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Institut Jean Nicod, Département d’études cognitives, ENS-PSL, Paris, France

Abstract

The lexica of natural languages are ambiguous, but the de-
gree of ambiguity is unequal between words. Some words
have more meanings than others. However, the exact prop-
erties that favor some words over others when acquiring a new
meaning are not very well understood. In recent years, several
studies suggested that some words gain more meanings than
others based on selection for efficient communication, which
could explain the correlation between meaning and frequency
discovered by Zipf (Piantadosi, Tily, & Gibson, 2012; Gib-
son et al., 2019). The object of this study is to assess the role
of selection in the meaning-frequency correlation using a neu-
tral model that yields a meaning-frequency correlation without
selection pressures. We provide a model where words gain
additional meanings through reuse. In the neutral model pre-
sented in this paper, words are chosen to be reused at random,
independently of their frequency, hence there is no selection
mechanism favoring efficient communication. Unlike previous
attempts to introduce null models of the meaning-frequency
correlation (Caplan, Kodner, & Yang, 2020; Trott & Bergen,
2020), it truly does not rely on selection for frequency. We
show that statistical regularities related to ambiguity, such as
Zipf’s meaning-frequency correlation, can arise in conditions
when words are not undergoing any selective pressures. This
model has the additional property of matching word frequency
distributions of natural languages. It can provide the baseline
against which the presence of selection for efficient communi-
cation in natural languages can be assessed.

Keywords: lexicon; Zipf meaning-frequency correlation; effi-
cient communication; modeling; ambiguity; neutral model

Introduction
Ambiguity is a pervasive phenomenon that can be encoun-
tered on many levels in natural languages. For instance, an
English word such as “bat” has several meanings. It can mean
a small flying mammal, a club used to play baseball or hitting
something with a club in different sports. On the other hand,
words like hair dryer correspond to a unique meaning – a
device for drying one’s hair. Ambiguity is pervasive beyond
content words: grammatical markers, such as English ’-en’,
can be used to express causation (enligth-en) – to make some-
thing clear to someone or to form adjectives; “wood-en” –
something that is made of wood. On the other hand, the “-er”
suffix in English can only be used as an agentive nominal-
izer when combined with a noun; work-er, lawy-er, driv-er,

etc. Additionally, patterns of lexical ambiguity vary cross-
linguistically (François, 2008); for instance, in Russian, the
same word, “d’erevo” is used to express the meanings that
are expressed using two words, “tree” and “wood” in En-
glish. Overall, these observations suggest that natural lan-
guages have a very specific property: some words have more
meanings than others.

The unequal distribution of meanings across words is pre-
dicted by the simplicity-informativeness trade-off hypothesis
(Zipf, 1945; Kemp & Regier, 2012; Kirby, Tamariz, Cornish,
& Smith, 2015; Carr, Smith, Culbertson, & Kirby, 2020).
This hypothesis states that the structure of the lexicon re-
flects a trade-off between simplicity – the number of words
that speakers need to remember and produce in communica-
tion, and informativeness – the effort required by hearers to
identify the correct reference of a word. Under this trade-
off, languages are believed to find an optimal configuration
between two extreme states; unification and diversification
(Zipf, 1945). Overall, this approach correctly predicts the
existence of ambiguity in different category systems ranging
from numerical systems (Xu, Liu, & Regier, 2020) to color
terms (Regier, Kay, & Khetarpal, 2007), and these results can
be expanded to lexica in general (Kemp, Xu, & Regier, 2018).

Although the simplicity-informativeness trade-off does
predict ambiguity in the lexicon, it does not predict which
wordforms are more susceptible to acquiring more mean-
ings. Such statistical regularities between the properties of
words/wordforms and the number of meanings associated
with them have been evidenced cross-linguistically. For
instance, George Kingsley Zipf has noted that words that
have more meanings tend to be more frequent; this regular-
ity is known as Zipf’s meaning-frequency correlation (Zipf,
1945; Casas, Hernández-Fernández, Catala, Ferrer-i Cancho,
& Baixeries, 2019). To our knowledge, the mean-frequency
correlation has only been evidenced in 10 different languages
(Bond, Janz, Maziarz, & Rudnicka, 2019; Català, Baixeries,
Ferrer-i Cancho, Padró, & Hernández-Fernández, 2021) (see
also (Piantadosi et al., 2012)).

