endogeneity of future immigration turns out to be a deterrent. (We isolate
the former effect in a version with static expectations.) For empirically plausible
elasticities of intertemporal substitution (1/2 or less), we find that observed U.S.
immigration rates are consistent with optimal voting if voters expect political
frictions to generate a probability of no policy change (at the generational level)
around 30%. This probability is not inconsistent with the persistence inferred
from US history on immigration reform.
The model clearly abstracts from many other issues that may be relevant

for immigration policy. This is for clarity, to show that differential fertility is an
important factor. Our modeling of persistence may be interpreted broadly as
illustrating how differential fertility may interact with other forces that might
enter into a more elaborate model of immigration.
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Our analysis also shows that immigration policy has redistributive effects
across generations that have similarities to pay-as-you-go social security. That
is, if the economy is dynamically effi cient, voting to allow immigration increase
the utility of current voters, and possibly the utility of a few succeeding genera-
tions; but utility in steady state is less than in an economy without immigration,
so after a transition phase, all future generations are worse off. The analogy
to social security facilitates our modeling because we can apply game-theoretic
approaches to expectational linkages developed by the social security literature.
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7 Appendix (Not for Publication)

The appendix is included here to facilitate review. We intend to provide it as
online resource.

7.1 Fertility Data for Europe

Sobotka (2008) compiles empirical evidence from several studies on total fertility
rates for several European countries. The table below reproduces Sobotka’s
estimates from his tables 2.a and 2.b and the implied fertility factor (ε) is
computed. In every case fertility is higher for immigrants. There are two types
of estimates: countries labeled with (a) show the comparison between fertility
of "native" versus fertility of "immigrant" women, while countries labeled with
(b) compare "native" nationals with "foreign" nationals. For more details on
the particular data sets used for the estimate for each country, see Sobotka
(2008).

Table A.1. Total Fertility Rates by Native and Immigrant Status
Several European Countries and Years

Country
Native
Fertility

Immigrant
Fertility

Ratio
(ε)

Year

Austria (b) 1.29 2.03 1.57 2001− 2005
Belgium (b) 1.49 2.13 1.43 2001− 2005
Flanders (Belgium)(b) 1.5 3 2 1995
Denmark (a) 1.69 2.43 1.44 1999− 2003
England and Wales (a) 1.6 2.2 1.38 2001
France (a) 1.65 2.50 1.52 1991− 1998
France (ii) (a) 1.70 2.16 1.27 1991− 1998
France (b) 1.72 2.80 1.63 1999
France (b) 1.80 3.29 1.83 2004
Italy (b) 1.26 2.61 2.07 2004
Netherlands (a) 1.65 1.97 1.19 2005
Norway (a) 1.76 2.42 1.38 1997− 1998
Spain (b) 1.19 2.12 1.78 2002
Sweden (a) 1.72 2.01 1.17 2005
Switzerland (b) 1.34 1.86 1.39 1997

Source: Sobotka (2008) tables 2.a and 2.b.
(a): Native vs. immigrant women. (b) : Native nationals vs. foreign nationals.
For (ii), data is adjusted for age of arrival and duration of stay in France.
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7.2 Analysis in Sections 2-3

7.2.1 Utility as Function of Factor Prices

We claim in Section 2 that (4) implies the indirect utility (6).
Proof: For log-utility (γ = 1), maximizing

U
(
c1t , c

2
t+1

)
= ln c1t + β ln c2t+1 (A.1)

straightforwardly yields optimal consumption and savings

c1t =
1

1 + β
wt, c2t+1 =

β

1 + β
wtRt+1, and st =

β

1 + β
wt.

Inserting these expressions into (A.1), using rules of logarithms and collecting
similar terms one obtains

U (wt, Rt+1) = A1 + (1 + β) lnwt + β lnRt+1 (A.2)

A1 = [β lnβ − (1 + β) ln (1 + β)]

The constant A1 = [β lnβ − (1 + β) ln (1 + β)] is inessential and omitted from
(6) for simplicity.
For power utility (γ 6= 1), the first order conditions of (4) imply

st =
(βRt+1)1/γ

Rt+1 + (βRt+1)1/γ
wt, c1,t =

Rt+1

Rt+1 + (βRt+1)1/γ
wt, and c2,t+1 = (βRt+1)

1
γ c1,t.

Substituting consumption into the utility function, one obtains:

U (wt, Rr+1) =
1

1− γ

{
1 + β

1
γR

1
γ−1

t+1

}
(

1 + β
1
γRt+1

1
γ−1

)1−γw
1−γ
t =

1

1− γ

{
1 + β

1
γR

1
γ−1

t+1

}γ
w1−γ
t ,

as claimed. QED.

7.2.2 Extensions with stochastic mortality

We claim in footnote 8 that our maintained assumption of a working-age ma-
jority is a robust result in extended versions with stochastic mortality. This
appendix provides an illustration.
To model stochastic mortality within a two-period setting, suppose there is

idiosyncratic uncertainty about survival at the end of working age: individuals
die with probability (1− π) and survive with probability π. These assumption
largely follow Bohn (2001). The consumption/saving problem of individuals is
then

Ut = Max
c1t ,ĉ

2
t+1,st

{
u(c1t ) + E[β̂u(ĉ2t+1)]

}
(A.3)

= Max
c1t ,c

2
t+1,st

{
u(c1t ) + πβ̂u(c2t+1)

}
s.t. c1t + st = wt and c2t+1 = R̂t+1st +Qt+1,
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where E[·] is the expectation over survival, β̂ pure time preference, ĉ2t+1 = c2t+1

in case of survival, ĉ2t+1 = 0 otherwise, and Qt+1 denotes bequests (if any).
The return R̂t+1 conditional on survival depends on the availability of annuity
markets. With actuarially fair annuities, R̂t+1 = Rt+1/π, as all savings are
allocated to survivors. Without annuities, R̂t+1 = Rt+1 is the return on savings,
and one must make assumptions about the disposal of deceased agents’assets.
In general, denote survivors return to saving by R̂t+1 = Rt+1/π

a where
a ∈ [0, 1] admits intermediate degrees of annuitization. Then the first order
condition for optimal saving is u′(c1t ) = πβ̂R̂t+1u

′(c2t+1) = π1−aβ̂Rt+1u
′(c2t+1).

Accidental bequests are (Rt+1/π − R̂t+1)st. Without much loss of generality,
assume accidental bequests are shared by surviving members of the old genera-
tion. Then c2t+1 = R̂t+1st+Qt+1 = Rt+1st/π applies regardless of annuitization,
and optimal saving imply (wt − st)−γ = π1−aβ̂Rt+1(Rt+1st/π)−γ , and hence

σt = st
wt

= B̂t
1+B̂t

, where B̂t = (π1−a+γ β̂)
1
γ

(Rt+1)
1−γ
γ . Thus, individual con-

sumption and saving are the same as in the model with 100% survival and time
preference β = π1−a+γ β̂.
Since the voting population consists of Nt = Nt−1η (1 + εθt−1) young and

πNt−1 old agents, the voting share of the young is given by η (1 + εθt−1) /[π +
η (1 + εθt−1)]. Since θt−1 ≥ 0, the voting share of the young is bounded below
by η/(π+η). Empirically, U.S. life expectancy at age 65 is about 20 years (male
and female averaged according to the Social Security Administration23), so π
can be estimated as (remaining life expectancy)/(number of years in workforce),
which yields π ≈ 1/2. Hence η > 1/2 is a suffi cient condition for the young to be
the majority in absence of immigration. In section 5.1 we calibrate η = 1.116,
which rules out immigration cycles by a wide margin.24

