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Towards Understanding How Machines Can Learn Causal Overhypotheses

Eliza Kosoy*,1, David M. Chan*,1, Adrian Liu1, Jasmine Collins1, Bryanna Kaufmann1,
Sandy Han Huang2, Jessica B. Hamrick2, John Canny1, Nan Rosemary Ke2, Alison Gopnik1

Abstract

Recent work in machine learning and cognitive science has
suggested that understanding causal information is essential
to the development of intelligence. One of the key challenges
for current machine learning algorithms is modeling and un-
derstanding causal overhypotheses: transferable abstract hy-
potheses about sets of causal relationships. In contrast, even
young children spontaneously learn causal overhypotheses, and
use these to guide their exploration or to generalize to new
situations. This has been demonstrated in a variety of cognitive
science experiments using the “blicket detector” environment.
We present a causal learning benchmark adapting the “blicket"
environment for machine learning agents and evaluate a range
of state-of-the-art methods in this environment. We find that al-
though most agents have no problem learning causal structures
seen during training, they are unable to learn causal overhy-
potheses from these experiences, and thus cannot generalize to
new settings.
Keywords: causal learning; causal overhypotheses; blicket
detector; causal benchmarks

Introduction
Research in causal modeling has long studied not only the
accurate modeling of in-distribution data, but also the accu-
rate recovery of underlying causal mechanisms (and their true
graphical relations) capable of explaining out-of-distribution
data, opening the way for models achieving systematic gener-
alization (Bengio et al., 2019; Schölkopf et al., 2021; Ke et al.,
2021).

One of the key components of causal learning are causal
overhypotheses: a method for describing priors over stochastic
causal graphs (Kemp, Perfors, & Tenenbaum, 2007; Kemp,
Goodman, & Tenenbaum, 2010; Lucas & Griffiths, 2010; Per-
fors, Tenenbaum, Griffiths, & Xu, 2011; Tenenbaum, Kemp,
Griffiths, & Goodman, 2011; Gopnik & Wellman, 2012).
Causal overhypotheses enable models (and humans) to learn
from sparse data (Griffiths & Tenenbaum, 2009) by reduc-
ing the likely set of possible causal relationships in a graph.
Despite the recent surge of machine learning datasets and envi-
ronment for causal inference and learning (Ahmed et al., 2020;
McDuff et al., 2021; J. X. Wang et al., 2021; Ke et al., 2021),
causal overhypotheses for these environments and datasets are
unclear, rendering existing benchmarks unable to evaluate the
competency of existing agents when learning and using causal
overhypotheses.

In this work we seek to fill this gap by leveraging a re-
cent benchmark environment (Kosoy et al., 2022) drawing
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inspiration from recent cognitive science work using blicket
detectors (Gopnik & Sobel, 2000; Lucas, Bridgers, Griffiths,
& Gopnik, 2014), and evaluating this benchmark for the first
time on several state of the art causal models. We find that
such algorithms, in contrast to children, as explored by Kosoy
et al. (2022), only converge on a solution after an extensive
number of trials or if they are given all the possible settings
and outcomes as training data. This suggests that these tasks
are an interesting challenge for machine learning algorithms.
In order for machines to perform as well as children do, algo-
rithms must reason about the sequence of observations seen,
extract causal overhypotheses from those observations and
use them for exploration—which current methods fall short of
doing.

Related Work

Blicket Detectors for Causal Learning A “blicket detector”
is a machine that lights up and plays music when some com-
binations of objects but not others are placed on it (Gopnik
& Sobel, 2000; Lucas et al., 2014). The central question is
whether an agent can learn that a particular set of causal events
will lead to the lighting-up effect, and use that knowledge to
design novel interventions on the machine. The causal rela-
tionship is entirely determined by the pattern of conditional
dependencies and interventions, rather than requiring intuitive
physics knowledge or visual understanding.

Several features of this environment and the tasks it allows
make it particularly useful as a benchmark for machine learn-
ing algorithms. First, causal representations are more powerful
and structured than mere statistical generalizations, though
both can be systematically inferred from statistical informa-
tion. Many researchers (e.g. Pearl, Spirtes et al., Bengio) have
argued that such causal representations are crucial for both hu-
man and general AI intelligence. Second, unlike some existing
causal environments (Ke et al., 2021; J. X. Wang et al., 2021)
the blicket environment enables the inference of both specific
causal structure and more general features of causal structure,
such as whether causal systems are conjunctive or disjunctive,
stochastic or deterministic. Learning these overhypotheses
about causal structure (Griffiths & Tenenbaum, 2009) is es-
pecially important because such inferences can constrain the
search for causal structure, a search that can rapidly become
intractible.

Most significantly, the environment allows for a direct com-
parison to human agents. The work of Kosoy et al. (2022)
first described a version of a blicket environment, and demon-
strated that even preschool children can easily manipulate

363
In M. Goldwater, F. K. Anggoro, B. K. Hayes, & D. C. Ong (Eds.), Proceedings of the 45th Annual Conference of the Cognitive Science
Society. ©2023 The Author(s). This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY).



and explore blicket environments, generate appropriate data,
and rapidly learn both particular causal structure and over-
hypotheses about causal structure (Kosoy et al., 2022). In
their experiments with children from ages four to six, Kosoy
et al. (2022) found that children exhibit a diverse range of
exploration strategies, which suggests that they are exploring
based on a rich set of causal overhypotheses, formed from
their prior knowledge of how objects and mechanisms behave,
while simple RL models found such interactions challenging.
Indeed, exploring this environment in the context of children,
particularly young children leads to a singularly informative
baseline group; They do not have the extensive education and
experience of typical adults, which might make comparisons
to artificial agents challenging, but they are nevertheless ef-
fective causal learners and able to make broad yet accurate
generalizations from small sample sizes, in contrast to many
current machine learning systems (Gopnik, 2012; Gopnik et
al., 2017).