To explain Zipf’s meaning-frequency correlation, as
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well as provide a general theory of linguistic ambiguity,
(Piantadosi et al., 2012) proposed a hypothesis, stating that
language users benefit from ambiguity. In this paper, the
authors argue that lexical ambiguity might be an efficient
feature of a communicative system when the context is
informative about what is being communicated. Ambiguity
would thus allow the reuse of word forms that are the most
easily produced, i.e. words that are shorter, more frequent
and more phonotactically probable. They proposed that the
reuse hypothesis might explain the uneven distribution of
the number of meanings across words in different languages.
To test this idea, (Piantadosi et al., 2012) used data from
English, French and Dutch to show that the most ambigu-
ous words in the lexicon are frequent, short, and have a
high phonotactic probability. Overall, their results suggest
that words are selected for reuse on the basis of commu-
nicative efficiency. They interpreted this result as direct
evidence of ambiguity being a desirable property of language
(Gibson et al., 2019), and not a property that is detrimental
to communication, contra (Chomsky, 2002, p. 107).

The interpretation of this result has recently been chal-
lenged by computational modelling (Caplan et al., 2020;
Trott & Bergen, 2020). In these studies, the authors attempted
to construct null models devoid of selection for efficient
communication. These models relied on generating lexica
using n-gram models and randomly allocating meanings to
each wordform in the simulated lexica. Both of these models
yielded similar correlations to the ones found in (Piantadosi
et al., 2012), such as the negative correlation between number
of meanings and word lengths. The authors of both studies
argued that these correlations can thus be explained by purely
random allocation of meanings to words, as implemented
in their respective models. However, (Pimentel, Teufel,
Mahowald, & Cotterell, to appear) highlighted that those
approaches are invalid, as they rely on n-gram models as a
baseline, which do not reproduce many of the properties of
the natural lexica, such as word rank-frequency distributions.
To support their claim, Pimentel et al. replicated the results
from (Caplan et al., 2020) using a Long short-term memory
neural network, which has been shown to provide much more
accurate results in word-generation tasks (Pimentel, Roark,
& Cotterell, 2020). Under these conditions, this null model
was not able to replicate the correlations from the (Piantadosi
et al., 2012) study. Therefore, the null models present in
the existing literature do not provide good evidence against
the hypothesis stating that ambiguity is a result of selection
for efficiency. Overall, this suggests that there remains a
big explanatory gap that is still not filled by the existing
literature.

Altogether, these results call for a refinement of the current
theories of ambiguity. Previous approaches seem to be
incomplete, as they largely ignore several key properties
related to ambiguity. First, the existing literature seems to
focus heavily on homophony, whereby words label unrelated
meanings (the English words such as “tail” and “tale”, which

have the same phonological form /’teıl/), largely ignoring or
confounding it with polysemy, whereby words label multiple
related meanings (the English word “run”, which can mean
both an activity (noun) and an action (verb), amongst other
meanings). The only exception being (Piantadosi et al.,
2012), where the authors analyzed data on polysemy from
WordNet (Miller, 1995). By one estimate, in English, 7% of
the words are homophones and 84% are polysemous (Rodd,
Gaskell, & Marslen-Wilson, 2002). Overall, this suggests
that polysemy should not be excluded when modelling
ambiguity, as it seems to be much more prevalent than
homophony. Second, understanding why ambiguity arises in
the lexicon requires an understanding of how new meanings
are introduced in the lexicon. Suppose that speakers need
to communicate a novel meaning. There are several options
available to them; they could reuse an existing word, thus
leading to ambiguity or they could create a new word or
borrow one from another language. Invention or borrowing
are not negligible ways of introducing new meanings in
the lexicon. To illustrate, (Tadmor, Haspelmath, & Taylor,
2010) explored a dataset containing terms for 1460 concepts
collected for 41 languages from diverse regions of the world.
In this rather small set of words, 25% of of words are
borrowed when taking the average across languages. The
borrowing rates are the highest across nouns: up to 40% of
nouns were borrowed. Considering the rather small size of
this dataset, this data indicates that borrowings represent a
significant share of the lexicon. Additionally, speakers can
proceed with coining entirely new words; for instance, words
such as whataboutism and quaranteen were introduced in
English during the last two years. These words correspond
to two very specific meanings; for the former, a specific way
of arguing, and, for the latter, young people spending their
teenage years on quarantine during the COVID-19 pandemic.
Overall, this suggests that reuse is not the only option when
coining a new meaning, and events such as borrowings or
word inventions should also be considered. However, it is
also important to distinguish the acquisition of additional
meanings, which is only possible with reuse, as inventions
or borrowings usually introduce a new meaning together
with a new word, and therefore no additional meanings are
acquired. And, finally, the processes of semantic change,
which include the introduction of new meanings to the
lexicon, as well as meaning replacement, are diachronic in
nature (Hamilton, Leskovec, & Jurafsky, 2016a). Therefore,
any theory that aims at explaining regularities such as Zipf’s
meaning-frequency correlation should also be diachronic.
This is further supported by findings linking word fre-
quency to rates of language change (Pagel, Atkinson, &
Meade, 2007; Pagel, Beaumont, Meade, Verkerk, & Calude,
2019) and to the probability of semantic shifts (Hamilton,
Leskovec, & Jurafsky, 2018). Overall, this calls for a revision
of the current approaches to ambiguity in favor of one that
takes into account these properties to answer the question,
Why do some words have more meanings than others?
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A mechanism for acquiring new meanings

