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Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, California

Abstract

BACKGROUND: Fetal exposure to maternal mood dysregulation influences child cognitive and 

emotional development, which may have long-lasting implications for mental health. However, the 

neurobiological alterations associated with this dimension of adversity have yet to be explored. 

Here, we tested the hypothesis that fetal exposure to entropy, a novel index of dysregulated 

maternal mood, would predict the integrity of the salience network, which is involved in emotional 

processing.

METHODS: A sample of 138 child-mother pairs (70 females) participated in this prospective 

longitudinal study. Maternal negative mood level and entropy (an index of variable and 

unpredictable mood) were assessed 5 times during pregnancy. Adolescents engaged in a functional 

magnetic resonance imaging task that was acquired between 2 resting-state scans. Changes 

in network integrity were analyzed using mixed-effect and latent growth curve models. The 

amplitude of low frequency fluctuations was analyzed to corroborate findings.

RESULTS: Prenatal maternal mood entropy, but not mood level, was associated with salience 

network integrity. Both prenatal negative mood level and entropy were associated with the 

amplitude of low frequency fluctuations of the salience network. Latent class analysis yielded 

2 profiles based on changes in network integrity across all functional magnetic resonance imaging 

sequences. The profile that exhibited little variation in network connectivity (i.e., inflexibility) 

consisted of adolescents who were exposed to higher negative maternal mood levels and more 

entropy.

CONCLUSIONS: These findings suggest that fetal exposure to maternal mood dysregulation is 

associated with a weakened and inflexible salience network. More broadly, they identify maternal 

mood entropy as a novel marker of early adversity that exhibits long-lasting associations with 

offspring brain development.

Exposure to adversity in early life exerts profound impacts on the developing brain, with 

lifelong consequences for mental health. In particular, the prenatal period is a sensitive 

window in time during which in utero signals shape neurodevelopmental trajectories (1,2). 

Among those signals, maternal mood states are well-established determinants of child 

cognitive and emotional development (3). Numerous studies have demonstrated that prenatal 

maternal depression, anxiety, and stress are each uniquely associated with alterations in 

offspring brain structure and connectivity, conferring risk across many forms of child 

psychopathology (4–6). More specifically, these studies indicated that the neural circuitry 

that links the amygdala and prefrontal cortex can be disrupted by negative maternal mood 

states during fetal life. Diffusion imaging studies have revealed microstructural differences 

in the white matter tracts that connect the amygdala and prefrontal cortex among children 

with higher exposures to prenatal maternal depression (7), anxiety (6,8), and stress (9). 

These findings are consistent with structural imaging studies that have reported alterations in 

subcortical limbic structures (10) and executive prefrontal regions (2,7,11,12).

In contrast to brain structure, little is known about how brain function is impacted by 

prenatal exposures. To date, we are aware of only 2 functional neuroimaging studies that 
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have been conducted with children exposed to prenatal maternal depression, and they 

yielded mixed results (13,14). One study found that in 6-month-old infants of mothers 

with depression, the amygdala had stronger connectivity with the whole brain (13). By 

contrast, the other study found that in 8-month-old infants of mothers with depression, 

the amygdala was less functionally integrated with executive and affective regions (14). 

Although functional imaging investigations of prenatal adversity exposures are scarce, 

more literature has examined the associations between postnatal adversity and child brain 

development (5,15), yielding 2 recurring findings. First, studies using resting-state magnetic 

resonance imaging (MRI) have documented relationships between early-life adversity and 

salience network connectivity (16–18). Second, studies using task-based MRI demonstrated 

that adolescents who have been exposed to adversity in early life tend to exhibit 

greater brain activation when viewing fearful faces, specifically in regions comprising the 

salience network. This is in agreement with evidence that the salience network facilitates 

socioemotional regulation (19) and switching between attention states (20).