7.2.3 Utility as Function of Immigration

Section 3 claims that utility in terms of immigration quotas is given by (14) and
that dynamically effi ciency corresponds to χ ≥ 1− α.
23According to the Social Security Administration, conditional on reaching 65 years of age,

a man in the US is expected to live until age 84.3, while a woman is expected to live until age
86.6. See https://www.ssa.gov/planners/lifeexpectancy.html .
24The particular assumptions required for immigration cycles are: (i) Fertility and mortality

such that the old generation is the majority in the absence of immigration: Nt+1 = ηNt <
πNt, which implies that η < π; and (ii) a policy space with maximum immigration quota
θmax high enough that in the next period there are more young agents than (alive) old agents:
Nt+1 = Ntη (1 + εθmax) > πNt (implies η (1 + εθmax) > π). Under these assumptions, the
initial old majority would choose the maximum quota available (θ∗t = θmax). Then since the
majority in next period is the young cohort because η (1 + εθmax) > π, this young majority
restricts immigration in order to remain the majority in the following period (when they are
old), which is a period in which they liberalize immigration. That particular cohort controls
policy when young and when old. The immigration quota that the young majority selects
is either θ∗t+1 = 0 or a sligthly positive number (depending on how large ε is), taking into
account that the they will be in power the next period and thus choosing the maximum quota
in that period (θ∗t+2 = θmax). A cycle of restriction and then liberalization repeats, tracking
the life cycle of cohorts that remain in power during all their lifetimes and similarly, each cycle
sees a generation that is never in power, and so on.
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Proof of (14): Inserting (9) into (8), one obtains

kt+1 =
β(1− α)

η (1 + β)

(1 + θt)

(1 + εθt) (1 + θt+1)
kαt (A.4)

Substituting this into Rt+1 = α (kt+1)
−1+α and substitution Rt+1 into the

utility function (A.2), we obtain

V̂ (θt, θt+1, kt) = A1 + (1 + β) ln (1− α) kαt

−β (1− α) ln

(
β (1− α)

(1 + β)

(1 + θt)

η (1 + εθt) (1 + θt+1)
kαt

)
Finally, substituting kt = κt

1+θt
, collecting similar terms, and dividing the

equation by the constant β (1− α), we obtain the indirect utility function that
depends on θt, θt+1 and κt :

V (θt, θt+1, κt) = A+ χ lnκt − (1 + χ) ln (1 + θt) + ln (1 + εθt) + ln (1 + θt+1) .
(A.5)

where χ is a constant given by χ = α(1+βα)
β(1−α) . We write V (θt, θt+1, κt) , where

we condition on κt since agents take it as given. Q.E.D.
Regarding dynamic effi ciency, note that the steady state ratio of return

to capital is greater than (or equal to) population growth if and only if χ >
1 − α (or χ = 1 − α). In detail, (A.4) implies that kt+1 converges to k =(

β
1+β

1−α
η(1+εθ)

)1/(1−α)

for any constant θt = θ, and hence Rt+1 converges to

R = α/
(

β
1+β

1−α
η(1+εθ)

)
. Since η (1 + εθ) is population growth, the return-to-

growth ratio is R
η(1+εθ) = α

1−α
1+β
β . Moreover,

χ+ α =
α (1 + αβ)

β (1− α)
+ α =

α

β (1− α)
[1 + αβ + β (1− α)] =

α

1− α
1 + β

β
.

Hence R
η(1+εθ) = 1 iff χ = 1− α and R

η(1+εθ) > 1 iff χ > 1− α.

7.2.4 Welfare Comparisons

In the baseline model, we claim that a transition from zero immigration to
θ0 = ε−(1+χ)

χε > 0 will (a) increase welfare for one or more generations and (b)
reduce welfare in the long run, provided the economy is dynamically effi cient.
The following provides a constructive proof:
First we write the evolution of capital per-native worker by substituting kt

= κt
(1+θt)

into equation (A.4). We obtain

κt+1 = $
(1 + θt)

1−α

(1 + εθt)
καt , where $ =

β(1− α)

η (1 + β)
. (A.6)
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Since we will compare the lifetime utility of agents with and without immi-
gration, it is convenient to define V 0

t = V
(
θ0, θ0, κt

)
as lifetime utility in the

regime with immigration and to define Ṽt = V (0, 0, κt) as lifetime utility in a
regime without immigration. Using (A.5), lifetimes utility in the immigration
regime is given by

V 0
t = V

(
θ0, θ0, κt

)
= A+ χ lnκt + Ω (A.7)

(since θt = θ0 is constant), where Ω = ln
(
1 + εθ0

)
− χ ln

(
1 + θ0

)
. Note that

ε > (1 + χ) implies Ω > 0.
Taking logs in equation (A.6), we can write the evolution of κt in the regime

with immigration as

lnκt+1 = ln$ −∆ + α lnκt

where ∆ = ln
(
1 + εθ0

)
− (1− α) ln

(
1 + θ0

)
Note that ∆ > Ω for χ > (1− α) and θ0 > 0, which applies under conditions of
dynamic effi ciency.
To compare utilities across regimes, we write lifetime utility in terms of the

initial value κ0 in some starting period labeled t = 0. For all t > 0, we have:

lnκt =
(1− αt)

1− α ln$ − (1− αt)
1− α ∆ + αt lnκ0.

Using (A.7), the sequence of lifetime utilities is

V 0
t = A+ χ

(1− αt)
1− α ln$ + αt lnκ0 +

[
Ω− χ (1− αt)

1− α ∆

]
.

In a regime without immigration, analogous dynamics apply with Ω = ∆ =
0, so the sequence of lifetime utilities would be

Ṽt = A+ χ
(1− αt)

1− α ln$ + αt lnκ0

Hence the difference between lifetime utilities with and without immigration
is

V 0
t − Ṽt =

[
Ω− χ (1− αt)

1− α ∆

]
Notice that V 0

0 − Ṽ0 = Ω > 0 is positive for the generation t = 0 and
that because ∆ > 0, V 0

t − Ṽt declines monotonely over time. As t → ∞,
(V 0
t − Ṽt)→ Ω− χ∆

1−α . Note that
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Ω− χ∆

1− α = − (1 + χ) ln
(
1 + θ0

)
+ ln

(
1 + εθ0

)
+ ln

(
1 + θ0

)
− χ

1− α
{

ln (1 + εθ∗)− (1− α) ln
(
1 + θ0

)}
=

(
1− χ

1− α

)
ln
(
1 + εθ0

)
Hence limt→∞(V 0

t −Vt) < 0 and only if χ > (1− α). Monotonicity then implies
there is a date t such that V 0

t − Vt > 0 for all t < t, whereas V 0
t − Vt < 0 for all

t > t. Q.E.D.