Here, we are proposing to employ the neutral model ap-
proach, which was introduced in (Neiman, 1995; Bentley,
Hahn, & Shennan, 2004) for cultural evolution research. This
approach consists of building models that assume no selec-
tion pressures when modelling cultural evolution events. Re-
cently, these types of models have been adapted to investigate
language change (Hamilton, Leskovec, & Jurafsky, 2016b;
Newberry, Ahern, Clark, & Plotkin, 2017; Karsdorp, Man-
javacas, Fonteyn, & Kestemont, 2020). Another benefit of
adopting such an approach is that the assumption of the ab-
sence of selection can serve as a null model. This is very
important for our study, since (Piantadosi et al., 2012) es-
sentially proposed that words are selected for reuse based on
their length and phonotactic complexity, as well as their fre-
quency, a claim their critics dispute (Caplan et al., 2020; Trott
& Bergen, 2020).

To test whether a selection pressure for communicative ef-
ficiency may explain patterns of ambiguity in natural lan-
guage lexica, we propose an alternative mechanism for gen-
erating ambiguity that stems from a diachronic perspective.
This mechanism is based on the following three basic as-
sumptions. First, some words stay present in the lexicon
for much longer periods of time than others. Indeed, it has
been shown that during the process of language change, some
words have much higher replacement rates than others (Pagel
et al., 2007). Second, ambiguity arises in the lexicon because
speakers reuse existing wordforms to denote new meanings
(Piantadosi et al., 2012; Ramiro, Srinivasan, Malt, & Xu,
2018). Third, the possibility of reusing a wordform is con-
ditional on the presence of that form in the lexicon at time
t; trivially, if a wordform is not in the lexicon, it cannot be
reused, as it is unavailable for speakers. Based on these as-
sumptions, we expect “older” words to be reused much more
often than “younger” ones. Therefore, we hypothesize that
ambiguity should be better predicted by a word’s longevity
rather than by other characteristics such as length or fre-
quency.

Here, we are proposing a neutral model inspired by the
Full-sampling Neutral Model from (Ruck, Alexander Bent-
ley, Acerbi, Garnett, & Hruschka, 2017) which shares its es-
sential premises with the mechanism outlined above. Criti-
cally, this model is devoid of selection pressures for commu-
nicative efficiency, yet still allows ambiguity to develop. The
process of reuse is truly independent of word characteristics
such as frequency; reused words are randomly sampled from
the list of unique words already present in the lexicon. Yet,
because our model simulate lexica diachronically, reuse is di-
rectly affected by a word’s longevity. With this model, we
aim at showing that frequency-ambiguity correlations per se
does not provide direct evidence for efficient communication
pressures operating at the level of language. To be clear, if
the model is able to reproduce the frequency-ambiguity cor-

relation, this would suggest that no selection pressure is nec-
essary for such meaning correlation to arise in the lexicon.
This would not imply that longevity is the main factor influ-
encing ambiguity in natural languages, but rather, that taking
frequency-meaning correlations to exemplify the role of com-
municative efficiency in language is not warranted.