In addition to the extensively documented forms of early-life adversity that shape 

developmental trajectories of mental health (e.g., poverty, abuse, parental psychopathology), 

accumulating evidence indicates that unpredictability in the parental and home environment 

shapes the developing brain beginning during the fetal period (21–27). With direct relevance 

to maternal mood and mental health, 2 recent studies found that in addition to mood 

level (e.g., extremity of symptoms) or valence (e.g., positive or negative), a new indicator 

of maternal mood dysregulation, mood entropy (an index of unpredictable mood), was 

associated with multiple developmental outcomes, including infant negative affectivity, 

child cognitive development, and adolescent anxiety and depressive symptoms (28,29). The 

current study extends previous research by evaluating the association between both prenatal 

maternal negative mood level and mood entropy and functional brain networks.

Leveraging data from a prospective longitudinal cohort of children and adolescents (ages 

10.8–16.8 years) who were followed from the prenatal period, the current study aimed 

at understanding the functional neural markers that are uniquely associated with fetal 

exposures to maternal mood dysregulation (i.e., level and entropy). Participants in this 

study completed an emotional processing MRI scan that was acquired in between 2 resting-

state MRI scans, enabling us to evaluate brain function across 3 conditions. Given the 

established literature linking postnatal adversity to the salience network, we hypothesized 

that children with prenatal exposure to higher levels of dysregulated maternal mood (level 

and entropy) would also exhibit individual differences in the salience network. To test this 

hypothesis, we analyzed multiple functional MRI (fMRI) properties of the salience network, 

including task-evoked activation when passively viewing fearful faces in contrast to neutral 

ones (30), how uniquely interconnected the salience network was throughout the brain 

(31), and its degree of spontaneous activation within each fMRI sequence (32). Lastly, we 

analyzed changes between resting-state and task-evoked processing or how brain networks 

dynamically reconfigured in response to task demands, which we operalizationaled herein 

as the flexiability of a given network (33). Past research has suggested that the flexibility 

of networks can be measured via moment-to-moment fluctuations in connectivity across 

rest and task conditions and that this within-subject variability is associated with cognitive 

processing (34) and socioemotional outcomes (35).
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METHODS AND MATERIALS

Study Overview

Pregnant women were recruited during the first trimester of pregnancy, and maternal 

mood was assessed 5 times during gestation (at 15, 19, 25, 31, and 36 weeks). Children 

(70 females; mean age: 13.5 years, age range: 10.8–16.8 years) completed structural and 

fMRI scanning during adolescence. Additionally, maternal mood was assessed concurrently 

with the MRI scanning session. The recruitment criteria and data collection process for 

this cohort of 138 mother-child pairs are summarized in the Supplement and have been 

extensively documented in previous reports (28,29). Demographic information about these 

mother-child pairs was collected using self-report assessments (Table 1).

Assessment of Dysregulated Maternal Mood

Negative Mood Level.—At each prenatal assessment, mothers completed widely used 

and validated measures to assess depressive symptoms (Center for Epidemiological Studies 

Depression Scale - Short Form) (36), state anxiety (State-Trait Personality Inventory) (37), 

pregnancy-specific anxiety (38), and perceived stress (Perceived Stress Scale) (39). Each 

questionnaire was scored conventionally as an index of maternal negative mood level during 

pregnancy. To create a single composite index of maternal prenatal mood level, scores on 

the 4 scales were standardized and averaged within each time point, and those means were 

subsequently averaged across all 5 time points, which we refer to herein as mood level.

Mood Entropy.—As has been described in detail elsewhere (28,29), an index of maternal 

mood entropy was computed by applying Shannon’s entropy to the distribution of responses 

on each of the mood questionnaires (e.g., mood entropy; the open-source R function is 

available at https://contecenter.uci.edu/measuring-maternal-mood/). This approach involves 

a quantification of the unpredictability of the item-by-item responses to assessments of 

mood. The responses within a single assessment are tabulated over the items within each 

scale into probability distributions based on the relative frequency of each response choice, 

and these distributions represent empirical estimates of the propensity of a participant to 

respond across items in a consistent way. Therefore, mood entropy represents the degree 

of predictability of the item-specific response. For example, a participant who generally 

reports never feeling sad or always enjoying life on the Center for Epidemiological 

Studies Depression Scale would be considered very predictable and thus have a very low 

entropy score, whereas a participant who completes the Center for Epidemiological Studies 

Depression Scale items entirely at random would be assigned a very high entropy score. 

