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Abstract
A linear theory is proposed for the focusing of internal waves generated by the oscillations
of a horizontal annulus that is slender, namely of large aspect ratio, but otherwise arbitrary.
The theory exploits the separation of scales and is applied to two configurations: a circular
torus, and circular Gaussian topography at the ocean bottom. Both complete and partial annuli
are considered. Focusing takes place in all cases, irrespective of the criticality of the forcing,
implying that horizontal curvature is the key ingredient. The theory compares quantitatively
with recent experiments for a torus.

1 Introduction

A common cause of dissipation in stratified and/or rotating fluids is the accumulation of internal
and/or inertial waves in a finite domain, leading to ultimate breaking. Such accumulation takes
place when wave beams intersect. In two dimensions the beams may be either separate (Smith
and Crockett, 2014) or an incident beam and its reflection at a surface (Grisouard et al., 2013).
In three dimensions a new possibility arises, the self-focusing of a beam owing to its conical
geometry. The occurrence of ‘focusing singularities’ has first been noticed for the oscillations
of a sphere (Appleby and Crighton, 1987), a circular ring (Simakov, 1993) and a circular disk
(Tilgner, 2000), then studied in greater detail for circular Gaussian topography at the ocean bot-
tom (Bühler and Muller, 2007) and again for the disk (Le Dizès, 2015). The reality of focusing
has been demonstrated experimentally and numerically with a circular torus in a rotating fluid
by Duran-Matute et al. (2013). Axisymmetry is not mandatory though, and focusing arises
also for elliptical (Bühler and Muller, 2007) or horseshoe-shaped (Grisouard and Bühler, 2012)
topography. As a rule, the efficiency of focusing is set by the order of tangency of the wave
generator to the characteristic cone with apex at the focus (Simakov, 1994). We present a linear
theory of internal wave focusing by the oscillations of a slender circular annulus of vertical axis
and azimuthally varying cross section. The theory is applied to a torus and to circular Gaussian
topography, then compared with recent experiments for the torus by Ermanyuk et al. (2016).

2 General theory

A rigid circular annulus of vertical ´-axis and major radius b, shown in figure 1, oscillates at
the frequency ! < N and velocity u0e�i!t D .u0; v0; w0/e�i!t in a uniformly stratified fluid of
buoyancy frequency N and kinematic viscosity �. The annulus may vary azimuthally, its cross-
section having a characteristic minor radius a. Internal gravity waves are generated, which
propagate at the angle � D arccos.!=N/ to the vertical while attenuating at the rate ˇ�3 per
unit distance along rays, with � the wavenumber and ˇ D �=.2! tan �/. The problem is ruled
by the nondimensional parameters

˝ D
!

N
; � D

b

a
; St D

!a2

�
; Ke D

ju0j

!a
; (1)
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Figure 1: Geometry and notations for an azimuthally modulated annulus.

respectively the frequency ratio ˝ of the waves, the aspect ratio � of the annulus, the Stokes
number St� 1 characterizing the viscous effects, assumed small, and the Keulegan–Carpenter
number Ke� 1 characterizing the nonlinear effects, assumed negligible.

We adopt the approach of Voisin (2003), already applied to an oscillating sphere by Voisin et al.
(2011), and represent the annulus as a source of mass releasing the volume qe�i!t of fluid per
unit volume per unit time. In cylindrical coordinates .rh; '; ´/, the vertical velocity disturbance
is given by

w D
cos2 �
8 2

e�i!t sign ´
Z  

� 

d'k

Z 1
0

d� �q.�h D � cos �; 'k; m D �� sin � sign ´/

� exp
�
�
ˇ�3j´j

cos �

�
expfi�Œrh cos � cos.'k � '/ � j´j sin ��g; (2)

and similarly for the other velocity components, with

q.k/ D

Z
q.x/e�ik�x d3x (3)

the spectrum of the forcing. The annulus is assumed slender, namely of large aspect ratio "� 1,
so that each section behaves as an independent two-dimensional wave generator, for which the
most generic representation is, in local Cartesian coordinates .x0; ´/,

q.x0; ´/ D u00
³

³x0
f .x0; ´/C w0

³

³´
g.x0; ´/; (4)

with f and g integrable so as to ensure, in particular, no net source outflow
R
q dx0 d´ D 0.

