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A memory for goals model of prospective memory
J. Gregory Trafton (greg.trafton@nrl.navy.mil)

Naval Research Laboratory
Washington, DC 20375

Anthony M. Harrison (tony.harrison@nrl.navy.mil)
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Abstract

We present a novel model of prospective memory and fit it to
data from a classic experimental paradigm (Einstein & Mc-
Daniel, 1990). Our model uses memory for goals (Altmann
& Trafton, 2002) and elaboration with spreading activation to
show how prospective intentions can be cued by perceptual
cues. Our model also suggests how to resolve some of the con-
troversies concerning prospective memory and aging.
Keywords: prospective memory; act-r; cognitive modeling;
mind-wandering

Introduction
The vast majority of memory research has focused on retro-
spective memory, or memory of the past (Anderson, Bothell,
Lebiere, & Matessa, 1998; Baddeley, 2012; Henson, 1998).
However, memory for future intentions, or prospective mem-
ory is also extremely important, both from a theoretical and
applied perspective and is much less studied. More formally,
prospective memory is setting a goal or task to do in the fu-
ture based on some cue or event (visual, aural, temporal). The
classic prospective memory problem is to pick up a loaf of
bread on the way home from work.

Ellis (1996) suggested there are five stages to successfully
completing a prospective memory task.

Encoding An intent to perform a future action in a particular
target context is created.

Retention There is a delay between the current time and the
target context. The intention may be rehearsed (or not).

Initiation The agent perceives the target context, and a win-
dow of opportunity arises. The agent must recognize it as
the target of an intention.

Execution The agent performs the stored action.

Completion The agent must modify its memory such that
the next perception of the target does not lead to action.

Most experimental and real-life instances of prospective
memory also have another step: The agent resumes the task it
was working on before the prospective memory task. While
this step is not strictly part of prospective memory, it provides
some constraints and possible memory interactions within
theories of prospective memory. Task resumption is also part
of virtually every experiment on prospective memory.

Prospective memory is particularly difficult to model (Li &
Laird, 2013). Li and Laird (2013) suggest that there is a circu-
lar knowledge dependency in cognitive modeling. The circu-
lar knowledge dependency problem is that if the memory tar-
get is in working memory, a memory retrieval is not needed,
but if the memory target is not in working memory, the pro-
cedure to retrieve the target never applies. Because memory
retrieval relies on procedural knowledge (Laird, Lebiere, &
Rosenbloom, 2017), it becomes a bit of a circular problem.

Several other researchers have built computational mod-
els of prospective memory. Elio (2006) used a ACT-R’s top-
down spreading activation model and focused on modeling
reaction time, not accuracy. Lebiere and Lee (2002) also
used ACT-R’s spreading activation to model the reaction time
of the intention superiority effect. Li and Laird (2014) used
Soar’s (Laird, 2019) spreading activation mechanism to per-
form spontaneous retrievals to allow a computational agent to
perform prospective memory tasks.

There are several interesting points to make on these mod-
els of prospective memory. First, all these models of prospec-
tive memory seem to rely on some form of spreading activa-
tion. Second, the models that focus on high cognitive fidelity
(Elio, 2006; Lebiere & Lee, 2002) do not model the accuracy
of prospective memory tasks, making them more difficult to
apply to agents or robots (Trafton et al., 2013). In contrast,
the model that focuses on functionality (Li & Laird, 2014)
does not model human-level performance, but can perform
prospective memory tasks. We also note that both empirical
and computational accounts suggest that prospective memory
has a strong episodic emphasis – people seem to remember
prospective memory events in terms of discrete episodes (Li
& Laird, 2014).

Our goal in this paper is to introduce a model that has high
cognitive plausibility and that can perform prospective mem-
ory tasks by using episodic memory. Not surprisingly, it will
use spreading activation as one of its primary mechanisms.
Our model will be demonstrated with respect to one of the
very first experimental demonstrations of prospective mem-
ory (Einstein & McDaniel, 1990).

Experiment: Einstein and McDaniel (1990)
Einstein and McDaniel (1990) were interested in providing
an experimental demonstration of prospective memory. They
were also interested in showing whether prospective mem-
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ory decreased as people aged, similar to how retrospective
memory seems to decrease as people age (Rhodes, Greene, &
Naveh-Benjamin, 2019; Luo & Craik, 2008).