As with prenatal maternal mood level, mood entropy scores were averaged across scales 

within each time point, and those means were averaged across time. Previous research has 

shown that this index of unpredictable mood is positively associated with daily ecological, 

momentary assessments of maternal mood variability and also predicts infant, child, and 

adolescent neurodevelopmental outcomes (28,29). Importantly, computed entropy scores 

from assessments unrelated to mood (e.g., physical activity) are not predictive of offspring 

developmental outcomes (6,7). Mood entropy scores were similarly computed and averaged 

across depression, perceived stress, and state anxiety scores from the maternal assessments 

at the adolescent MRI.
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Image Acquisition and fMRI Tasks

All brain scans were acquired using a Philips 3T MRI scanner equipped with a 32-channel 

head coil at the University of California, Irvine. Blood oxygen level–dependent (BOLD) 

fMRI acquisition used whole-brain, single-band, echo-planar images with the following 

parameters: 3-mm3 isotropic resolution, repetition time = 2000 ms, echo time = 20 ms, 51 

interleaved slice acquisition, field of view = 192 × 192 × 153 mm3, flip angle = 71°, matrix 

= 62 × 64, SENSE parallel reduction factor of 2. Data collection began after the fourth 

image to allow for stabilization of the MR signal. Prior to collecting fMRI data, structural 

brain imaging was completed using a T1-weighted sequence with the following parameters: 

1-mm3 isotropic resolution, repetition time = 8 ms, echo time = 3.7 ms, 208 slices, field of 

view = 256 × 256 × 208 mm3, flip angle = 8, matrix = 256 × 210.

As part of this scanning session, participants completed 3 consecutive fMRI scans. The 

first scan accessed participants’ baseline BOLD activity while at rest (REST-1), during 

which they were instructed to keep their eyes fixated on a crosshair that was displayed 

in the center of a screen. Next, participants engaged in an emotional processing task 

(TASK) that elicits activation within the amygdala (40–42). This task consists of passively 

viewing faces that have either neutral or fearful expressions and are randomly presented 

for 350 ms in an event-related design (Figure S1). Lastly, participants completed a second 

resting-state task (REST-2) that was identical to the first resting sequence. Each resting-

state sequence consisted of 150 volumes, whereas the task-based sequence contained 130 

volumes, resulting in a total of 430 images across the entire fMRI scanning session, which 

lasted for 14 minutes and 20 seconds.

Image Processing and Quality Assurance

FMRIPrep (version 20.1.1) (43) was used to preprocess all 3 fMRI sequences. Each 

subject’s T1-weighted image was used as a reference throughout the workflow after 

images were corrected for intensity inhomogeneities (N4Bias-FieldCorrection) (44), skull-

stripped (antsBrainExtraction) (45), and segmented based on tissue type (FSL-FAST) (46). 

Spatial normalization was completed by nonlinearly registering and resampling scans to 

the International Consortium for Brain Mapping 152 nonlinear asymmetrical template 

(antsRegistration) (47). Because field maps were not collected, distortion correction was 

estimated using Advanced Normalization Tool’s symmetrical normalization (48). Head-

motion parameters were estimated before any spatiotemporal filtering (FSL-MCFLIRT) 

(49). Automatic removal of motion artifacts using independent component analysis (ICA) 

(ICA-based automatic removal of motion artifacts) (50) was performed on the normalized 

BOLD time series, which were spatially smoothed by a 6-mm Gaussian kernel.

The XCP imaging pipeline (version 1.2.1) (51) was used to apply additional denoising 

methods and evaluate image quality. Every preprocessed fMRI sequence underwent 

Butterworth filtering to demean and detrend each time series; therefore, only signals in 

the 0.01 to 0.08 Hz range were retained. Nuisance regression analysis was applied to 

remove the mean time series of the white matter and cerebrospinal fluid. The ICA-based 

automatic removal of motion artifacts pipeline was most effective at attenuating motion-

related artifacts while preserving temporal degrees of freedom (Figure S2). This assessment 
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was based on its ability to attenuate distance-dependent artifacts as quantified by the 

correlation between functional connectivity and Euclidean distances in a 264 node-network 

(52). Despite the presence of head motion in our sample (Figure S3), our denoising strategy 

yielded data that had few artifacts compared with previously reported benchmarks (53).