Model

This model has 6 parameters, which are summarized in Table
1. Given these parameters, the model works as follows. Dur-
ing the initial stage, the model starts by generating N types
(unique words), which are represented as unique identifiers in
the model. This is important, since the model presented here
does not use natural language data to generate random words,
contrary to previous approaches (Dautriche, Mahowald, Gib-
son, Christophe, & Piantadosi, 2017; Caplan et al., 2020;
Trott & Bergen, 2020, 2022). Each type is taken to stand for
a word that is associated with one or several meanings. Ini-
tially each type is associated with exactly one meaning. In the
model, S corresponds to the number of unique meanings and
N corresponds to the number of unique types with which the
model is initialized. The parameters N and S are chosen such
that S > N to reflect the optimization problem of represent-
ing a large set of meanings with a limited amount of words.
The model assigns the remaining S-N meanings to these N
types by randomly sampling types S-N times and adding one
to the meanings count for each sampled type. Finally, a set of
p tokens is randomly sampled from the initial set of N types.
Once the initial stage is completed, the following procedure
is then repeated t times. The next set of tokens of the size
p is sampled by either copying a token from the previously
generated set with the probability 1−µ or replacing it with a
newly generated token with the probability µ. Then, at each
time-step t the list of unique types is collected, and each type
has a probability k of being reused (i.e. assigned an addi-
tional meaning). At each iteration, each type has a number
of statistics that are stored. These include its longevity – the
number of time-steps for which it is present in the popula-
tion, its frequency – number of occurrences in the sample of
the size p, its number of meanings and finally, its extinction –
if it is removed at time-step t the value is set to 1.

Table 1: Description of the parameters of the model
Parameter Description
N Number of types
S Number of senses
p Number of tokens to

sample
µ Rate of new word ap-

pearance
k Rate of reuse
t Number of time-

steps
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This model has several important properties. The introduc-
tion of new types and corresponding meanings (rate of new
word appearance µ) is reflecting the processes of borrowing
and word invention in natural languages. The use of sampling
and copying to generate p tokens at each generation models
the drift-like process by which some types gain in popularity,
and some types just disappear from the lexicon. A similar
procedure was used in (Ruck et al., 2017), and their model
yielded natural power-law like distribution of word frequen-
cies as found in human languages.

Power law and the growth of the lexicon
First, we are demonstrating the validity of this model by
showing that several properties of natural lexica are accu-
rately simulated in our model. Let’s consider a model with
the following parameters; S = 6,000, N = 3,042, µ = 0.01,
k = 0.02, p = 100,000 and t = 300. Here, the choice of the
number of meanings (S) and the number of types is motivated
by the data extracted from English WordNet (Miller, 1995).
We counted the number of unique words in the English Word-
Net (77636), and we added the respective number of synsets
to get the total number of meanings (153270). Then, we took
the ratio (0.507) and scaled the parameters in our model ac-
cording to this ratio. The choice of µ and k is justified below.
Here, we are only considering the data from the last time-
step t300. First, our model does reproduce the power law rela-
tionship between word rank and word frequencies, otherwise
known as Zipf’s law (Zipf, 2016 (1949); Piantadosi, 2014),
as shown on Figure 1. The frequency-rank relation character-
istic of natural languages is present in the model, which was
expected since our implementation closely follows the model
from (Ruck et al., 2017). In this paper, the authors reported
that their model also yielded such power law-like distribu-
tions. On the contrary, previous null models of the lexica
(Caplan et al., 2020; Trott & Bergen, 2020) do not seem to be
capable of producing such frequency distributions.
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Figure 1: Word rank-frequency distribution in the last time-
step of the model (t300). Both relative frequency and rank are
log-transformed.