Method
We present a brief description of Einstein and McDaniel’s ex-
periment, but a complete description can be found in Einstein
and McDaniel (1990), experiment 2.

Design
The experiment was a 2x2 between design with age (young,
elderly) and the familiarity of the prospective memory cue
(familiar, unfamiliar).

Participants
There were 24 young participants who ranged from 17-24
years of age. There were also 24 elderly participants who
ranged in age from 60-78 years.

Materials
21 familiar words and five unfamiliar words were selected
from word norms (Toglia & Battig, 1978).

42 word sets were constructed for each participant; each
word set consisted of randomly selected familiar and unfa-
miliar words (5-7 items for young participants and 4-6 items
for elderly participants). There were no constraints on word
selection for each set beyond random selection without re-
placement.

A prospective memory target was given to each participant
depending on condition: participants in the familiar condition
were given a familiar target word (i.e., “rake”) while partic-
ipants in the unfamiliar condition were given an unfamiliar
target word (i.e. “sone”). None of the targets were in the 26
familiar/unfamiliar word sets.

Setup and Procedure
Participants were presented with 42 trials, each containing a
word set as described above. All words for each trial were
presented simultaneously for .75s per word. After the pre-
sentation of the words completed, the screen cleared and par-
ticipants were instructed to recall and speak as many of the
words in order as they could. The recall period was 1.5s per
word

If their prospective memory target word showed up in their
list of words, they were instructed to perform a keyboard ac-
tion (hitting the “r” key). There were only 3 trials (one in each
third) where the prospective memory target word appeared.

Measures
Einstein and McDaniel (1990) included several measures, but
for our purposes we will focus on their retrospective memory
for the items in each trial (labeled “Short term memory items”
in the source article) and their prospective memory perfor-
mance (labeled “Prospective memory” in the source article).
The retrospective memory was the mean proportion of words
recalled per trial and the prospective memory was the mean

proportion of times they responded to the target word within
that trial.

Results and Discussion
Empirical results are shown in Table 1. Unfortunately, no
measures of variability were reported so they are unavailable.

As Table 1 suggests, younger adults recalled more items
during the retrospective task than elderly adults, though there
was no impact of the familiarity of the prospective memory
target. Note that this difference emerged even though the el-
derly group had shorter average lists than the younger group.

In contrast, there was no difference between young and el-
derly on the overall prospective memory task. There was,
however, an effect of the familiarity of the target: when the
target was unfamiliar, performance on the prospective mem-
ory task was much better than when the target was familiar.
Interestingly, there was no impact of age nor any interaction.

There are three main conclusions to draw from these re-
sults. First and unsurprisingly, the younger participants were
better on the retrospective memory task than the elderly even
though the elderly group had fewer items per trial. This over-
all finding is consistent with other research on short term
memory in older populations (Luo & Craik, 2008; Rhodes
et al., 2019).

Second, there was no difference in prospective memory for
younger vs. elderly. While this finding is not uncontroversial
(discussed in the general discussion), it has been replicated
a number of times (Einstein & McDaniel, 1990; Cherry &
LeCompte, 1999).

Finally, unfamiliar target words were easier to remember
for a prospective memory task than familiar target words.

These findings suggest that different mechanisms account
for the stark differences in performance between retrospec-
tive and prospective memory tasks. Specifically, we believe
that a priming mechanism is a key component for successful
prospective memory.

We next turn to the model architecture we use (ACT-R) and
a description of the model to account for this data.

Architecture
A theoretical model was implemented to model the task per-
formed by participants in the Einstein and McDaniel (1990)
experiment. The model was developed using the ACT-R cog-
nitive architecture (Anderson et al., 2004), a general theory
of cognition that enables a simulation of an entire task (in
this case, the experiment) while maintaining a high degree of
psychological plausibility.