Parcellating Brain Networks Using ICA

The FSL-MELODIC (version 3.15) (54) software package was used to perform spatial 

group ICA. Multisession temporal concatenation was applied only to the REST-1 time series 

so that components would be derived from resting baseline activity and not a mixture 

of task-evoked signals. Multiple ICA resolutions (8–24 networks) were examined based 

on 2 criteria: 1) keeping well-known intrinsic connectivity networks intact (55) and 2) 

reducing dimensionality to limit the number of comparisons. Based on these criteria, the 

12-component solution was selected, with all networks confirmed by visual inspection. 

The resulting images were 3-dimensional, but each component was mapped onto a surface 

using BrainNet Viewer (56) for visualization purposes (Figure S4). Only the 10 nonartifact 

components were included in the whole-brain analyses to assess whether effects were 

specific to the salience network.

Task-Related Activation During Passive Viewing of Fearful Faces

FSL-FEAT (version 6.0) (30) was used to model task-evoked brain activity while viewing 

neutral and fearful faces. These 2 types of events and their temporal derivatives were 

included as regressors in the time series model where gamma convolution was applied. 

A single contrast was derived to measure the amount of activation while viewing fearful 

faces compared with neutral ones. This contrast was used to determine which clusters had 

more activation when viewing fearful faces as opposed to neutral ones for all subjects. The 

resulting group-level activation map was created using FLAME stage 1 (57), which only 

retained clusters of voxels that had z values larger than 3.1 and survived a cluster-corrected 

significance threshold of .05.

Integrity of Intrinsic Connectivity Networks

Dual regression analysis (version 0.5) (31) was used to generate subject-specific spatial 

maps that were derived from the group-level ICA templates that were derived across all 

participants in this sample. This multivariate method takes a participant’s fully processed 

4-dimensional fMRI sequence and extracts the average signal for all 12 ICA templates. The 

resulting time series captures the unique signal associated with each ICA template, which 

is subsequently regressed onto every voxel in the participant’s preprocessed sequences 

(58). The final output from this workflow is a set of beta-weight maps that capture 

individual differences in the magnitude and shape of each ICA template. Rapid changes 

in the topography of functional networks occur during childhood and adolescence (59), 

making it important to account for individual variation in the shape of functional networks. 

Following previous studies (15,60), the average beta weight from each subject-specific map 

was used to represent the integrity of a given ICA component. This procedure was repeated 

independently for all 3 fMRI sequences.
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Amplitude of Low-Frequency Fluctuations

Amplitude of low-frequency fluctuations (ALFF) is defined as the total power within the low 

frequency range, and thus it indexes the strength or intensity of low-frequency oscillations. 

This measure may be a proxy for spontaneous brain activation because it is susceptible to 

changes in environmental stimuli (61) and cognitive demands (62). Rhythmic activity of 

low-frequency fluctuations is the basis for determining the functional connectivity between 

nodes. Here, it was utilized as a proxy to estimate variability in activation of the salience 

network. Accordingly, we computed the ALFF for each network by taking the sum of 

amplitudes from frequencies ranging from 0.01 to 0.08 Hz. As was true for network 

integrity, we computed the ALFF for each of the 3 fMRI sequences that were acquired.

Rationale for Statistical Analyses

Previous functional brain studies have only investigated whether individuals who were 

exposed to prenatal adversity exhibited differences in brain function while at rest. In 

contrast, individual differences in task-based processing is one of the most commonly 

reported neural abnormalities associated with various forms of postnatal adversity. 