Furthermore, the changes in the number of meanings and
the number of unique types is examined below. As both the
reuse and the addition of new types produce new meanings,
the total number of meanings is expected to change during
the running of the model. Same holds for the number of

unique types, as borrowings increase the number of words,
while some types can also be lost during copying. These pro-
cesses are summarized on the figure below, where the number
of unique types and the total amount of meanings are shown.
Figure 2 shows that both the number of types and the num-
ber of meanings grow significantly until about t80. After this,
the number of of types stalls at around 7.500, while the num-
ber of meanings becomes stable at around 15.000. This can
be contrasted with the model from (Ruck et al., 2017) and
the model from (Caplan et al., 2020), where the number of
types grows exponentially. Overall, the proposed model does
accurately reproduce two very important properties of natu-
ral languages; the power law like frequency distribution of
words, and the stable (at least: non-exponential) nature of the
growth of the lexicon.
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Figure 2: Total number of meanings (grey) and unique types
(blue) during each time-step. Horizontal lines indicate the
corresponding starting values (6000 and 2000, respectively).

Longevity and number of meanings correlation
Using the same model, we probed the correlation between
longevity and number of meanings. As highlighted earlier,
this is an essential property of the model, since it provides di-
rect evidence for the mechanism proposed in this paper. The
plot below shows the relation between longevity of a type –
the number of iterations it was present in the model, and the
number of meanings it has. This relation is contrasted with
the frequency - number of meanings relation:

As shown on Figure 3, longevity is a much better predic-
tor for the number of meanings a word has than its relative
frequency. This holds true even when considering partial cor-
relations: the meaning-longevity correlation when controlled
for frequency (ρ = 0.5) is greater than the meaning-frequency
correlation when controlling for longevity (ρ = -0.04).

Variation of the rate of new word appearance and
reuse rate
The model described in this paper has 6 parameters, out of
which the rate of borrowing µ and the rate of reuse k are the
most important ones, as they are responsible for the relation
between longevity (the number of iterations for which a type
is present in the lexicon) and the number of meanings this
type has. We expect that the correlation between longevity
and the number of meanings is always greater than the corre-
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Figure 3: Correlation between longevity and number of
meanings (A) and relative frequency (log-scale) and number
of meanings (B) n the last time-step of the model (t300). Each
point corresponds to a unique word. The values on the top left
corner indicate the correlation coefficients (Spearman’s rho)
and the corresponding p-values.

lation between frequency and the number of meanings. Ad-
ditionally, we expect that, when controlled for longevity, the
correlation between frequency and the number of meanings
should be smaller than the correlation between longevity and
the number of meanings when controlled for frequency.

To test this prediction, we vary µ and k parametrically from
0.01 to 0.9 with a step of 0.2, resulting in 25 combinations
of pairs of parameters. The other parameters are fixed: N =
600, S = 305, and p = 10.000. Essentially, they correspond to
the parameters of the model used above, but they are scaled
down by dividing the initial parameters by 10 for computing
reasons. The model is then initialized with these fixed param-
eters except for µ and k, as their values are taken from the 25
combinations defined above. Then, for each µ and k combi-
nation, we compute the correlation (Spearman’s rho) between
longevity and number of meanings, the correlation between
frequency and number of meanings, the partial correlation
between longevity and number of meanings (controlling for
frequency) and the partial correlation between frequency and
number of meanings (controlling for longevity). The heatmap
on Figure 4 shows the results of this simulation. As shown on
the heatmap, the model behaves as expected. First, the fre-
quency - number of meanings correlation is always equal to
zero when controlled for longevity under any combination of
µ and k. The longevity - number of meanings correlation is,
on the other hand, always greater than 0.6 even when con-
trolled for frequency. This suggests that frequency, in this
model, is simply a confounding variable, and the longevity of
a word is the only variable influencing the number of mean-
ings it has in this model, as proposed in the section describing
the proposed mechanism. Additionally, the results presented
on Figure 4 highlight that this model is valid in the sense that
there is significant variation when the parameters are being
changed (panels A and B). However, when the respective cor-
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Figure 4: Results of the first simulation. (A) corre-
sponds to frequency-meaning correlation (Spearman’s rho),
(B) longevity-meaning, (C) frequency-meaning (controlled
for longevity) and (D) longevity-meaning (controlled for fre-
quency). Warmer colours correspond to higher correlation
coefficients, while colder colors correspond to lower correla-
tion coefficients. The value of the reuse rate parameter k is
plotted on the x-axis, while the values on the y-axis corre-
spond to the replacement parameter µ.

relations are controlled, the results are uniform (panels C and
D), indicating that the predictions made in the section devoted
to mechanism description are valid under any combination of
the parameters.