ACT-R consists of a number of modules, buffers, and a
central pattern matcher. Modules in ACT-R contain a rela-
tively specific cognitive faculty usually associated with a spe-
cific region of the brain. For each module, there are one or
more buffers that communicate directly with that module as
an interface to the rest of ACT-R. At any point in time, there
may be at most one item in any individual buffer; thus, the
module’s job is to decide what and when to put a symbolic
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Table 1: Proportion correct for both retrospective and prospective memory tasks (Einstein & McDaniel, 1990), exp. 2.
Young Elderly

Familiar Unfamiliar Familiar Unfamiliar
Retrospective .86 .82 .76 .80
Prospective .28 .83 .36 .94

object into a buffer. The pattern matcher uses the contents of
the buffer to match specific productions.

ACT-R uses if-then rules (productions) that will fire when
their conditions are met by matching the contents of the
buffers. If there is more than one production that can fire,
the one with the highest utility (production strength) will fire.
Each production can change either internal state (e.g., buffer
contents) or perform an action (e.g., click a key). ACT-R in-
terfaces with the outside world through the visual module, the
aural module, the motor module, and the vocal module.

We describe the declarative memory system and the way
that episodic goals are created here.

Declarative
The Declarative Module is the core method for memory
retrievals within ACT-R including how a memory element
(chunk) is encoded, remembered, and the rate at which where
forgetting occurs.

Memory in ACT-R is described by a chunk’s activation.
Activation is the log odds that a particular chunk will be use-
ful in the future; high activation chunks are expected to be
very useful while low activation chunks are expected to be
less useful.

Activation depends both on how much and how frequently
a memory has been used in the past, as well as how related
the item is to other memories that are currently the focus of
attention. Activation consists of three primary components:
activation strengthening, spreading activation, and noise. Ac-
tivation strengthening is learned over time and is a function
of how frequently and recently the memory has been thought
about in the past, and represents the model’s familiarity with
a concept. Spreading activation is context dependent, allow-
ing memories that are currently the focus of attention to acti-
vate, or prime, other related items. Noise is a random com-
ponent added in to model the noise of the human brain. They
are combined according to the following equation (Anderson,
2007):

Ai = Bi +∑
j

WjS ji + ε (1)

where Ai is the total activation of chunk i, Bi is the total ac-
tivation of chunk i, WjS ji is activation spread from item j to
item i, and ε is noise.

Spreading activation is spread along associations between
memories. In addition to considering what items are being
referenced at any given time, it also considers what items are
in the current context. The current context consists of both
those items being referenced, as well as the set of items in slot

values of the items being referenced that are under consider-
ation. Association strengths, intuitively, reflect how strongly
item j, when currently being referenced, predicts that item
i will be referenced next. The equations for the associative
strength from an item j to an item i in memory are

S ji = S− ln( f ani) (2)

where S ji is the strength of association between chunks j
and i, S is the maximum associative strength (mas parameter),
and f an j is the fan of chunk j (the number of other memory
elements that memory j is associated with).

Episodic
The Episodic Module facilities the encoding and retrieval of
episodic memories and is described more fully in Trafton,
Altmann, and Ratwani (2011); it is not part of standard ACT-
R but is an instantiation of the memory for goals theory
(Altmann & Trafton, 2002). Not only can the episodic mod-
ule be used for fine-grained cognitive control (Trafton et al.,
2011; Altmann & Trafton, 2002; Altmann, Trafton, & Ham-
brick, 2017), but it can also be used to facilitate resumption
after a task has been interrupted (Trafton et al., 2011; Trafton,
Jacobs, & Harrison, 2012).

Episodic memories here are considered fine-grained snap-
shots of goals and events. In this model, episodic memories
are created any time a new event occurs – in this case, every
word on the screen is considered a new event, as is the start
of each trial and the start of the experiment. When an episode
is created, it receives a unique name to differentiate it from
all other memories in declarative memory. It also contains
a small bit of information about the episode itself (i.e., the
experiment, the list, the room, etc.). These episodic markers
can be used as keys to chain together other memories about
events. The uniqueness of each episodic chunk also allows
spreading activation to be especially potent because there will
typically be far fewer links to a specific episode (Altmann &
Trafton, 2002) than to a well-learned semantic memory. The
episodic memory itself receives an increased starting level of
activation (Bi in equation 1); this typically starts off as be-
ing rehearsed 3 times more than normal (Altmann & Trafton,
2002; Trafton et al., 2012). This increase in starting activa-
tion allows the episode to be relevant in the short term and
allow more likely retrieval.
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Prospective memory model
The prospective memory model emphasizes two processes:
memory for goals to create episodic memories and resume
the task after a prospective memory action has occurred;
and elaboration to allow retrieval of prospective memories.
As described below, both memory for goals and elaboration
use spreading activation (described in the architecture section
above) as a core process.