Therefore, it is not clear from previous literature whether prenatal negative maternal mood 

level would also be associated with task-based processing or whether significant differences 

would only be apparent during resting state. Furthermore, the functional brain signatures 

of prenatal maternal mood entropy have yet to be examined altogether. Here, we had 

the unique opportunity to evaluate the network dynamics both while at rest and during 

a task. More specifically, we took 2 data-driven approaches to understand brain-behavior 

relations: 1) we conducted moderation analyses to understand whether the relationship 

between salience network integrity and maternal mood differed between task conditions, 

and 2) we performed latent growth curve modeling to identify groups of participants whose 

changes in network integrity were similar throughout the entire fMRI scanning session 

and subsequently evaluated whether exposure to prenatal adversity predicted membership 

in these groups. These approaches yielded complementary information because moderation 

analysis informs us about individual differences between task conditions, and latent growth 

curve modeling reflects within-subject changes in network dynamics across all fMRI 

sequences. Lastly, we attempted to extend our findings by analyzing individual differences 

in the ALFF because this metric represents changes in brain activation within a given fMRI 

sequence. We believe that this comprehensive approach was essential to narrowing down 

which biomarkers were uniquely associated with prenatal exposure to maternal mood level 

and entropy. Furthermore, such analyses were useful for identifying which experimental 

condition (resting-state vs. task-based) was most likely to elicit the largest differences.

Statistical Analyses

Statistical analyses were completed using R (version 3.6), and the code is 

publicly available: https://github.com/yassalab/ConteCenterScripts/tree/master/Conte-One/

scripts/analyses/IntraFlux. The following 6 analytical approaches were used to understand 

the neural mechanisms underlying exposure to prenatal maternal negative mood level 

and entropy. Unless otherwise specified, all the analyses that follow were conducted 

with separate models to evaluate mood level and entropy independently (see equations in 
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the Supplement). First, linear regression analyses were used to assess whether prenatal 

mood level and entropy were associated with brain activation in response to fearful faces 

during the task-based MRI. Second, mixed-effect models with random intercepts for each 

participant (package lme4, version 1.1) (63) were used to determine whether individual 

differences in network integrity varied as a function of prenatal maternal mood level and 

entropy. Interaction analyses were conducted to evaluate whether relationships between 

prenatal mood (level and entropy) and salience integrity were dependent on fMRI task 

conditions (prenatal mood × fMRI time point). Third, latent class mixture modeling (R 

package lcmm, version 1.9.2) (64) was used to identify common patterns of within-subject 

changes in network integrity across all 3 fMRI sequences. Post hoc tests were performed 

to determine whether the resulting latent profiles differed by exposure to prenatal maternal 

mood level and entropy. Fourth, mixed-effect models were also used to analyze the ALFF 

and corroborate findings observed with network integrity. Fifth, given that there is a 

well-established literature documenting sex-specific influences of early-life experience on 

neurodevelopment (65), sex was examined as a possible moderator of the relationships 

between prenatal maternal mood (level and entropy) and potential neural correlates 

(prenatal mood × sex). Sixth, sensitivity analyses were performed to understand the unique 

contributions of exposure to prenatal maternal mood level versus entropy and prenatal versus 

postnatal mood entropy and to account for potential confounding influences related to image 

quality or socioeconomic status. To assess whether the observed relationships were specific 

to the salience network, brainwide analyses were conducted on the 9 remaining intrinsic 

connectivity networks (Figure S4). For these analyses, Benjamini-Hochberg false discovery 

rate correction (66) was applied to account for multiple comparisons.

RESULTS

The Emotional Processing Task Increased Activation of Regions Within the Salience 
Network

Cluster-based fMRI analyses across all participants showed that fearful faces elicited 

activation in regions that comprise the salience network, consistent with results of previous 

studies (40). More specifically, clusters of activation were localized within the left 

amygdala, occipital pole, lingual gyrus cingulate, left inferior frontal gyrus, right middle 

frontal gyrus, and right orbitofrontal cortex (Figure 1).

Salience network activation in response to fearful faces did not vary as a function of prenatal 

maternal mood level (β = 0.07, t133 = 0.76, p = .45) or entropy (β = 0.08, t133 = 0.88, p = 

.38). This also was true for other intrinsic connectivity networks (q > 0.34).