7.3 Analysis in Section 4

Section 4.1 asserts that indirect utility is (18). Proof: Let j = I, II denote the
states, pI = 1 − p, pII = p. Then the individual problem for general CRRA
utility is

Ut = Max
c1t ,c

2
t+1,i,st

u(c1t ) + β
∑
j

pj · u(c2t+1,j)

 (A.8)

s.t. c1t + st = wt, c2t+1,j = Rt+1,jst

The first order condition for optimal savings is u′(wt−st) = β
∑
j pj ·Rt+1,ju

′(Rt+1,jst),
and it implicit defines the optimal savings rate

σt =
st
wt

=
Bt

1 +Bt
, where (A.9)

Bt = β
1
γ

∑
j

pj · (Rt+1,j)
1−γ


1
γ

(A.10)

For log-utility (γ = 1), this reduces to Bt = β. Substituting consumption and
savings (A.9) into (A.8), one obtains

Ut = (1 + β) lnwt + βE [lnRt+1] + const

Substituting wages (10) and returns (10), this implies

V̂ = − (α (1 + βα) + β (1− α)) ln (1 + θt) + β (1− α) ln (1 + εθt)

+β (1− α)E
[
ln
(

1 + θ̂t+1

)]
+ exog

where immigration θ̂t+1 is treated as random variable and exog summarizes
exogenous terms (inessential constants and initial conditions). The possible
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realizations for θ̂t+1 are θ̂t+1 = θIt+1 with probability 1 − p (chosen by gen.
t+ 1) and θ̂t+1 = θIIt+1 = θt with probability p. Therefore V̂ can be written as

V̂ = − (α (1 + βα) + β (1− α)) ln (1 + θt) + β (1− α) ln (1 + εθt)

+β (1− α) (1− p) ln (1 + θt+1) + β (1− α) p ln (1 + θt) + exog

Dividing by β (1− α) and simplifying, one obtains

V
(
θt, θ

I
t+1

)
= − (1 + χ− p) ln (1 + θt)+ln (1 + εθt)+(1−p) ln

(
1 + θIt+1

)
+exog

If state I applies in period t, θt = θIt is set by generation t and V
(
θIt , θ

I
t+1

)
is

the relevant indirect utility. QED.
We also claim that θp = ε−1−χ+p

ε(χ−p) is increasing in p and in ε. As proof, note
that

dθp

dp
=

ε (χ− p) + (ε− 1− χ+ p) ε

ε2 (χ− p)2 =
(ε− 1− χ+ p) ε

ε [(χ+ p)− 1]
2 =

ε− 1

ε (χ− p)2 > 0

dθp

dε
=

ε (χ− p)− (ε− 1− χ+ p) (χ− p)
ε2 (χ− p)2 =

χ+ 1− p
ε2 (χ− p) > 0.

for all (ε, χ, p) such that 0 < θp < θ̄ is not a corner solution. QED.

7.4 Details on Calibrating the CRRA model in Section 5

The parameters to be calibrated are {α, β, ε, γ, η} . We explain each of them in
this section.
Externally calibrated parameters. The externally calibrated parame-

ters are α, ε and γ. We use baseline values α = 1
3 and ε = 1.5 as discussed

in Section 3.2. Regarding γ, typical overlapping generation economies in the
macroeconomics and the finance literature use risk aversion levels between 2
and 5 (see for example Auerbach and Kotlikoff (1987), Rios-Rull (1996), Con-
stantinides et al. (2002), Conesa and Garriga (2008) and Evans et al. (2012)).
We use a baseline of γ = 4, but also explore the sensitivity of the fertility
required to different levels of risk aversion.
Internally calibrated parameters. The internally calibrated parameters

are η and β. The total-growth factor of the population in the model is given
by η+ ≡ η (1 + εθ) , which we set at 1.25 (about 1% growth per year), which
is consistent with US population growth.25 Given η+, one can infer η from
ε and θ by writing η = η+/ (1 + εθ) . Using ε = 1.5 and θ = .08, this yields
η = 1.25

1+1.5·0.08 = 1.116.

25Using US census data from 1970 to 2010, the annual population growth rate for this 40

year period is
(
308.45
205.52

)1/40 − 1 = 1.02%.
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For the calibration of β, we show that one can derive a calibrating expression
that is invariant to the particular equilibrium concept used. Start with equation
(8), which shows the evolution of capital per native worker in the CRRA case,
given by

κt+1 =
(1 + θt)

1−α

η (1 + εθt)
σtwt.

replacing wt = (1− α)καt , the evolution of capital per native worker can be
written as

κt+1 =
(1− α) (1 + θt)

1−α

η (1 + εθt)
σtκ

α
t

where σt is the saving rate. At steady state, this equation can be solved for
1
σ as

1

σ
=

(1− α)

η (1 + εθ)

(
κ

1 + θ

)α−1

Since the gross interest rate at steady state R is given by R = α
(

κ
1+θ

)α−1

.

The above expression can be written as

1

σ
=

(1− α)

α

R

η (1 + εθ)
. (A.11)

From the definition of σt in equation (5), at steady state σ = β
1
γ R

1
γ
−1

1+β
1
γ R

1
γ
−1
,

which implies that the term 1
σ is also given by

1

σ
= 1 +

1

β
1
γR

1
γ−1

. (A.12)

Therefore, at steady state equating (A.11) and (A.12) yields an equality
1 + 1

β
1
γ R

1
γ
−1

= (1−α)
α

R
η(1+εθ) that can be solved for β as

β =
Rγ−1[

(1−α)
α

R
η(1+εθ) − 1

]γ .
Thus the calibration of β depends on the ratio r ≡ R

η(1+εθ) as explained in
the text. Since η+ = η (1 + εθ) is also empirically observed, R can be replaced
by r · η (1 + εθ) and hence β can be calibrated as

β̂ =
[(r · η (1 + εθ))]

γ−1[
(1−α)
α r − 1

]γ . (A.13)

In the case of log utility (γ = 1), this simplifies to
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β̂(γ=1) =
α

(1− α) r − α.

as claimed in Section 3.2. For general γ and in the context of sensitivity analyses,
we vary β as implied by the parameters on the r.h.s. of β̂.

7.5 Analysis in Section 5.1

7.5.1 Derivation of dRt+1

dθt

Section 5.1 claims that dRt+1

dθt
> 0. Proof: Combining (8), (A.9), (A.10), (9),

and writing (10) as kt+1 =
(

α
Rt+1

) 1
1−α

, one obtains

(
α

Rt+1

) 1
1−α

= kt+1 =
(1− α) (1 + θt)

1−α
(κt)

1−α

η (1 + εθt) (1 + θt+1)

β
1
γ (Rt+1)

1
γ−1

1 + β
1
γ (Rt+1)

1
γ−1

.

Taking logs and differentiating with respect to θt, one obtains

− 1

1− α
d lnRt+1

dθt
=

1− α
1 + θt

− ε

1 + εθt
+ (

1

γ
− 1)

1

1 +Bt

d lnRt+1

dθt
d lnRt+1

dθt
= (1− α)

[
ε

(1 + εθt)
− (1− α)

(1 + θt)

]
− φ 1

1 +Bt

d lnRt+1

dθt

d lnRt+1

dθt
=

(1− α)

1 + φ/(1 +Bt)

[
ε

(1 + εθt)
− (1− α)

(1 + θt)

]
,

dRt+1

dθt
=

(1− α)Rt+1

1 + φ/(1 +Bt)

[
ε

(1 + εθt)
− (1− α)

(1 + θt)

]
. (A.14)

The sign is determined by
[

ε
(1+εθt)

− (1−α)
(1+θt)

]
, which is positive iff ε > (1−α)

(1+αθt)
.

Since ε > 1 and 1−α
1+αθt

≤ 1− α, dRt+1

dθt
> 0 follows. QED.