The representation of the annulus follows as

q.rh; '; ´/ D

�
u0

³

³x
C v0

³

³y

�
f .rh � b; ´I'/C w0

³

³´
g.rh � b; ´I'/; (5)

and its spectrum as

q.�h; 'k; m/ D  

1X
nD�1

.�i/nein'k

Z 1
0

drh rh

�
2iw0mJn.�hrh/gn.rh � b;m/
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X
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�
; (6)
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where we have introduced the Bessel functions Jn and the azimuthal Fourier coefficients

fn.x
0; ´/ D

1

2 

Z  

� 

f .x0; ´I'/e�in' d': (7)

To proceed further, we exploit the scale separation associated with the slenderness assumption.
At the global scale �b D O.1/, the annulus reduces to a ring of dipoles and the Bessel functions
may be replaced by their expansion at rh D b, namely

�hrhJn.�hrh/ � �hbJn.�hb/ � �h.rh � b/Œ�hbJnC1.�hb/ � .nC 1/Jn.�hb/�: (8)

Conversely, at the local scale �a D O.1/, the annulus is so big that, in a given azimuthal
plane, only the two cross sections from that plane contribute to the radiation while the other
cross sections interfere destructively. The Bessel functions may be replaced by their asymptotic
expansion for �hrh � 1, namely

�hrhJn.�hrh/ �

�
2

 
�hb

�1=2
cos

�
�hrh �

 

4
� n

 

2

�
: (9)

Comparison of these two singular limits suggests the uniform expansion
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where the two-dimensional Fourier transforms

f .c;s/n .k0; m/ D

Z
dx0

Z
d´ fn.x0; ´/.cos; sin/.k0x0/e�im´ (11)

are evaluated implicitly at .�h; m/. The separation of the cosine and sine transforms with respect
to x0 separates the original functions into their even and odd parts, respectively. In the following,
only even functions will be considered. The vertical velocity follows from (2) as

w D
b

4
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where the functions f .c;s/n and g.c;s/n in the coefficients
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are evaluated implicitly at .�h D � cos �;m D �� sin � sign ´/.
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Figure 2: Amplitudes of the vertical velocity (top row) and isopycnal slope (bottom row) in the vertical plane
Y D 0 for a torus of " D 9 at ˝ D 0:80, St D 120 and Ke D 0:19, corresponding to case A from Ermanyuk et al.
(2016). Their experimental data (left column) are compared with the present three-dimensional theory (middle
column) and their quasi-two-dimensional theory (right column).

3 Complete focusing

The analysis is applied first to a torus of circular cross section, oscillating at the velocity u0e�i!t

along the x-axis. The boundary integral approach used for the sphere in Voisin et al. (2011)
gives

f .x0; ´/ D �.1C i tan �/H
�
a �

p
x02 C ´2

�
; (14)

with H the Heaviside step function. All the Fourier coefficients are 0 but

f
.c/
0 .k0; m/ D �2 a.1C i tan �/

J1

�p
k02 Cm2a

�
p
k02 Cm2

; (15)

and the vertical velocity becomes

w D  abu0ei� cos2 �e�i!t cos' sign ´
Z 1
0

exp
�
�
ˇ�3j´j

cos �

�
� �J1.�a/J0.�b cos �/J1.�rh cos �/ exp.�i�j´j sin �/ d�: (16)

This result is plotted in figure 2 in nondimensional form, namely for W D w=u0 in terms
of .X; Y;Z/ D .x; y; ´/=a, in the vertical plane of oscillation Y D 0, and compared with
the measurements and quasi-two-dimensional model of Ermanyuk et al. (2016). The isopycnal
slope Sx D .i=!/.³w=³x/ D iKe.³W=³X/ is also plotted. Singularities arise along the line
Z D 0 at the intersections of the critical rays tangent to the cross sections of the torus. This
local inconsistency of the general theory (2), already visible for the sphere in figures 6 and 7
of Voisin et al. (2011), does not affect the rest of the wave field. Initially, the waves propagate
away from the cross sections as if from separate cylinders, in beams of decreasing amplitude
owing to viscous attenuation. Rapidly, focusing manifests itself and the amplitude increases,
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Figure 3: Vertical velocity amplitude profiles in the conditions of figure 2 at Z D �1:84 (left), �7:17 (middle) and
�12:51 (right). The lines represent the present theory (red) and the quasi-two-dimensional theory (blue), and the
dots the experimental points at Ke D 0:19 (dark grey), 0:41 (medium grey) and 0:65 (light grey).

Figure 4: Amplitudes of the vertical velocity (top row) and isopycnal slope (bottom row) in the plane Y D 0 at
St D 470 (left column), 1100 (middle column) and 1900 (right column), corresponding to the multiplication of a
by 2, 3 and 4, respectively, compared with figure 2.

to reach a maximum in the biconical region of intersection of the beams. There, the gradients
are strong and the isopycnal slopes up to 20ı. Once this focal region is traversed, the waves
decrease again.