Memory for Goals
Memory for goals (Altmann & Trafton, 2002; Trafton et al.,
2011) is a computational theory that describes how people
construct, use, remember, and reconstruct goals. The theory
suggests that episodic memories are created and strengthened
when new goals and tasks are initiated. Priming allows the
retrieval of these episodic memories when they are needed.

In the current model, a unique episodic chunk is created
for each subtask of the experiment (i.e., each time a new list
needs to be memorized) as well as for the prospective mem-
ory itself. These unique episodes have a functional compo-
nent in this model: to serve a placekeeping function if the
model gets interrupted and needs to resume.

Elaboration
We make the assumption that people elaborate information
currently in working memory, remembering events, episodes,
or information that may not be immediately relevant to their
current goal (Kitajima & Polson, 1996). We also assume that
elaborations are influenced by context through a spreading
activation mechanism (Hiatt & Trafton, 2015; Taatgen et al.,
2021).

Historical memories
The Einstein and McDaniel (1990) experiment relies on both
familiar and unfamiliar words and the memory for goals and
elaboration processes both use episodic memories. We mod-
eled this by giving the model historical information for com-
mon and uncommon words and provided the model with a set
of episodic memories.

The representation of both common and uncommon words
was based on previous lexical words by (Reitter, Keller, &
Moore, 2011) which included a lexical form and semantics.
Concepts and meanings were separate chunks in memory that
were linked to the lexical form via a slot in the chunk. Com-
mon words had very high initial activation (50 rehearsals) and
many links to other concepts in memory (15 links). Uncom-
mon words have very low initial activation and no links to
other concepts in memory. Target prospective memory words
had exactly the same representation, initial activation, and
links to other chunks as their common or uncommon type
(i.e., “rake” was a common word with a high activation and
many links to other memories).

Episodic memories could contain task information (a task
and a state marker) or an elaboration of a current memory
linked to other memories through slot values. All episodic

memories had a unique episodic cue so they would not be-
come merged with other similar memories. Pre-existing
episodic memories had a range of activation levels corre-
sponding to 1-6 rehearsals.1

High level description of the model
In both the original experiment and the model, the prospec-
tive memory was told to the participants. The prospective
memory was stored in declarative memory; an example from
the familiar condition is shown below.

chunk429>
isa elaboration
memory-type episodic
cue rake
visual-cue "rake"
action-type keyboard-action
action "r"
context psych-experiment
episode episodic329

The model has two separate but related components:
the retrospective list-memorization task and the prospective-
memory task. Each of these components will be described
separately, though they are interleaved in a single model.

Retrospective Memory Task. The retrospective memory
component is similar to Anderson et al. (1998). When the
model is presented with a list of words, it creates a unique
identifier for this list (i.e., list42) that is used to link all the
words it sees into a common list. The model also creates a
unique episodic trace for the start of this goal (Altmann &
Trafton, 2002; Trafton et al., 2011). The episodic trace will
decay over time, but can be used to resume this task if it gets
interrupted or the task gets suspended.

The model starts at the top of the screen and reads each
word. After it reads a word, the model attempts to retrieve
a meaning for that word. When a common word is dis-
played, the model remembers a meaning; when an uncom-
mon word, the model cannot recall a meaning. Because the
list of words was visible for a limited time, the model lim-
ited its time to remember a meaning. Regardless of whether
the model was successful at remembering a word-meaning,
the word was then put into declarative memory with a link
for the unique list. The model then performed some elabora-
tion on the meaning of the word itself, attempting to retrieve
an episodic memory, similar to Hiatt and Trafton (2015) and
Taatgen et al. (2021). Most of the time, an episodic memory
was retrieved that may have been relevant to something else
in declarative memory. This was also where a prospective
memory could be retrieved; see below for further details.