Prenatal Maternal Mood Entropy Predicted Integration of the Salience Network

Dual regression analysis was used to derive subject-specific spatial maps for each ICA 

network, thereby quantifying how uniquely interconnected a given network was throughout 

the brain (e.g., integrity). Across the 3 sequences, integrity of the salience network was 

negatively associated with mood entropy (β = −0.11, t407 = −22.09, p = .04) (Figure 2) 

but not mood level (β = −0.05, t407 = −1.02, p = .31). Moderation analyses indicated that 

the relationship between salience integrity and mood entropy did not differ among each of 
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the fMRI sequences (β = 0.08, t403 = 1.22, p = .23), suggesting that this association was 

independent of task-related processing. Analysis of all intrinsic connectivity networks did 

not uncover any additional relationships that survived multiple comparison correction for 

either mood level (q > 0.19) or mood entropy (q < 0.20).

Prenatal Maternal Mood Entropy Predicted Inflexibility of the Salience Network

Our 3-scan design allowed the assessment of changes between resting-state and task-evoked 

processing. Such changes between fMRI sequences can represent the flexibility of functional 

networks or the ability to dynamically reconfigure networks to address task demands. Latent 

class mixture modeling was used to analyze within-subject changes in network integrity 

across all fMRI sequences, which revealed that a 2-class solution fit the data best (Table 

S1). This 2-class solution yielded a group of participants whose salience networks were 

relatively invariable (i.e., inflexible) across all 3 fMRI sequences compared with a second 

group whose networks demonstrated greater flexibility (Figure 3). As shown in Table 2, 

participants in the inflexible group had greater exposure to negative mood (d = 0.53, t407 = 

5.31, p < .001) and higher maternal mood entropy during gestation (d = −20.58, t407 = 5.39, 

p < .001).

Prenatal Maternal Mood Entropy Predicted Decreased ALFF of the Salience Network

While the measure of network flexibility above assesses changes across sequences, it does 

not capture spontaneous fluctuations in the BOLD fMRI signal within a given scan. Thus, 

we conducted a set of analyses to determine whether the invariability of the salience 

network would also be reflected uniformly through reductions in its ALFF. Accordingly, 

we found that adolescents who were in the inflexible latent profile also displayed substantial 

reductions in the ALFF both while at rest and during a task (Figure 4). In addition to these 

group differences between latent profiles, mixed-effect models indicated that the ALFF of 

the salience network was inversely associated with prenatal maternal mood level (β = −0.15, 

t407 = −1.96, p = .05) and entropy (β = −0.19, t407 = −2.43, p = .01).

No Evidence of Sex Differences

Inclusion of a sex × maternal mood interaction term in the models did not uncover any 

systematic differences between boys and girls for the effect of either prenatal maternal mood 

level or entropy (Table S2).

Examining the Unique Contributions of Prenatal Maternal Mood Entropy

Despite the strong correlation between prenatal maternal mood level and entropy (r = 0.75) 

(Figure S5), only entropy was reliably associated with both salience network integrity and 

the ALFF. To test the specificity of these associations, additional analyses were conducted 

that included both assessments of maternal mood as predictors concurrently. Prenatal 

maternal mood entropy remained a statistically significant predictor of salience network 

integrity (β = −0.16, t406 = −2.0, p = .04), but its relationship with the ALFF did not remain 

statistically significant (β = −0.17, t406 = −1.43, p = .15). Mood level was not associated 

with salience network integrity (β = −0.07, t406 = 0.85, p = .41) or ALFF (β = −0.03, 

t406 = −0.21, p = .83) in these analyses (Table S3). To determine whether the relationship 
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between the salience network and maternal mood entropy was specific to the prenatal 

period, we conducted an additional set of analyses with prenatal and postnatal mood entropy 

as predictors. We replicated the association between prenatal mood entropy and the ALFF 

of the salience network (β = −0.20, t406 = −2.37, p = .02), but the association with salience 

integrity did not remain statistically significant (β = −0.10, t406 = −1.77, p = .08). Despite 

a moderate correlation between prenatal and postnatal maternal mood unpredictability 

(r = 0.39), postnatal maternal mood entropy did not exhibit any relationships with any 

proprieties of the salience network (Table S4). Lastly, sensitivity analyses indicated that the 

relationship between mood entropy and the salience network did not change significantly 

when accounting for potential confounding influences of head motion or income-to-needs 

ratio (see the Supplement).