The quasi-two-dimensional model is seen to be valid away from the axis of symmetry and to fail
close to this axis, including in the focusing region, where it yields infinite slope. It also gives
infinite horizontal velocity at the axis. The comparison is made more quantitative in figure 3,
which plots the horizontal wave profiles shortly after the torus, across the focusing region and
in-between. The validity of the present linear model is confirmed at Ke D 0:19, consistent with
previous observations for the sphere (Voisin et al., 2011).

The above results have been obtained at moderate St D 120, in a regime were the wave beams
are unimodal and their dynamics set by viscosity. As St increases and inviscid dynamics takes
over, the beams become bimodal and involve smaller structures and stronger gradients. Figure 4
shows this evolution up to St D 1900, at which the slopes reach 60ı sufficient for overturning
and breaking. This led to the design of the experiments by Shmakova et al. (2016), involving a
big torus of diameter 1:5 m and aspect ratio 5 in the 13 m-diameter Coriolis platform.
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Figure 5: Amplitudes of the vertical velocity (left) and isopycnal slope (right) in the vertical plane Y D 0 for
circular Gaussian topography of " D 10 and h0=a D 0:2 at ˝ D 0:4, St D 1 and Ke D 0:04. These parameters
combine the circular geometry from Bühler and Muller (2007) with the ‘average’ seamount from Llewellyn Smith
and Young (2002). For the velocity the amplitudes of the in-phase component Wphas D ReŒW ei!t � (middle left)
and quadrature component Wquad D ImŒW ei!t � (middle right) are also plotted separately.

Another type of forcing, closer to oceanic conditions, is barotropic flow at the velocity�u0e�i!t

along the x-axis over circular bottom topography of profile h.x0/. On the common assumption
that the slope is infinitesimal, namely jdh=dx0j � 1, linearization of the boundary condition
yields f .x0; ´/ D 2h.x0/ı.´/. Like Bühler and Muller (2007), we consider a Gaussian profile
h.x0/ D h0 expŒ�x02=.2a2/� of height h0 and standard deviation a, for which

f .x0; ´/ D 2h0 exp
�
�
x02

2a2

�
ı.´/; f

.c/
0 .k0; m/ D 2

p
2 ah0 exp

�
�
k02a2

2

�
; (17,18)

and all the other Fourier coefficients 0. The vertical velocity follows as

w D �
p
2 abh0u0 cos3 �e�i!t cos' sign ´

Z 1
0

exp
�
�
ˇ�3j´j

cos �

�
� �2 exp

�
�
�2a2 cos2 �

2

�
J0.�b cos �/J1.�rh cos �/ exp.�i�j´j sin �/ d�; (19)

and is represented in figure 2 for average oceanic parameters. Focusing remains present, with
amplitudes an order of magnitude smaller than for the torus owing to the smaller Ke D 0:04.
Separate plots of the in-phase and quadrature amplitudes exhibit the same upside-down vertical
symmetry on either side of the focal point .rh D 0; ´ D b cot �/ as seen by Bühler and Muller
(2007), with a different structure given the different types of forcing, monopolar for Bühler and
Muller (2007) and dipolar here.

4 Partial focusing

When only part of the circular annulus is present, focusing becomes incomplete. For the torus,
truncation to azimuthal breadth ˚ ��˚ < ' < ˚ C�˚ multiplies (14) by

H.�˚ � j' � ˚ j/ D

1X
nD�1

sin.n�˚/
n 

ein.'�˚/; (20)

with results shown in figure 6 for half- and quarter-tori in various orientations. Focusing remains
present in all cases, with reduced efficiency. For Gaussian topography, Grisouard and Bühler
(2012) introduced a smoother truncation, multiplying (17) by

cos2
�
' � ˚

2

�
D
1

2
C

ei.'�˚/

4
C

e�i.'�˚/

4
; (21)

therefore turning the topography into a horseshoe-shaped one, with results shown in figure 7.
Compared with the half-torus, the edge effects are less pronounced.
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Figure 6: Vertical velocity amplitude in the vertical plane Y D 0 (middle row) and horizontal plane Z D �3:6
(bottom row) in the conditions of figure 2, for full, quarter- and half-tori in various configurations (top row).

Figure 7: Vertical velocity amplitude in the vertical plane Y D 0 (middle row) and horizontal planeZ D 1 (bottom
row) in the conditions of figure 5, for various circular and horseshoe-shaped topographies (top row).

5 Conclusions

Slender annular forcing, whether supercritical like the torus or subcritical like flat Gaussian
topography, has been seen to focus internal waves effectively. Focusing remains significant also
when the annulus is incomplete. Both statements imply that horizontal curvature is the key
ingredient, consistent with the observation, both in the laboratory (Mercier et al., 2013) and in
the field (Buijsman et al., 2014), than even slight horizontal curvature of the bottom topography
yields noticeable wave amplification.
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