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Abstract

A scaled difference test statistic T̃ d that can be computed from standard soft-

ware of structural equation models (SEM) by hand calculations was proposed in

Satorra and Bentler (2001). The statistic T̃d is asymptotically equivalent to the

scaled difference test statistic T̄d introduced in Satorra (2000), which requires more

involved computations beyond standard output of SEM software. The test statis-

tic T̃d has been widely used in practice, but in some applications it is negative

due to negativity of its associated scaling correction. Using the implicit function

theorem, this note develops an improved scaling correction leading to a new scaled

difference statistic T̄d that avoids negative chi-square values.

Keywords: Moment-structures, goodness-of-fit test, chi-square difference test

statistic, chi-square distribution, non-normality
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Introduction

Moment structure analysis is widely used in behavioural, social and economic

studies to analyze structural relations between variables, some of which may be la-

tent (i.e., unobservable, Bollen, 2002); see, e.g., Bollen and Curran (2006), Grace

(2006), Lee (2007), Yuan and Bentler (2007), and references therein. A wide

variety of computer programs can carry out analyses for a general class of struc-

tural equation models, including AMOS (SPSS, 2008), CALIS (SAS, 2008), EQS

(Bentler, 2008), LISREL (Jöreskog & Sörbom, 1999), Mplus (Muthén & Muthén,

2007), Mx (Neale, 1997), and sem in R (Fox, 2006). As is well-known, statis-

tics that are central in moment structure analysis are the overall goodness-of-fit

test of the model and tests of restrictions on parameters. When the distribu-

tional assumptions of a relevant statistical method are not met, corrections and

adjustments to test statistics proposed by Satorra and Bentler (1988, 1994) are

widely used. An example is the scaled test statistic TSB = TML/c which scales

the normal theory maximum likelihood (ML) goodness of fit test TML so that TSB

is closer in expectation to that of a χ2 variate than the statistic TML. Here we

focus on the problem of comparing two nested models M0 and M1 estimated with

any non-optimal (asymptotically) method when the data violates that method’s

distributional assumption, e.g., when the estimator is ML but the data are not

multivariate normal. Then the usual chi-square difference test Td = T0−T1, based

on the separate models’ goodness of fit test statistics, is not χ2 distributed. A
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correction to Td by a scaling factor was proposed by Satorra (2000) and Satorra

and Bentler (2001). The latter is the focus of this paper.

Although Satorra-Bentler (SB) corrections have been available for some time,

formal derivations of SB corrections to the case of nested model comparisons have

not been available. The obvious approach of computing separate SB-corrected test

statistics TSB for each of two nested models, and then computing the difference

between them (e.g., Byrne and Campbell, 1999), turns out to be an incorrect way

to obtain a scaled SB difference test statistic. The difference could be even be

negative, which is an improper value for a χ2 variate. Satorra (2000) provided

specific formulae for extension of SB corrections to score (Lagrange multiplier),

difference and Wald test statistics. He showed that the difference between two

SB-scaled test statistics does not necessarily correspond to the scaled chi-square

difference test statistic. In a subsequent paper, Satorra and Bentler (2001) pro-

vided a simple procedure to obtain an approximate scaled chi-square statistic from

the regular output of SEM analysis. Under the null hypothesis, the approximate

scaled chi-square is asymptotically equal to the exact scaled test statistic of Satorra

(2000), but it has the drawback that a positive value for the scaling correction is

not assured. The present paper provides the technical development of a simple

procedure by which a researcher can compute the exact SB difference test statistic

based only on output from standard SEM programs.

Throughout we adhere to the notation and results of Satorra and Bentler

3



(2001). Let σ and s be p-dimensional vectors of population and sample moments

respectively, where s tends in probability to σ as sample size n → +∞. Let

√
n(s − σ) be asymptotically normally distributed with a finite asymptotic vari-

ance matrix Γ (p× p). Consider the model M0 : σ = σ(θ) for the moment vector

θ, where σ(.) is a twice-continuously differentiable vector-valued function of θ, a

q-dimensional parameter vector. Consider a WLS estimator θ̂ of θ defined as the

minimizer of

FV (θ) := (s− σ)
′
V̂ (s− σ) (1)

over the parameter space, where V̂ (p×p), converges in probability to V , a positive

definite matrix. Alternatively, let F = F (s, σ) be a discrepancy function between

s and σ in the sense of Browne (1984). In the later case, V below will be the

1
2
∂2F (s, σ)/∂σ∂σ evaluated at σ = s.