7.5.2 The First Order Condition

Section 5.1 asserts the optimality condition (22). Proof: Maximizing (6) with
respect to θt implies (using (A.10))

dUt
dθt

= {1 +Bt}γ w−γt
dwt
dθt

+ {1 +Bt}γ−1
w1−γ
t β

1
γR

1
γ−2

t+1

dRt+1

dθt
(A.15)

= {1 +Bt}γ w1−γ
t

[
1

wt

dwt
dθt

+
Bt

1 +Bt

1

Rt+1

dRt+1

dθt

]
Hence dUt

dθt
= 0 ⇔ Bt

1+Bt
1

Rt+1

dRt+1

dθt
= − 1

wt
dwt
dθt
. Note that 1

wt
dwt
dkt

= α
kt
and

dkt
dθt

= − kt
(1+θt)

, so 1
wt

dwt
dθt

= − α
(1+θt)

< 0. Replacing dRt+1

dθt
by (A.14), one finds
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that dUtdθt
= 0 is equivalent to

α

(1 + θt)
= (1− α)

[
ε

(1 + εθt)
− (1− α)

(1 + θt)

]
/

(
1 +

(
1

γ
+ α− α

γ

)
1

Bt

)
,

1+

(
1

γ
+ α− α

γ

)
1

Bt
=

(
1− α
α

)[
ε(1 + θt)

(1 + εθt)
− (1− α)

]
=

(
1− α
α

)[
α− 1− ε

(1 + εθt)

]
,

(
1

γ
+ α− α

γ

)
1

Bt
=

1− φ
Bt

=

[(
1− α
α

)
ε− 1

(1 + εθt)

]
− α.

Dividing by (1− φ), using (A.10) and (10) to replace Bt, one obtains (22). QED.
Note that the corner solution θt = 0 applies if dUtdθt

≤ 0 at θt = 0, which is
equivalent to

α

(1 + θt)
− (1− α)

[
ε

(1 + εθt)
− (1− α)

(1 + θt)

]
/

(
1 + (1− φ)β−

1
γR

1− 1
γ

t+1

)
≥ 0, or

1

Bt
≥ 1

1− φ

[(
1− α
α

)
(ε− 1)− α

]
.

7.5.3 The Dynamics of Capital per Worker

Proof of (23): For CRRA utility, the evolution of capital is given by

kt+1 =
(1 + θt)

η (1 + εθt) (1 + θt+1)
st =

(1 + θt)

η (1 + εθt) (1 + θt+1)

Bt
1 +Bt

wt (A.16)

If optimal immigration has an interior solution, (22) implies

1 +
1

Bt
= 1 +

(
1−α
α

)
ε−1

(1+εθt)
− α

1− φ =

1
γ (1− α) +

(
1−α
α

)
ε−1

(1+εθt)

1− φ

Substituting into (A.16) and simplifying implies

kt+1 =
(1 + θt)

η (1 + θt+1)

α(1− α+ αγ)

εα(1 + θt) + (γ − α)(ε− 1)
kαt , (A.17)

κt+1 =
1

η

α(1− α+ αγ)

εα(1 + θt) + (γ − α)(ε− 1)
(1 + θt)

1−α
καt , (A.18)

which is (23). QED .
Note that for corner solutions with θt = 0, (A.16) and Rt+1 = αkα−1

t+1 imply

κt+1 + β−
1
γ α1− 1

γ (κt+1)φ(1 + θt+1)(1−α)(1− 1
γ ) =

1

η
(1− α)καt .

Since φ > 0, the l.h.s. is strictly increasing in κt+1, so κt+1 is determined
uniquely.
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7.5.4 Steady State

Section 5.1 claims there is a unique steady state (θ0, κ0). Proof: The steady
state conditions are obtained by setting (θ, κ) constant in (22) and (23), which
yields:

κ0 =
1

η

α(1− α+ αγ)

εαθ0 + (γ − α) (ε− 1)

(
1 + θ0

)1−α
(κ0)α, (A.19)

β−
1
γ (R0)1− 1

γ = β−
1
γ α1− 1

γ (
κ0

1 + θ0 )−φ =

(
1−α
α

)
ε−1

1+εθ0 − α
1− φ (A.20)

where (A.19) can be simplified to obtain

κ0

1 + θ0 =

{
α [(1− α) + αγ]

η
(
εα(1 + θ0) + (γ − α) (ε− 1)

)} 1
1−α

(A.21)

Substituting (A.21) into (A.20), one obtains

β−
1
γ α1− 1

γ

(
η
(
εα(1 + θ0) + (γ − α) (ε− 1)

)
α [(1− α) + αγ]

)(1− 1
γ )

=

(
1−α
α

)
ε−1

(1+εθ0)
− α

1− φ ,

β−
1
γ

(
η
(
εα(1 + θ0) + (γ − α) (ε− 1)

)
[(1− α) + αγ]

)(1− 1
γ )

=

(
1−α
α

)
ε−1

(1+εθ0)
− α

1− φ

which is a univariate equation for θ0; the solution is unique since the l.h.s. is
strictly increasing in θ0 for γ > 1 whereas the r.h.s. is strictly decreasing. Given
θ0, (A.21) provides solutions for κ0 and k0 = κ0/(1 + θ1). QED.

7.5.5 Convergence and Stability

Section 5.1 claims that the perfect foresight path {θt, κt}t≥t0 converges to (θ0, κ0).
To streamline the algebra, we sometimes work with xt = 1 + θt and kt = κt

xt
(since we can always recover {θt, κt}t≥t0 from {xt, kt}t≥t0). To streamline, we
use the constants

φ1 =
α [(1− α) + αγ]

η
> 0

φ2 = (γ − α) (ε− 1)

φ3 =
ηφ
[
α1+α−αγ

]
[(1− α) + αγ]

α+ 1−α
γ

β
1
γ γ (1− α) (ε− 1)

> 0

φ4 =
α2

(1− α) (ε− 1)
> 0

and we omit superscripts for variables in steady state.
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The dynamic system (A.16) and (22) can be written in terms of {xt, kt} as

kt+1 = φ1

xt
xt+1 [εαxt + φ2]

kαt

1

εxt − (ε− 1)
= φ3

[
xt+1 [εαxt + φ2]

xtkαt

]φ
+ φ4,

and the steady-state values are

k1 =

{
φ1

[εαx+ φ2]

} 1
1−α

1

εx1 − (ε− 1)
= φ3φ

− αφ
1−α

1

[
εαx1 + φ2

] φ
1−α + φ4.

To determine the stability of the system, we take a log-linear approximation
around the steady state. Denote the percentage deviations from steady state
by "̂", e.g. ẑt = ln zt − ln z1 for generic variable zt. We obtain

κ̂t+1 = αk̂t + b0x̂t = ακ̂t + (b0 − α)x̂t

x̂t+1 = αk̂t − (1/b1)x̂t = ακ̂t − (α+ 1/b1)x̂t,

where

b0 =
φ2

εαx1 + φ2

=
1

1 + εαx1

(γ−α)(ε−1)

(A.22)

b1 =

[
εx1 − (ε− 1)

](
1
φ

{
εx1

1−εx1φ4+(ε−1)φ4

}
−
[

[εx1−(ε−1)](γ−α)(ε−1)
(εαx1+(γ−α)(ε−1))

]) (A.23)

In matrix form, this is [
κ̂t+1

x̂t+1

]
=

[
α (b0 − α)

α −
(
α+ 1

b1

)][κ̂t
x̂t

]

Stability requires that the system has one characteristic inside the unit circle
and the other outside. Here the characteristic equation is µ2+ µ

b1
− α(1+b0b1)

b1
= 0,

which has roots

µ1,2 = − 1

2b1
±

√
1

4

(
1

b1

)2

+
α (1 + b0b1)

b1
.