After any elaboration occurred, the model progressed to the
next word and the process restarted. When the trial time for
that list was up, the screen cleared and the model attempted to

1All pre-existing historical knowledge is assuredly much larger
in people, but higher values showed the same patterns described be-
low.
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remember the words on the list. The model used the unique
list identifier as a source of spreading activation and spoke
each word as it was remembered. When the recall stage of the
experiment was completed and the time for the recall phase
had completed, the next list was shown.

Prospective Memory Task. Recall that the model was told
to strike a specific key when it saw a particular cue; this mem-
ory was stored in declarative memory as shown above.

When the model read a prospective memory target word
and elaborated on it, the model had an opportunity to re-
trieve the prospective memory. If the prospective memory
chunk was successfully retrieved, the model would verify that
the target word was on the screen, notice it had a prospec-
tive memory action to execute, and perform the action. This
prospective memory task changed the goal from the retro-
spective memory task, so after completion of the prospective
memory action, the model needed to resume what it was do-
ing (Monk, Boehm-Davis, Mason, & Trafton, 2004; Trafton
& Monk, 2007; Trafton et al., 2011). One reason having a
theoretical resumption process is so important is because the
information for the unique list needed to be retrieved so it
could be saved with any new words that appeared after the
prospective memory cue.

In order to resume, the model attempted to recall the previ-
ous task-relevant episodic trace that it created at the beginning
of the current list. If the model was successful, it was able
to recall the specific goal, state, and list it was working on.
If the model was unsuccessful, it needed to reconstruct the
experimental context and try again. Under these conditions,
the model was always able to recall the contextual informa-
tion. The accuracy of each trial’s retrospective and prospec-
tive tasks were recorded.

Success of the model during retrospective task. The
model had quite high success on the retrospective task (>
75%). This accuracy was achieved primarily through the
spreading activation of the unique list. The model created
a new experiment-chunk that contained the lexical name of
the chunk, a link to its meaning, and a link to the unique
list. During the recall phase, the unique list was a source of
spreading activation and greatly facilitate retrieval. Note that
the retrieved chunks were not the original historical chunks,
but rather chunks created for this experiment and list. Base
level activation played a modest but critical role in retrieval
as well.

Failure of the model during retrospective task. Recall
that every time a retrieval is made, transient noisewas added
to the activation for every candidate chunk. Sometimes this
noise causes the total activation to be below a retrieval thresh-
old, causing a retrieval failure. Once a retrieval failure oc-
curred, the model assumes there are no more words to re-
member, so completed the recall phase. Because transient
noise is different for every chunk at every retrieval, the chance
that activation for all candidate chunks is below the retrieval
threshold increases as there are fewer words to remember.

Success of the model during prospective memory. When
the model sees a prospective memory target, spreading activa-
tion flows to other related concepts. When the spreading acti-
vation is strong enough to boost the activation of the prospec-
tive memory chunk that was learned at the beginning of the
experiment, the model successfully retrieves the prospective
memory action rather than another episodic memory or elab-
oration. Note that for uncommon words, the fan is smaller so
the impact of spreading activation is stronger.

Failure of the model during the prospective memory task.
Sometimes the model sees the prospective memory target
word but does not retrieve the prospective memory elabora-
tion. There are several possible reasons. First, the amount of
spreading activation to the target word target may not be very
high; this is especially likely to occur for familiar words that
have a high fan. Second, transient noise may cause another
memory to have higher activation than the prospective mem-
ory elaboration, allowing another memory to be retrieved in-
stead. Third, it is possible that transient noise has caused no
elaborations to have sufficient activation to be retrieved; this
is an extremely rare occurrence in this model since the histor-
ical memories and elaborations have a high activation.

Impact of age. As suggested earlier, the exact process of
modeling age-related memory decline is still under debate.
In our model, neither noise nor memory decay could account
for the differences we see in the experimental data. Instead,
we found, consistent with other theoretical work (Rhodes et
al., 2019), that a deficit in memory retrieval accounted for the
difference in age for retrospective memory. In ACT-R, the
retrieval threshold is a parameter that controls what level of
activation a chunk needs in order to be successfully retrieved
and is a direct way to model deficits in memory retrieval.