DISCUSSION

These results provide evidence that fetal exposure to dysregulated maternal mood may alter 

the development of the salience network through a reduction in its integration and flexibility, 

with stronger associations observed for prenatal exposures to unpredictable maternal mood 

(entropy) than for negative mood level. These relations were specific to the salience network 

and did not manifest in other intrinsic connectivity networks. Results were reproduced 

using 2 distinct functional measures, which characterize different aspects of network 

dynamics while at rest and during tasks. Importantly, these findings were specific to prenatal 

exposures, as maternal mood entropy measured during adolescence did not predict salience 

network features, and the addition of postnatal mood entropy did not substantively alter the 

association between prenatal mood entropy and functional measures of the salience network. 

Overall, these findings suggest that reduced integration and flexibility of the salience 

network may be markers of fetal exposure to maternal mood entropy. It is possible that the 

reduction in flexibility is an indication that the network’s ability to dynamically change and 

reconfigure its activity in response to external or internal stimuli is compromised. Indeed, 

the salience network plays a critical role in switching between mental states and exerting 

cognitive control (67). Disruptions to these brain-behavior relationships have been shown 

to be involved in several mental illnesses (68). Furthermore, such findings are consistent 

with work from our group showing that higher levels of prenatal maternal mood entropy 

were associated with poorer cognitive and emotional outcomes in the same prospective 

longitudinal sample of children (28,29). Altogether, these findings support the notion that 

intrauterine experience may shape the flexibility of the salience network and possibly confer 

risk for compromised mental health.

Contrary to expectations, prenatal exposure to maternal mood entropy was not associated 

with a heightened response toward fearful faces. Because past work using similar task-

evoked activation detected associations with postnatal adversity exposures (40), it is possible 

that our findings may reflect a key difference in the functional correlates underlying 

prenatal adversity. Because this is the first neuroimaging study in which prenatal exposure 

to maternal mood entropy was investigated, it is important for subsequent research to 

investigate how its neural correlates may differ from other dimensions of adversity.
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A primary objective of this study was to determine whether salience integrity was uniquely 

associated with fetal exposure to 2 related components of maternal mood dysregulation. 

Both maternal negative mood level and entropy, although related, were independently 

associated with properties of the salience network. However, entropy was the only predictor 

that persisted in regression models that included both variables. Thus, after accounting 

for other aspects of maternal mood severity (level and valence of symptoms), exposure 

to unpredictable mood during the gestational period appears to have unique contributions 

to offspring salience network integrity. This is consistent with the increasing recognition 

that unpredictability represents a distinct dimension of early-life experience that can 

alter neurodevelopmental trajectories (25,27,69) and builds on our group’s previous work 

demonstrating that fetal exposure to unpredictable maternal mood is associated with child 

cognitive and emotional outcomes (28,29).

There are several strengths of this work. First, our longitudinal cohort with data collection 

beginning in the fetal period and continuing through adolescence allowed prospective 

examination of prenatal influences on neurodevelopment. Second, our assessments of 

maternal mood dysregulation were based on item-level responses across 4 distinct scales, 

which is a critical advantage for deriving more reliable metrics across time (70,71). For 

example, recent evidence suggests that concurrent examination of multiple indicators of 

maternal mood leads to improved prediction of internalizing and externalizing symptoms 

in early adolescence as compared to using a single scale (72). Additionally, using an ICA 

approach to deriving intrinsic connectivity networks provided parsimonious summaries of 

the high-dimensional imaging data, thereby limiting multiple comparisons and denoising 

motion-related components at the group level (73). Finally, we analyzed 3 fMRI sequences 

for each participant, which allowed us to assess multiple facets of brain function (74).