Let M0 : σ = σ?(δ), a(δ) = 0, and M1 : σ = σ?(δ) be two nested models

for σ. Here δ is a (q + m)-dimensional vector of parameters, and σ?(.) and a(.)

are twice-continuously differentiable vector-valued functions of δ ∈ Θ1, a compact

subset of Rq+m. Our interest is in the test of a null hypothesis H0 : a(δ) = 0

against the alternative H1 : a(δ) 6= 0.

For the developments that follow, we require the Jacobian matrices

Π(p× (q + m)) := (∂/∂δ
′
)σ?(δ) and A(m× (q + m)) := (∂/∂δ

′
)a(δ),
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which we assume to be regular at the true value of δ, say δ0. We also assume that A

is of full row rank. By using the implicit function theorem, associated to M0 (more

specifically, to the restrictions a(δ) = 0), there exists (locally in a neighborhood

of δ0) a one-to-one function δ = δ(θ) defined in an open and compact subset S

of Rq, and a θ0 in the interior of S such that δ(θ0) = δ0 and σ(δ(θ)) satisfies

the model M0. Let H = ∂δ(θ)/∂θ
′

(q + m) × q be the corresponding Jacobian

matrix evaluated at θ0. Hence, by the chain rule of differentiation, ∆ = ∂σ/∂θ
′
=

(∂σ(δ)/∂δ
′
)(∂ δ(θ)/∂θ

′
)= ΠH. Since a(δ(θ)) = a0, it holds that with A evaluated

at δ0, AH = 0 with r(A) + r(H) = p, and r(.) denoting the rank of a matrix.

Thus, H ′ is an orthogonal complement of A. Typically, the restrictions a(.) are

linear, so A and H do not vary with δ0.

Let P ((q+m)×(q+m)) := Π
′
V Π. Associated to M1, the less restricted model

σ = σ?(δ), the goodness-of-fit test statistic is T1 = nF (s, σ̃), where σ̃ is the fitted

moment vector in model M1 with associated degrees of freedom r1 = r0 −m and

scaling factor c1 given by

c1 :=
1

r1

trU1Γ =
1

r1

tr {V Γ} − 1

r1

tr
{
P−1Π

′
V ΓV Π

}
, (2)

where

U1 := V − V ΠP−1Π
′
V. (3)

When both models M0 and M1 are fitted, for example by ML, then we can
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test the restriction a(δ) = 0, assuming M1 holds, using the chi-square difference

test statistic Td := T0 − T1. Under the null hypothesis, we would like Td to have

a χ2 distribution with degrees of freedom m = r0 − r1. This is the restricted

test of M0 within M1. For general distribution of the data, the asymptotic chi-

square approximation may not hold. To improve on the chi-square approximation,

Satorra (2000) gave explicit formulae that extends the scaling corrections proposed

by Satorra and Bentler (1994) to the case of difference, Wald, and score type of

test statistics. General expressions for those corrections were also put forward in

Satorra (1989, p.146). Specifically, for the test statistic Td we are considering,

Satorra (2000, p. 241) proposed the following scaled test statistic:

T̄d := Td/ĉd, where cd :=
1

m
trUdΓ (4)

with

Ud = V ΠP−1A
′
(AP−1A

′
)−1AP−1Π

′
V. (5)

Here, ĉd denotes cd after substituting consistent estimates of V and Γ, and evalu-

ating the Jacobians A and Π at the estimate δ̂1 when fitting M0 (or M1).

A practical problem with the statistic T̄d is that it requires computations that

are outside the standard output of current structural equation modeling programs.

Furthermore, difference tests are usually hand computed from different modeling

runs. Satorra and Bentler (2001) proposed a procedure to combine the estimates of

the scaling corrections c0 and c1 associated to the chi-square goodness-of-fit test for
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the two fitted models M0 and M1 in order to compute a consistent estimate of the

scaling correction cd for the difference test statistic. A modified (easy to compute)

scaled test statistic T̃d with the same asymptotic distribution as T̄d was proposed.