The properties of µ1,2 require tedious derivations, which we report in a series
of Lemmas below; in combination, the Lemmas provide conditions for µ1 < −1
and 0 < µ2 < 1, which are suffi cient conditions for saddle-path stability and
convergence.
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Lemma A1: γ > α implies 0 < b0 < 1. Proof: Follows from φ2 =
(γ − α) (ε− 1) > 0 and x1 ≥ 1. QED.
Lemma A2: 1 − φ4

[
εx1 − (ε− 1)

]
> 0, provided x1 > 1. Proof: The

steady state satisfies

1

εx− (ε− 1)
= φ3φ

− αφ
1−α

1 [εαx+ φ2]
φ

1−α + φ4

⇔ 1− φ4 [εx− (ε− 1)] = φ3φ
− αφ

1−α
1 [εx− (ε− 1)] [εαx+ φ2]

φ
1−α

The r.h.s. is positive because εαx+ φ2 > 0, εx− (ε− 1) > 0 and φ3φ
− αφ

1−α
1 > 0.

Hence 1− φ4 [εx− (ε− 1)] > 0. QED.
Lemma A3: b1 > 0, provided x1 > 1. Proof: b1 can be written as

b1 = 1/

({
εx

[1− φ4 [εx− (ε− 1)]]φ [εx− (ε− 1)]

}
−
[

φ2

(εαx+ φ2)

])
Therefore b1 > 0 if

{
εx

[1−φ4[εx−(ε−1)]]φ[εx−(ε−1)]

}
>
[

φ2

(εαx+φ2)

]
= b0. Using

Lemma A2, this is equivalent to

εx (εαx+ φ2) > φ2φ [1− φ4 [εx− (ε− 1)]] [εx− (ε− 1)] , or

α (εx)
2

+ εxφ2 + φ2φφ4 [εx− (ε− 1)]
2
> φ2φ [εx− (ε− 1)] .

Since φ2 = (γ − α) (ε− 1) > 0 and 0 < φ = (1− α)
(

1− 1
γ

)
< 1 if γ > 1, one

can divide both sides by φ2φ and simplify to obtain

α (εx)
2

φ2φ
+ εx

(
1− φ
φ

)
+ φ4 [εx− (ε− 1)]

2
+ (ε− 1) > 0.

The r.h.s. is positive, because 0 < φ < 1 and because φ2, φ4 and ε are all
greater than one. By equivalence, b1 > 0. QED.
Lemma A4: 0 < µ2 < 1, provided 0 < b0 < 1 and b1 > 0. Proof:

Since b0 > 0 and b1 > 0, we have α(1+b0b1)
b1

> 0, which implies µ2 = − 1
2b1

+√
1
4

(
1
b1

)2

+ α(1+b0b1)
b1

> 0. Given µ2 > 0 and b1 > 0, µ2 + 1
2b1

> 0, so µ2 =

− 1
2b1

+

√
1
4

(
1
b1

)2

+ α(1+b0b1)
b1

< 1 ⇔ 1
4

(
1
b1

)2

+ α(1+b0b1)
b1

<
(

1 + 1
2b1

)2

, ⇔
1− αb0 + 1−α

b1
> 0, which is implied by b0 < 1 and b1 > 0. QED.

Lemma A5: µ1 < −1, provided 0 < b0 < 1 and 0 < b1 < 1. Proof: Since

b0 > 0 and b1 > 0 imply α(1+b0b1)
b1

> 0, µ2 < − 1
2b1
−
√

1
4

(
1
b1

)2

< − 1
b1
, so

µ2 < − 1
b1
< −1 for b1 < 1. QED.
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Lemma A6: Define ρ = α
γ−α and z(ρ) = (2 + 3ρ) − 2

√
2ρ(1 + ρ) =(√

2(1 + ρ) −√ρ
)2

. Then suffi cient conditions for b1 < 1 are that

(1− 1

γ
)z(ρ)

(
1− α− α2

ε− 1

)
< 1, or (A.24)

(1− 1

γ
)z(ρ) <

1

1− α (A.25)

Proof: Since (A.25) implies (A.24) holds for ε > 1, it suffi ces to prove (A.24).

Since b1 > 0, the restriction b1 < 1⇔
{

εx
[1−φ4[εx−(ε−1)]]φ[εx−(ε−1)]

}
− φ2

εαx+φ2
> 1

⇔
{

εx
[1−φ4[εx−(ε−1)]]φ[εx−(ε−1)]

}
>
(
εαx+2φ2

εαx+φ2

)
⇔
{

( εαx
(γ−α)(ε−1)

+1)
( εαx

(γ−α)(ε−1)
+2)

εx
[εx−(ε−1)]

1
φ

}
+

φ4 [εx− (ε− 1)] > 1

Define Ψ = (ε−1)
εx , ρ = α

(γ−α) , and

H (Ψ) =

(
ρ
Ψ + 1

)(
ρ
Ψ + 2

) 1

1−Ψ
=

(ρ+ Ψ)

(ρ+ 2Ψ)

1

1−Ψ
.

Then
b1 < 1⇔ 1

φ
H (Ψ) + φ4

[
εx1 − (ε− 1)

]
> 1.

Given ε > 1 and given an interior solution x1 > 1, we have 0 < Ψ < 1. The

terms 1
[1−Ψ] and

1
φ are both greater than 1, while the term

[ ρΨ +1]
[ ρΨ +2]

is necessarily

less than 1. Note that H (Ψ) has a minimum in the interval 0 < Ψ < 1 and that

1

φ
H (Ψ) + φ4 [εx− (ε− 1)] ≥

[
min

0<Ψ<1
H (Ψ)

]
1

φ
+ φ4

{
min
x≥1

[εx− (ε− 1)]

}
Since min

x≥1
[εx− (ε− 1)] = 1, a suffi cient condition for b1 < 1 is that[
min

0<Ψ<1
H (Ψ)

]
1

φ
+ φ4 > 1⇔ min

0<Ψ<1
H (Ψ) > φ(1− φ4) (A.26)

where φ(1− φ4) > 0 because (1− φ4) > 0 for x > 1 and φ > 0 for γ > 0. Note
that H ′ (Ψ) = (ρ+2Ψ)−2(ρ+Ψ)

(ρ+2Ψ)2
1

(1−Ψ) + (ρ+Ψ)
(ρ+2Ψ)

1
(1−Ψ)2 = −ρ(1−Ψ)+(ρ+Ψ)(ρ+2Ψ)

(ρ+2Ψ)2(1−Ψ)2 =

2Ψ2+4ρΨ−ρ(1−ρ)
(ρ+2Ψ)2(1−Ψ)2 = Ψ2+2ρΨ−ρ(1−ρ)/2

2(ρ+2Ψ)2(1−Ψ)2 = 0 has rootsΨ = −ρ±
√
ρ2 + ρ(1− ρ)/2 =

−ρ ±
√

ρ
2 (1 + ρ). Of these, only Ψmin = −ρ +

√
ρ
2 (1 + ρ) is inside the [0, 1]
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interval, so H is minimized at Ψmin, where

Hmin = H
(
Ψmin

)
=

√
ρ
2 (1 + ρ)(

−ρ+ 2
√

ρ
2 (1 + ρ)

) 1(
1 + ρ−

√
ρ
2 (1 + ρ)

)
=

√
ρ
2 (1 + ρ)

−ρ(1 + ρ) + 2(1 + ρ)
√

ρ
2 (1 + ρ) + ρ

√
ρ
2 (1 + ρ)− 2ρ2 (1 + ρ)

=

√
ρ
2 (1 + ρ)

−2ρ(1 + ρ) + (2 + 3ρ)
√

ρ
2 (1 + ρ)

=
1

2 + 3ρ− 2ρ(1 + ρ)/
√

ρ
2 (1 + ρ)

=
1

2 + 3ρ− 2
√

2ρ(1 + ρ)
=

1

z(ρ)

Thus from (A.26), 1/z(ρ) > φ (1− φ4) =
(

1− 1
γ

)(
1− α− α2

ε−1

)
is suffi cient

for b1 < 1. QED.