Discussion
In this paper, we introduce a new model aimed at repre-
senting the causal mechanism behind the appearance of lin-
guistic ambiguity. This paper follows the recent trend in
the literature (Caplan et al., 2020; Trott & Bergen, 2020),
which challenges the idea that frequency-meaning correla-
tions are a marker of efficient communication (Piantadosi et
al., 2012) by providing null models ostensibly lacking selec-
tion of forms based on their communicative efficiency. The
model proposed in this paper has several improvements in
comparison to previous approaches. First of all, this model is
truly free of any selective pressures with regards to reuse.The
earlier approaches used the n-gram models to generate ran-
dom words (see (Dautriche et al., 2017) for the introduction
of this methodology). Since these models are trained on data
coming from natural languages, they are prone to copying
various biases from natural languages. For instance, since n-
gram models are prone to overfitting (Pimentel et al., 2020),
they were amplifying the length-frequency bias. Therefore,
the randomly generated lexica were skewed towards contain-
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ing shorter words on average. Such that, even if words were
randomly chosen for reuse as in (Caplan et al., 2020), the
length bias was still present in this procedure. In the present
paper, the model does not interact with natural language data
in any way. Additionally, words in this model are devoid from
any features such as phonotactic probability or frequency, al-
lowing for a truly neutral, selection free reuse procedure to
take place. Secondly, the model reflects the diachronic nature
of semantic change, which is essential when describing such
phenomena as linguistic ambiguity.

The results of the simulations discussed above are indicat-
ing that the model presented here conforms to a mechanism
where there is no direct causal effect of word frequency on
the number of meanings. Instead, the number of meanings
is directly influenced by the word’s longevity – the longer a
word is present in the lexicon, the higher its chance of being
reused. Overall, this model reflects a process in which am-
biguity emerges in the lexicon but is not motivated by com-
municative efficiency: the wordforms that are ambiguous are
not selected for reuse based on their properties such as fre-
quency, length, or phonotactic probability. The data obtained
from this model can be used as a null assumption, serving
to determine whether the process of reuse of wordforms is
selection-free or not.

However, our model is not devoid of limitations. One
may worry that the longevity-meanings correlation is in a
way “built into” the model. This is not entirely true, since
there are possible parameter combinations that will produce
no longevity-meaning correlations. For instance, if the rate of
reuse (k) is quite low, while the rate of replacement (µ) is high,
the longevity-frequency correlation will be essentially can-
celled out, since the words would be replaced faster that they
would gain new meanings. As an example, consider µ = 0.09
and k = 0.01 on Figure 4 (panel B); the longevity-meaning
correlation is very weak under this combination of parame-
ters. Which means that the meaning-frequency correlation is
not an inherent property of this model, but rather the result of
the specific mechanism embedded into it. Another limitation
of this paper in particular is that we did not contrast our find-
ings with real word data. However, this issue can be resolved
in future work, since the data generated by this model can
be compared with real data to determine whether those pres-
sures are shaping the lexicon or not. The data for comparison
can be a combination of word longevity approximations from
large diachronic corpora combined with the number of senses
estimated from lexical databases such as WordNet (Miller,
1995). Those kinds of databases have been extensively used
in previous studies focusing on diachronic semantic change,
such as (Karjus, Blythe, Kirby, & Smith, 2020; Ramiro et al.,
2018). The model parameters can be matched to those of real
data. For instance, the number of senses and the number of
unique words (types) can be collected from the real data and
plugged into the model, together with the time-step parame-
ter, which will be matching the historical scale of the chosen
corpus. Using the data generated with a matching model, we

can compare real statistics, such as the correlation between
longevity and the number of meanings, as presented in this
paper. Additionally, we have not considered other relevant
phenomena such as word lengths and phonotactic complex-
ity, which were discussed both in (Piantadosi et al., 2012;
Caplan et al., 2020). However, the presented model allows to
account for those variables as well. For instance, each type in
the model can receive a length which would be drawn from
a discrete distribution that resembles the lengths distribution
found in a particular natural language. Then, the simulated
correlations could be again compared with natural language
data.
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