Both statistics were show to be asymptotically equivalent under a sequence of local

alternatives (so they have the same asymptotic local power). Their procedure to

compute T̃d is as follows (cf., Satorra and Bentler, 2001, p. 511):

1. Obtain the unscaled and scaled goodness-of-fit tests when fitting M0 and M1

respectively; that is, T0 and T̄0 when fitting M0, and T1 and T̄1 when fitting

M1;

2. Compute the scaling corrections ĉ0 = T0/T̄0, ĉ1 = T1/T̄1, and the unscaled

chi-square difference Td = T0 − T1 and its degrees of freedom m = r0 − r1;

3. Compute the scaled difference test statistic as

T̃d := Td/c̃d with c̃d = (r0ĉ0 − r1ĉ1)/m.

Here r0 and r1 are the respective degrees of freedom of the models M0 and M1.

The asymptotic equivalence of T̄d and T̃d follows from the following matrix

equality:

Ud = U0 − U1, (6)

where Ud and U1 are given in (5 ) and (3), and

7



U0 := V − V ΠH(H
′
Π

′
V ΠH)−1H

′
Π

′
V. (7)

Since (6) implies

m cd = trUdΓ = tr(U0 − U1)Γ = r0c0 − r1c1,

it follows that

cd = (r0c0 − r1c1)/m.

This is the theoretical basis for Satorra and Bentler’s (2001) proposal to scale the

difference test by

c̃d := (r0ĉ0 − r1ĉ1)/m,

where ĉ0 := T0/T̄0 and ĉ1 := T1/T̄1 are obtained by hand computation from the

standard output of a SEM program, when fitting models M0 and M1 in turn.

A Problem with the Current Scaled Difference Test

Under Satorra and Bentler’s (2001) proposal, c̃d evaluates U0 and U1 at the

estimates δ̂0 and δ̂1 respectively. Since δ̂1 will in general not satisfy the null model

M0 (i.e., it will not be of the form δ = δ(θ) for the function implied by the implicit

function theorem), when it deviates highly fromM0, the estimated difference c̃d =

(r0ĉ0 − r1ĉ1)/m may turn out to be negative. This may happen in small samples,

or when M0 is highly incorrect. A result can be an improper value for T̃d. Satorra

and Bentler (2001, p. 511) had warned that ”. . . even though, necessarily, cd > 0,
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c̃d may turn out to be negative in some extreme cases (leading then to an improper

value for T̃d). . . an improper value of T̃d can be taken as indication that either M0

is highly deviant from the true model, or the sample size is too small for relying

on the test statistic; that is, as indication of a non-standard situation where the

difference test statistic is not worth using”. Clearly, under a sequence of local

alternatives, T̄d and T̃d are asymptotically equivalent, since both ĉd and c̃d are

consistent estimates of the population value cd. Thus for large samples, and for

not too-large misspecifications, an improper value of T̃d will not occur.

In order to be sure to avoid a negative value for c̃d and hence T̃d, currently

one would need to resort to computing T̄d using the formulae spelled out in

Satorra (2000). Unfortunately this is impractical or impossible for most applied

researchers, since Satorra’s methodology involves statistics that are not computed

in standard SEM software. Fortunately, as we show next, the exact value of T̄d

can also be obtained from the standard output of SEM software, using a new hand

computation.

A New Scaled Test Statistic T̄d

Denote by M10 the fit of model M1 to a model setup with starting values taken

as the final estimates obtained from model M0, and with number of iterations

set to 0. Consider ĉ1
(10) := T1

(10)/T̄1
(10), where T1

(10) and T̄1
(10) are the standard

unscaled and scaled test statistic of this additional run. Note that the estimate

ĉ1
(10) uses model M1 but the matrices Π and A are now evaluated at δ̂0 := δ(θ̂),

9



where θ̂ is the estimate under M0. Since now all the matrices involved in (6) are

evaluated at δ̂0, the equality holds exactly, and not only asymptotically, as when

some matrices are evaluated at δ̂0 and some others at the estimate δ̂1 under model

M1. The scaling correction that is now computed is

ĉ
(10)
d := (r0ĉ0 − r1ĉ

(10)
1 )/m, (8)

which now, necessarily, is a positive number. The new scaled difference statistic

is thus defined as

T̄
(10)
d = (T0 − T1)/ĉ

(10)
d , (9)

Clearly, T̄
(10)
d = T̄d; that is, T̄

(10)
d coincides numerically with the scaled statistic

proposed in Satorra (2000).