We also acknowledge a potential limitation of the current study. As with most studies 

conducted with children and adolescents, there is a higher level of within-scanner head 

movement than is typically found in adults. We used several correction techniques to 

mitigate the contamination caused by movement and compared the top-ranked denoising 

methods and settled on ICA-based automatic removal of motion artifacts as the technique 

that most effectively reduced distant-dependent artifacts (53). Additionally, we excluded 

approximately 20% of scans that exhibited the most movement and still replicated our key 

findings (see the Supplement). Thus, we are reasonably confident that the findings presented 

herein are not the result of motion-related confounds.

Conclusions

Our results provide evidence that prenatal exposure to a novel index of maternal mood 

dysregulation, unpredictable maternal mood, is associated with a weakened and inflexible 

salience network during adolescence. More broadly, our findings underscore the need to 

consider mood entropy in addition to mood severity when examining influences of maternal 

mental health on child neurodevelopment and also further highlights the central role of 

maternal mental health in shaping the developing brain.
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Figure 1. 
Fearful faces elicited greater activation in salience processing regions. Group-level analyses 

of task-evoked activation yielded 6 clusters that were significantly more active for fearful 

faces than neutral ones. The following is a list of each cluster ordered from biggest to 

smallest, with parentheses to denote its corresponding number of voxels and z score, 

respectively: 1) lingual gyrus and occipital pole (n = 9427, z = 8.29); 2) cingulate gyrus 

(n = 637, z = 5.65); 3) left (L) inferior frontal gyrus (n = 465, z = 5.34); 4) right (R) middle 

frontal gyrus (n = 250, z = 4.65); 5) left amygdala (n = 215, z = 5.84); 6) left inferior frontal 

gyrus (n = 164, z = 4.68).
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Figure 2. 
Prenatal maternal mood entropy was negatively associated with integrity of the salience 

network across functional magnetic resonance imaging (fMRI) sequences. Integrity was 

derived from person-specific spatial maps for each intrinsic connectivity network. Brainwide 

analyses suggested that significant relationships were only detected with integrity of 

the salience network; relationships with all other intrinsic connectivity networks were 

nonsignificant.
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Figure 3. 
Data-driven clustering of network integrity derived 2 latent profiles that were differentiated 

by their degree of change between functional magnetic resonance imaging (fMRI) 

sequences. Participants engaged in a task-based scan that was acquired in between 2 resting-

state scans. This experimental design enabled us to cluster participants based on changes in 

brain connectivity across the entire fMRI scanning session. A 2-class solution fit the data 

best, yielding 2 clusters that were best distinguished by the degree of fluctuations in brain 

integrity. Specifically, the histograms demonstrate that the integrity of the salience network 

differed significantly with these 2 clusters because the cluster displayed in black exhibited 

relatively few changes to the MRI task conditions. Adolescents in the inflexible cluster were 

exposed to significantly higher negative maternal mood level and more mood entropy during 

gestation.
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Figure 4. 
Amplitudes of low-frequency fluctuations (ALFFs) mapped onto patterns of change that 

were derived from fluctuations in network integrity. Each line in the scatterplot above 

represents the fully processed blood oxygen level–dependent (BOLD) signal for a given 

participant, which is concatenated and color coded by the order in which functional 

magnetic resonance imaging (fMRI) sequences were collected. The scatterplot illustrates 

converging evidence that the BOLD fluctuations of the salience network were smaller for the 

inflexible latent profile. The histograms also highlight the fact that such differences between 

latent profiles were apparent within each sequence and across the entire fMRI scanning 

session.
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Table 1.

Demographic and Other Characteristics of Study Participants

Variable of Interest Entire Sample, N = 138

Age at Scan, Years, Mean 13.5

Sex, Female, % 50.70%

Maternal Race/Ethnicity, %

 Asian 14.50%

 Black 8.00%

 Latina 30.40%

 Non-Hispanic White 38.40%

 Other 8.70%

Education, %

 High school or less 15.90%

 Some college, associate or vocational degree 37.70%

 4-year college degree 31.20%

 Graduate degree 14.50%

Maternal Characteristics

 Maternal age, years, mean 30

 Annual household income, USD, mean $62,190

 Cohabitation with child’s father, yes, % 85.50%

 Birth order, first-born, % 47.80%

 Length of gestation, weeks, mean 39.28
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