Lemma A7: (a) The term
(

1− 1
γ

)
z(ρ) in (A.24) is increasing in γ and

decreasing in α provided α < γ/2; (b) the 1− α− α2

ε−1 in (A.24) increasing in ε

and decreasing in α. (c) If 1−α− α2

ε−1 ≤
1
2 and α ≤ γ/2, then condition (A.24)

is satisfied for all γ > 1. (d) if 1 − α − α2

ε−1 > 1
2 and α ≤ 1/2 there exists an

upper bound γ̄ > 1 so that condition (A.24) is satisfied for all γ ∈ (1, γ̄) and
not satisfied for γ > γ̄.
Proof: Note that z′(ρ) = 3 − 21.5 1+2ρ

2
√
ρ(1+ρ)

= 0 has roots ρ1,2 = − 1
2 ±√

1
4 + 2 = −2,+1 and satisfies z′(ρ) < 0 for ρ ∈ (−1, 1). Since α < γ/2

implies ρ < 1 and since ∂ρ
∂γ < 0 < ∂ρ

∂α
∂
∂γ

[(
1− 1

γ

)
z( α
γ−α )

]
= 1

γ2 z(ρ) +(
1− 1

γ

)
∂ρ
∂γ z
′(ρ) > 0 for all α ≤ 1/2 < γ/2, and ∂ρ

∂α =
(

1− 1
γ

)
∂ρ
∂αz

′(ρ) < 0,

proving (a). Part (b) holds by inspection. For (c), note that
(

1− 1
γ

)
z( α
γ−α )→

z(0) = 2 as γ → ∞, so
(

1− 1
γ

)
z( α
γ−α ) < 2 for any finite γ, which implies (c).

For (d), note that
(

1− 1
γ

)
z( α
γ−α ) → 0 as γ → 1, so (A.24) holds in a neigh-

borhood of γ = 1. For 1 − α − α2

ε−1 >
1
2 and

(
1− 1

γ

)
z( α
γ−α ) → 2 implies that

(A.24) cannot hold as γ− >∞. Existence of γ̄ then follow from the mean value

theorem and uniqueness of γ̄ from monotonicity of
(

1− 1
γ

)
z( α
γ−α ). QED.

Corollary to A1-A7: If (A.25) holds for some α = ᾱ and γ = γ̄, then
(A.25) holds for all ᾱ ≤ α ≤ 1/2 and all 1 < γ ≤ γ̄. If in addition x1 > 1, then
µ1 < −1 and 0 < µ2 < 1, so saddle-path stability holds.
Condition (A.25) can be evaluated numerically and is satisfied for plausible

parameters. For example, for ᾱ = 1/3 and γ̄ = 10, one finds
(

1− 1
γ

)
z(ρ) =

1.4133 < α
1−α = 1.5 and for ᾱ = 0.2 and γ̄ = 5, one finds

(
1− 1

γ

)
z(ρ) =

1.2285 < α
1−α = 1.25. Thus the system is saddle-path stable for all 1/3 ≤ α ≤

0.5 and 1 < γ ≤ 10 and for all 0.2 ≤ α ≤ 0.5 and 1 < γ ≤ 5. The suffi cient
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condition tends to fail only if α is implausibly small and γ is large. (Note that
the condition is not necessary; in some cases, one can use (A.24) to show that
the system is stable even though (A.25) fails. For example, for α = 1/3 and
γ = 15, one can show that (A.24) applies for all ε ≤ 10.)

7.6 Analysis in Section 5.2

7.6.1 Derivation of dRt+1

dθt
under Markov Strategies

Section 5.2 asserts (25), assuming no persistence. Proof: By the Markovian
assumption on strategies we can write θt+1 = g(κt+1), where g is some unknown
function. Differentiating lnRt+1, one obtains

d lnRt+1

dθt
= (1− α)

[
d ln (1 + θt+1)

d lnκt+1
− 1

]
d lnκt+1

dθt

= (1− α) [λt+1 − 1]
d lnκt+1

dθt
.

where λt+1 = d ln(1+θt+1)
d lnκt+1

= κt+1g
′(κt+1)

1+g(κt+1) . Differentiating

lnκt+1 = [ln (1− α)− ln η] + (1− α) ln (1 + θt)

− ln (1 + εθt)− ln

(
1 + β−

1
γR

1− 1
γ

t+1

)
+ α lnκt (A.27)

with respect to θt, one obtains

d lnκt+1

dθt
=

1− α
(1 + θt)

− ε

(1 + εθt)
−

(
1− 1

γ

)
1 +Bt

d lnRt+1

dθt

Substituting the above equation into dRt+1

dθt
above, we obtain

d lnRt+1

dθt
= (1− α) [λt+1 − 1]

 1− α
(1 + θt)

− ε

(1 + εθt)
−

(
1− 1

γ

)
1 +Bt

d lnRt+1

dθt

 .

Solving for dRt+1

dθt
and simplifying terms we obtain

d lnRt+1

dθt
=

(1− α) [λt+1 − 1]
[

1−α
(1+θt)

− ε
(1+εθt)

]
(1 + 1/Bt)

(1 + 1/Bt) + [λt+1 − 1] (1− α)
(

1− 1
γ

)
/Bt

=
(1− α) (1− λt+1)

[
ε

(1+εθt)
− 1−α

(1+θt)

]
(1 + 1/Bt)

1 + (1− (1− λt+1)φ) /Bt
(A.28)
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As in the previous section, maximizing (6) with respect to θt again implies
(A.15), where dRt+1

dθt
= Rt+1

d lnRt+1

dθt
is now given by (A.28). An interior solution

again requires d lnRt+1

dθt
/ (1 + 1/Bt) = α

(1+θt)
, which (after simplifying as in the

previous section) reduces to (25). QED.