Model Fit

Model fits were created by running the model 500 times
for each condition, providing model stability. This model
changed 3 variables from their defaults, retrieval threshold,
activation source spread, and maximum associative strength.
Parameter fits were obtained by searching through each pa-
rameter space. As discussed earlier, the retrieval threshold
for the elderly model was changed to 1.5 from the default of
0 for the younger model. This was to model a deficit in mem-
ory retrieval that elderly seem to have (Rhodes et al., 2019).
Model results showed the same qualitative results across most
parameter values except in extreme circumstances (e.g., when
retrieval threshold was extremely high and nothing could be
recalled).

Source spreading activation for the imaginal buffer was set
to 2.0, a common value. The maximum associative strength
was set to a value of 3.1, a value that is a bit higher than
normal. Base level activation was set at the default of .5 and
activation noise was set at a traditional .1 value.

As Figure 1 suggests, the model is able to capture the three
main effects of the empirical data. First, the elderly model has
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Figure 1: Accuracy for both retrospective and prospective
memory tasks from Einstein and McDaniel (1990). Bars are
empirical data and dots are model data.

worse retrospective memory than the younger model. Sec-
ond, the model shows no difference in prospective memory
for younger or older. Finally, when uncommon words were
used as prospective memory cues, performance was far supe-
rior compared to common word cues.

The global shape of the model is quite similar to the em-
pirical data, R2 = .97. The model also fits very well in terms
of its absolute deviation from the empirical data, RMSD =
0.045.

General Discussion
We described a high fidelity process model of prospective
memory. Our model focuses on performance over reaction
time. The model was created in the ACT-R cognitive architec-
ture and uses two high-level mechanisms: memory for goals
and elaboration. Memory for goals allowed the model to cre-
ate episodic memories and then use those episodic memories
to resume the primary task after a prospective memory had
been completed. The elaboration mechanism allowed elab-
oration of words in working memory to occur which could
then allow the recall of prospective memory goals based on
environmental cues.

We solve the circular knowledge dependency problem (Li
& Laird, 2013) by using a mix of procedural and declara-
tive knowledge. We assume that there is general procedural
knowledge that can execute when a prospective memory en-
ters working memory (the retrieval buffer in our case). This
prospective memory contains a cue that needs to be verified

(a word) and an action to execute. Because the prospec-
tive memory uses declarative knowledge that can be created
on the fly and it is general, the rule simply waits until the
prospective memory gets retrieved. Our contextual priming
provides an opportunity to retrieve the prospective elabora-
tion when the relevant cue is perceived.

This model was fit to a classic (though controversial) em-
pirical paper on prospective memory. The uncontroversial
aspect of the model concerned the common and uncommon
words; we used a standard spreading activation and fan effect
mechanism to account for these findings.

The controversial aspect concerned the lack of difference
between young and elderly participants. In fact, many re-
searchers have attempted to conceptually replicate this find-
ing with varying degrees of success and in fact meta-analysis
suggests that prospective memory does decline with age, in
contrast to the experiment modeled here (Uttl, 2008). While
some researchers have highlighted experimental or analysis
confounds (e.g., the small number of prospective memory
items made it difficult to detect a significant difference), we
believe that our model can provide some guidance as well.

One of the debates in the literature about prospective mem-
ory tasks focus on differences between laboratory and natu-
ralistic tasks (Uttl, 2008). Our model suggests that regardless
of the type of task, an important feature will be the size of
the fan that exists for the prospective memory cue. If there
is a large fan (which can occur in both experimental or natu-
ralistic settings), prospective memory will be more difficult.
Because naturalistic studies make it difficult to control the
number of relationships, they are most likely to show a great
deal of variability, which seems to be the empirical finding.

Another debate concerning prospective memory concerns
the role of intelligence in prospective memory performance.
The elderly participants in Einstein and McDaniel (1990)
ended up having significantly higher WAIS-R scores than the
younger participants (presumably because of the college en-
vironment the elderly were recruited from), which presents a
possible confound in the empirical results. Other researchers
have also found that IQ is related to prospective memory
performance (Uttl, Graf, Miller, & Tuokko, 2001; Cherry
& LeCompte, 1999; Maylor, 1996). Our model provides a
straightforward explanation for this finding: people with a
higher IQ should have a higher source activation (W in equa-
tion 1; Daily et al., 2001) or a higher pool for spreading
activation (the S in equation 2).
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