In the next section, we will illustrate this procedure for two models with an

empirical data set on which the original SB difference test produced negative val-

ues.

Empirical Examples: Effect of Smoking on Cancers

Fraumeni (1968) reported a pioneering epidemiological study of the effect of

smoking on various cancers. He investigated the bivariate correlations and regres-

sions between the per capita sales of cigarettes on the one hand, and variation in

mortality from bladder, lung, kidney, and leukemia cancers, on the other. The orig-

inal data, given at http://lib.stat.cmu.edu/DASL/Datafiles/cigcancerdat.html,

10



represent smoking rates in 44 states in the USA and the associated age-adjusted

death rates for the four cancers. Fraumeni did not use latent variable models,

so here we use these interesting data to evaluate some variants of a simple one

factor model for the various cancers, and its prediction by rates of smoking. The

Bonett-Woodward-Randall (2002) test shows that these data have significant ex-

cess kurtosis indicative of non-normality at a one-tail .05 level, so test statistics

derived from ML estimation may not be appropriate and we do the SB corrections.1

Prediction of Cancer as a One Factor Model

In the following, V1 represents the quantity of cigarettes sold, while V2 − V5

represent bladder, lung, kidney, and leukemia cancers. A common factor F is

hypothesized to explain the correlations among the four types of cancer, and this

factor, in turn, is predicted by quantity of cigarette sales. It is a structured means

model, with the mean cigarette sales indirectly affecting the mean rates of the

various cancers. The specified model is

Vj = λjF + Ej, j = 2, . . . , 5

F = βV1 + D1,

V1 = µ + E1,

1In fact the data have outliers, so case-robust methods may be more appropriate; see Bentler,

Satorra, and Yuan (2008), who also provide a model closer to Fraumeni’s original hypotheses.
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where the Vj’s denote observed variables; F , D1, and Ej are the common, residual

common, and unique factors respectively; λj denotes a factor loading parameter, β

is the effect of cigarette smoking on the cancer factor, and µ is the mean parameter

for rates of smoking. The units of measurement for the factor were tied to V2, with

λ2 = 1. The following values for the ML and SB chi-square statistics are obtained

T1 = 107.398, T̄1 = 65.3524, r1 = 9, ĉ1 = 1.6434,

along with the degrees of freedom r1 and the scaling correction ĉ1. The model

does not fit, though for the sake of the illustration we are aiming for, this is not

of concern to us.2

Restricted Model: M0

The same model is now fitted with the added restriction that the error variances

of the kidney and leukemia cancers, E4 and E5, are equal. This model gives the

following statistics

T0 = 139.495, T̄0 = 97.4034, r0 = 10, ĉ0 = 1.4322.

Difference Test

Our main interest lies in testing the difference between M0 and M1, which we

do with the chi-square difference test. The ML difference statistic is

2Substantively, it may be interesting to note that the standardized factor loadings on the

cancer factor are in the range .78-.88, and that the standardized effect of smoking rates on the

cancer factor is .88.
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Td = 139.495− 107.398 = 32.097,

which, with 1 degree of freedom (m), rejects the null hypothesis that the error

variances for E4 and E5 are equal. Since the data is not normal, we compute the

SB (2001) scaled difference statistic. This requires computing the scaling factor

c̃d = (r0ĉ0 − r1ĉ1)/mgiven by

[10(1.4322)− 9(1.6434)]/1 = 14.322− 14.7906 = −.4686.

The scaling factor c̃d is negative, so the SB difference test cannot be carried out;

or, if carried out, it results in an improper negative chi-square value.

New Scaled Difference Test

As described above, to compute the scaled statistic T̄d we implement (8) and

(9). The output that is missing in the prior runs is the value of the SB statistic ob-

tained at the final parameter estimates for model M0 when model M1 is evaluated.