7.6.2 The Numerical Algorithm for the Equilibrium in Markov Strate-
gies

We obtain a log-linearization of the model in Markov strategies and verify the
quality of the solution by using numerical methods that use projection methods
similar to den Haan and Marcet’s (1990) parameterized expectations approach
(PEA).
Specifically, we approximate period-t expectations about θ∗t+1 by using the

function:

(
1 + θ∗t+1

)
= exp

(
n∑
i=0

µi (ln (κt+1))
i

)
(A.29)

for some unknown coeffi cients µ = {µ0, µ1, µ2, ..µn}, and where κt+1 is known
at time t. The general idea is to choose some particular coeffi cients µ̂ such
that the distance between the forecast and the optimal choices dictated by the
equations of the model are minimized. For our application, the coeffi cients are
obtained after an iterative procedure where the model is solved for different
points on the state grid26 , where the solution is conditional on a previous set of
coeffi cients. The new set of equilibrium pairs {κt, θt} are used to generate a new
set of coeffi cients that describe the optimal policy function (and the elasticity
d ln(1+θ∗t+1)
d lnκt+1

), and which also update the expectation function of the model. This
is repeated until the distance of the forecast and actual choices consistent with
that forecast is minimized.
Under equation (A.29) the term

d ln(1+θ∗t+1)
d lnκt+1

needed in the first order condi-
tion of generation [t] is given by

d ln (1 + θt+1)

d lnκt+1
=

n∑
i=1

iµi (ln (κt+1))
i−1 (A.30)

The particular steps of the algorithm are explained below.
Preliminaries. For the initial conditions that represent the grid of the

state variable (κ) we use a neighborhood around the myopic steady state, given
by
[
.75κ1, 1.5κ1

]
. This interval does not need to be symmetric, and in our

26See Christiano and Fisher (2000) for the use of this step in the PEA algorithm. Since
simulating the model will naturally lead to points which have a high probability and not
many points of states with low probability, they suggest several variations of the algorithm
that amount to collocation in the grid, rather than increasing the number of periods of the
simulation. Some of their best variations of the PEA algorithm don’t require many collocation
points (i.e. 5 collocation points) , nor require many terms in their expectation function.
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particular case it is due to the fact that (with γ > 1) the Markov steady state
level (κ∗) is always to the right of the myopic steady state (κ1).
Step 1. Start with the solution of the rational expectations "myopic" equi-

librium where immigration quotas θt take as given the future immigration quotas
θt+s, for s ≥ 1. The model is simulated for many periods t = 0, 1, 2, ...T us-
ing perfect foresight under j = 1, 2, ...J different initial conditions in the state
grid. For each of the time series generated under each initial condition, a point
(κ0, θ

∗
0) is obtained.27 Hence there are J pairs

(
κ0,j , θ

∗
0,j

)
that show the optimal

immigration quota consistent with the initial condition and with perfect fore-
sight simulation of the model. Then those pairs are used to estimate equation
(A.29) in order to obtain the first set of coeffi cients (µ̂1) .More details about the
specific regression are explained in step (4). Then form the forecasting function
ĝ (κt+1; µ̂1) , which is parameterized by the initial set of coeffi cients µ̂1. For
economy of notation in what follows define the forecasting function parameter-
ized by the coeffi cients of the sth iteration by ĝ (κt+1; µ̂s) ≡ ĝs (κt+1) .

Step 2. For each initial condition κ0,j (j = 1, 2, ...J) and given the coeffi -
cients µ̂s that parameterize the ĝs (κt+1) , a non-linear solver is used in order to
(simultaneously) solve for θ∗0,j and κ

∗
1,j for the following two equations that de-

scribe the evolution of the system (where for simplicity we ignore the subscript
j that denotes a particular initial condition):

κ1

(
1 + β−

1
γ α(1− 1

γ )
(

1 + ĝs (κ1)

κ1

)φ)
=

(1− α) (1 + θ0)
1−α

κα0
η (1 + εθ0)

β−
1
γ α(1− 1

γ )
(

1 + ĝs (κ1)

κ1

)φ

=

[(
1−α
α

) (ε−1)
(1+εθ0) − α

]
− d ln(1+ĝs(κ1))

d lnκ1

[
(1− α) +

(
1−α
α

) (ε−1)
(1+εθ0)

]
{

1
γ + α− α

γ

}
+ φd ln(1+ĝs(κ1))

d lnκ1

where the term d ln(1+ĝ(κ1))
d lnκ1

is given by equation (A.29). For each κ1,j ob-
tained as the solution to the above equations, the non-linear solver can be used
again in order to obtain

(
κ2,j , θ

∗
1,j

)
and repeat this step recursively up to some

final period T .
Step 3. A measure of accuracy of the forecast ĝs (κt) and the optimal choice

that solves the system of equations
(
θ∗t,j
)
is constructed. We calculate the sum

of squared residuals for simulation started by initial condition j (SSRj) from
the current optimally chosen levels (θ∗t ) and the levels that would be predicted
directly by the forecasting function using the previous set of coeffi cients for all

27More than one point can be used (i.e (κ0j , θ∗0j) and (κ1j , θ
∗
1j) for the j−th initial condition.

We don’t do this step because the next set of points are closer to each other (converging toward
the steady state) and in practice didn’t change the coeffi cients. When only the first point is
used, we control exactly which points on the grid we want to approximate, which is a good
thing when approximating numerically a particular function.
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periods t. That is, we compute an error term (not the regression error term)
obtained in (each of the J) current simulations of the equilibrium immigration
quota

(
θ∗t,s
)
, which use perfect foresight and which assume that the future effects

d ln(1+θt+1)
d lnκt+1

are given by (A.30). The error of prediction for each one of the J
simulations (for each of the J initial conditions) when the expectation function
uses coeffi cients of iteration s, for time t is given by et,j,s+1 = θ∗t,j − ĝ (κt, µ̂s) .

Then SSRj,s+1 =

T∑
t=0

(et,j,s+1)
2 . If this distance is at a minimum, then a

solution has been found, but if not at a minimum, continue with the next step.28

Step 4. Given the new set of pairs
{
θ∗0,j , κ0,j

}J
j=1
, run the non-linear re-

gression

(
1 + θ∗0,j

)
= exp

(
n∑
i=0

µi (ln (κ0,j))
i

)
+ error

where the estimates for coeffi cients that parameterize this function when this
is the (s+ 1) time that this step is performed are given by µ̂s+1. Given the new
coeffi cients, go back to step 2 and repeat the steps untilmax [SSR1,s+1, ..SSRJ,s+1]
has been minimized.29

An example. Consider the case with the parameters as discussed in the
text with α = 1

3 , η = 1.25
1.12 , γ = 4, β = .412 and ε = 1.9321. We use n = 3 (a

polynomial of the third degree) in order to minimize the distance. The steady

state yields θ∗ = 8.00% and κ∗ = .0739, with an elasticity
d ln(1+θ∗t+1)
d lnκt+1

evaluated
at steady state of 7.04%. In our experiments, adding more monomial terms
to the expectation function doesn’t result in more accuracy. The Markovian
strategy of equilibrium is described in this case by

(1 + θ∗t ) = exp

(
3∑
i=0

µ̃i ln (κt,j)
i

)
with coeffi cients {µ̃0, µ̃1, µ̃2, µ̃3} given by {0.261032563347811, 0.0698516558436102,
-0.000699103908625326, -0.000150142686729684}, and max {SSR1, ...SSRJ} =
.5∗10−15. The algorithm required 11 iterations in order to arrive at the solution
where we used T = 20 and N = 24. The optimal policy function in Markov
strategies for this particular example is shown below.

28Alternatively, we can define this algorithm in terms of finding the coeffi cients µ∗ such
that, using the forecast g (κ;µ∗) the model equations yields a set of pairs {κj , θj}Jj such
that µ∗ also solves the regression problem. That is, returns the same coeffi cients used in the
simulation of the model.
29The coeffi cients used for the perfect foresight simulation of the model (vector µ̃) can

be those directly dictated by the regression (µ̂), or as den Haan and Marcet do, a linear
combination of the estimated coeffi cients for the current iteration and the estimates used in
the previous iteration can be used. That is, for the ith iteration if the regression coeffi cients
are µ̂i and the coeffi cients that are fed into the model in the previous iteration are µ̃i−1, then
the next iteration uses coeffi cients given by µ̃i = ρµ̂i + (1− ρ) µ̃i−1, for a specific 0 < ρ < 1.
For our model we can update the new coeffi cients directly (ρ = 1).