This can be obtained by creating a model setup M10 that contains the parameter-

ization of M1 with start values taken from the output of model M0. Model M10 is

run with zero iterations, so that the parameter values do not change before output

including test statistics is produced. In the Appendix we illustrate this procedure

with EQS. The new result gives

T (10) = 139.495, T̄ (10) = 94.9551, r1 = 9, ĉ(10) = 1.4691,
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where as expected, T 10 = T0 as reported above (i.e., the ML statistics are identi-

cal), and the value ĉ10 is hand-computed. As a result, we can compute

ĉ
(10)
d = (r0ĉ0 − r1ĉ

(10)
1 )/m = [(10)(1.4322)− (9)(1.4691)] = 1.10,

which, in contrast to the SB (2001) computations, is positive. Finally, we can

compute the proposed new SB corrected chi-square statistic as

T̄d = T̄
(10)
d = (T0 − T1)/ĉ

(10)
d = (139.495− 107.398)/1.10 = 29.179,

which can be referred to a χ2
1 variate for evaluation.

The One Factor Model with More Restrictions

Since the number of degrees of freedom could impact the scaling factor and

hence the performance of a χ2 difference test, we consider another model on the

same data. This model is identical in form to the previous one, but adds the

constraint that all error variances on variables defining the factor are held equal.

Specifically, model M1 is the same as before, but a new model M0 is computed

with the following result

T0 = 178.508, T̄0 = 151.4442, r0 = 12, ĉ0 = 1.1787.

For reference purposes, we may compute the SB (2001) scaling factor c̃d := (r0ĉ0−

r1ĉ1)/m, which equals -.2154. Hence the (2001) difference test again cannot be

computed for this model. The new statistic, in contrast, behaves well. To obtain

it, using procedures described earlier, we compute model M10 with the result
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T (10) = 178.508, T̄ (10) = 177.6320, r1 = 9, ĉ(10) = 1.0049.

Then we can compute

ĉ
(10)
d = (r0ĉ0 − r1ĉ

(10)
1 )/m = [(12)(1.1787)− (9)(1.0049)]/3 = 1.70

and

T̄d = T̄
(10)
d = (T0 − T1)/ĉ

(10)
d = (178.508− 107.398)/1.10 = 29.179,

which is positive as expected, and can be evaluated by reference to a χ2
3 distribu-

tion.

Discussion

The implicit function theorem was used to provide a theoretical basis for the

development of a practical version of the computationally more difficult scaled

difference statistic proposed by Satorra (2000). The proposed method is only

marginally more difficult to compute than that of Satorra and Bentler (2001) and

solves the problem of an uninterpretable negative χ2 difference test that applied

researchers have complained about for some time. Like the method it is replac-

ing, the proposed procedure applies to a general modeling setting. The vector

of parameters σ to be modeled may contain various types of moments: means,

product-moments, frequencies (proportions), and so forth. Thus, this scaled dif-

ference test applies to methods such as factor analysis, simultaneous equations for
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continuous variables, log-linear multinomial parametric models, etc.. It can easily

be seen that the procedure applies also in the case where the matrix Γ is singular,

when the data is composed of various samples, as in multi-sample analysis, and to

other estimation methods, e.g., pseudo ML estimation. It applies also to the case

where the estimate of Γ reflects the fact that we have intraclass correlation among

observations, as in complex samples. Hence this new statistic should be useful in

a variety of applied modeling contexts.
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Appendix

EQS Procedure for Implementing New Robust Difference Test

1. Set up the restricted model M0 file as usual, and add the command

/PRINT

RETEST =”newfile.eqs”;

where newfile.eqs is the proposed name of a future model file. Run this model M0

using METHOD = ML,ROBUST.

Find ML T0, SB T̄0, and degrees of freedom r0, and compute ĉ0 = T0/T̄0.

2. The newfile.eqs contains, in the top half, an echo of the model setup for M0. In

this section, delete everything from /EQUATIONS to /END. The remaining file

contains the setup for model M10. Keeping all start values and parameters as is,

modify this file to become model M1 (e.g., remove the constraints in M0; if M0 has

fixed a zero parameter, add it as a free parameter.) Make sure all newly added

parameters have start value zero. Add the statement

/TECH

ITER =0;

to the model file, save with a new name (say, m01.eqs) and run. Obtain the ML

T 10 and verify that it is identical to T0 from the previous run. Obtain the SB T̄ 10,

r1, and ĉ10. Then compute the new scaling factor ĉ10
d = (r0ĉ0 − r1ĉ

(10)
1 )/m.

3. Take the input file m01.eqs, delete the statements /TECH and ITER =0; and

run. This is the typical run of model M1, and gives the ML statistic T1. Compute
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the SB robust difference test as T̄d = (T0 − T1)/ĉ
10
d .
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