A-19



The optimal markovian policy function
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Robustness. This algorithm is robust with respect to many variations in
the procedure: to the number of periods T (Using T = 10 or T = 200 yields
identical solutions in θ∗t up to several decimal points), the number of initial
conditions J (can use J of at least 4 and get very accurate results provided
we use the same grid), as well as the number of pairs used for the regression
procedure (can use pairs

{
θ∗t,j , κt,j

}J
j=1

for t = {0} or t = {0, 1}, or t = {0, 1, 2}
in the regression and still obtain the same results). Variations in the size of
the state grid don’t seem to affect the steady state results even when we used a
much smaller grid given by

[
.99κ1, 1.10κ1

]
.

Simplified Version. For n = 1, the projection (A.29) reduces to a log-
linear approximation around the steady state. For purposes of computing steady
states—our objects of main interest—the only relevant feature of g is the elasticity
λ∗ = g′(κ∗)κ∗

1+g(κ∗) = d ln(1+θ∗)
d lnκ at the steady state capital stock κ∗, because only λt+1

appears in (25). Log-linearization yields an analytical solution for g′(κ∗), which
means {κ∗, θ∗, λ∗} can be written as a system of three non-linear equations
that can be solved numerically (i.e., without having to approximate g away
from κ∗). The log-linearizations turn out to provide values for θ∗ that are very
close to values obtained from solutions to the PEA algorithm. For example,
using the parameters discussed above, the log-linearization yields θ∗ = 7.98%,
as compared to θ∗ = 8.00% with PEA.

7.7 Analysis in Section 5.3

We claim in Section 5.3. that the CRRA model with persistence has a first
order condition that can be used to compute optimal solutions.
Proof: In the CRRA model with persistence, Rt+1,j depends on the state

j = I, II, as in Section 4.1. Now θIt+1 = gp(κt+1) and θIIt+1 = θt. The individual
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problem (A.8) again implies (A.9), where

Bt =

(κt+1)(γ−1)(1−α)βα(1−γ)

∑
j

pj · (1 + θt+1,j)
(1−γ)(1−α)

1/γ

= (κt+1)φEt

is decomposed multiplicatively into a function of κt+1 and the expectational
term

Et = β
1
γ α−(1− 1

γ )

∑
j

pj · (1 + θt+1,j)
(1−γ)(1−α)

 1
γ

.

Note that κt+1 = ψtwt
Bt

1+Bt
, where ψt = (1+θt)

η(1+εθt)
. Hence

Bt = (κt+1)φEt = (ψtwt
Bt

1 +Bt
)φEt = zt(

Bt
1 +Bt

)φ

is (implicitly) a function Bt = B(zt), where zt = (ψtwt)
φEt.

Voters maximize Ut = 1
1−γw

1−γ
t [1 +Bt]

γ by choice of θt. This implies

dUt
dθt

=
(1− γ)Ut

wt

dwt
dθt

+
γUt

1 +B(zt)
B′(zt)

dzt
dθt
, or

d lnUt
(1− γ)dθt

=
d lnwt
dθt

− εB(zt)

1− 1/γ

d ln zt
dθt

where εB(zt) = B′(zt)zt
1+B(zt)

= Bt
1−φ+Bt

. Hence interior solutions require

1

εB(zt)

d lnwt
dθt

=
1

1− 1/γ

d ln zt
dθt

. (A.31)

Taking derivatives:

d ln zt
dθt

=
d lnEt
dθt+1,II

+
d lnEt
dθt+1,I

∂θt+1,I

∂ lnκt+1

∂ lnκt+1

∂θt
+ φ

(
d lnwt
dθt

+
d lnψt
dθt

)
;

d lnEt
dθt+1,II

= −(1− 1

γ
)

1− α
1 + θt

PII , where

PII = PII(θ
II
t+1, Et) = p

βα(1−γ)(1 + θIIt+1)(1−γ)(1−α)

Eγt
;

d lnEt
dθt+1,I

∂θt+1,I

∂ lnκt+1
=

1

γ
(1− PII)(1− γ)(1− α) · λt+1;

lnκt+1 = lnψt + lnwt + lnBt − ln(1 +Bt) implies
∂ lnκt+1

∂θt
=

(
d lnwt
dθt

+
d lnψt
dθt

)
+

1

Bt

∂Bt
∂θt
− 1

1 +Bt

∂Bt
∂θt

=

(
d lnwt
dθt

+
d lnψt
dθt

)
+
εB(zt)

Bt

d ln zt
dθt

; and
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d lnwt
dθt

+
d lnψt
dθt

=
α

(1 + θt)
+

1

(1 + θt)

ε− 1

(1 + εθt)
,

one obtains,

d ln zt
dθt

= −(1− 1

γ
)

1− α
1 + θt

PII + φ

(
d lnwt
dθt

+
d lnψt
dθt

)
−(1− PII)φλt+1

[(
d lnwt
dθt

+
d lnψt
dθt

)
+
εB(zt)

Bt

d ln zt
dθt

]
,

d ln zt
dθt

=
−(1− 1

γ ) 1−α
1+θt

PII + φ
(

α
(1+θt)

+ 1
(1+θt)

ε−1
(1+εθt)

)
[1− (1− PII)λt+1]

1 + φ
1−φ+Bt

(1− PII)λt+1φ
.

provided 1 + φ
1−φ+Bt

(1 − PII)λt+1φ > 0. Inserting into (A.31) and combining
terms, the first order condition is

1

εB(zt)

d lnwt
dθt

=

1
1−1/γ

∂ lnEt
∂θt

+ (1− a)
(
d lnwt
dθt

+ d lnψt
dθt

)
[1− (1− PII)λt+1]

1 + (1− PII)λt+1φ
εB(zt)
Bt

Using 1
εB(zt)

= 1−φ+Bt
Bt

= 1 + 1−φ
Bt
, this can be written as

1

Bt
=

(
1− a+

(
1−α
α

)
ε−1

(1+εθt)

)
[1− (1− PII)λt+1] +

(
1−α
α

)
PII − 1

1− φ+ φ(1− PII)λt+1
. (A.32)

This first order condition generalizes (25). QED.
Note that in any steady state, θIt+1 = θIIt+1 = θ∗ implies PII = p. Constant

Bt = B∗ and θt = θ∗ imply

1

B∗
=

p
(

1−α
α

)
+
(

1− a+
(

1−α
α

)
ε−1

(1+εθ∗)

)
[1− (1− p)λ∗]− 1

1− φ+ (1− p)λ∗φ , and

B∗ = β
1
γ

(
1− α

αη(1 + εθ∗)

B∗

1 +B∗

)1− 1
γ

where λ∗ = g′(κ∗)κ∗

1+g(κ∗) depends on the policy function at κ∗. Hence given a
numerical approximation for g, a steady state {B∗, θ∗, λ∗} can be characterized
as solution to this system of non-linear equations. We obtain steady states
numerically in two ways: by approximating g using PEA (as discussed above);
and by deriving an analytical solution for g′(κ∗) from log-linearizing (A.32)
and (A.18), and then solving the steady state equations numerically. In our
applications, both approaches yield virtually identical answers.
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