Causal Overhypotheses Causal overhypotheses are hierar-
chical priors over the structure and/or conditionals of a causal
model, and have been widely studied in the cognitive sci-
ence literature (Kemp et al., 2007, 2010; Lucas & Griffiths,
2010; Perfors et al., 2011; Tenenbaum et al., 2011; Gopnik
& Wellman, 2012). An overhypothesis might state that the
causal graph itself has a particular form (such as a “common
effect” or a chain structure), or that the conditionals within that
graph have a particular form (such as that p(X |Y,Z) follows
a particular parametric distribution). Having a good causal
overhypothesis is a form of inductive bias that can make causal
inferences much easier: for example, while we might not know
the specific causal graph, if we know that it takes the form
of a common effect, then we need only a few interventions
(possibly only O(N)) to fully determine the specific causal
graph. Ideally, then, machine learning agents should be able
to learn such overhypotheses and leverage them to make more
efficient and accurate causal inferences.

Multi-task and Causal RL Benchmarks There exist multi-
task RL benchmarks featuring robotics (Yu et al., 2019;
James, Ma, Arrojo, & Davison, 2020), physical reasoning
(Bakhtin, van der Maaten, Johnson, Gustafson, & Girshick,
2019; Allen, Smith, & Tenenbaum, 2020), and video games
(Cobbe, Klimov, Hesse, Kim, & Schulman, 2018; Machado
et al., 2018; Nichol, Pfau, Hesse, Klimov, & Schulman, 2018;
Chevalier-Boisvert et al., 2018). Unfortunately, since it is not
clear what the relevant causal overhypotheses for these envi-
ronments are, it is difficult to evaluate how causal information
influences agents’ exploration.

RL benchmarks for causal discovery include Causal World
(Ahmed et al., 2020), Causal City (McDuff et al., 2021),
Alchemy (J. X. Wang et al., 2021), ACRE (Zhang, Jia, Ed-
monds, Zhu, & Zhu, 2021), and the work of Ke et al. (2021).
However, many of these environments either lack clear causal
hypotheses or do not allow for controlling overhypotheses.
In addition, these environments primarily focus on causal

induction or generalization, rather than exploration (though
see Sontakke, Mehrjou, Itti, and Schölkopf (2021)). In con-
trast, the blicket environment in this work is designed to mea-
sure agents’ ability to explore using causal overhypotheses.
Moreover, children have not been tested on any of these exist-
ing environments, whereas in the blicket environment, prior
work has shown that children as young as age four are able
to learn causal overhypotheses and use these to explore effec-
tively (Kosoy et al., 2022). It can be informative to compare
the exploration and performance of RL approaches to that of
children.

Language Models for Reasoning Tasks Large language
models such as GPT (Radford et al., 2019; Brown et al., 2020)
and PALM (Chowdhery et al., 2022) are trained on massive
amounts of data, and they have been shown to be able to ex-
press uncertainty and perform common sense reasoning up to
an extent (Lin, Hilton, & Evans, 2022). In this work, we probe
the the causal reasoning capabilities of GPT-3 and PALM
using textual descriptions of the virtual blicket environment.

Evaluating Causal Learning in the Blicket
Environment

Results from (Kosoy et al., 2020) suggest that children can
explore efficiently, especially given the causal overhypothe-
ses. In this work, we evaluate how a spectrum of different
machine learning models perform on the blicket detector tasks.
Solving these tasks requires reasoning about the sequence
of observations seen, extracting causal overhypotheses from
those observations, and using these extracted overhypothe-
ses for exploration. In this work, evaluate several popular
reinforcement learning algorithms—A2C (Mnih et al., 2016),
PPO2 (Schulman, Wolski, Dhariwal, Radford, & Klimov,
2017), and Q-learning (Watkins & Dayan, 1992)—on this
task. We further evaluate imitation learning algorithms, in-
cluding behaviour cloning with decision transformers (Chen
et al., 2021). Finally, we apply pre-trained language mod-
els (Brown et al., 2020; Chowdhery et al., 2022), since they
have been shown to be capable of performing common-sense
reasoning and expressing uncertainty to an extent (Lin et al.,
2022).

Experimental Design

In our blicket environment, we build on the environment first
explored in Kosoy et al. (2022), and consider two causal over-
hypotheses, shown in Figure 1: that the world is either conjunc-
tive or disjunctive, with the causal system defined as follows .
In both cases, the causal graph takes the form of a common
effect, with N + 1 variables: N objects X = {X0,X1, ...,XN}
(the causes) and one blicket machine M (the effect). Each
object Xi can either be on top of the blicket machine (Xi = 1)
or off the machine (Xi = 0). The blicket machine can be either
on (M = 1) or off (M = 0). Because the graph is a common
effect, objects’ states do not influence each other (intervening
on Xi = 1 does not impact X j). Objects’ states may, however,
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Doesn’t light up

Disjunctive

Doesn’t light up Lights upLights upLights up Doesn’t light up

Conjunctive

Figure 1: A simplified rendering of the virtual blicket detector environment. In the disjunctive setting (left), only one blicket is needed for
the blicket to light up. Whereas in the conjuctive setting (left), two blickets are needed. These examples are shown to children for the given
hypotheses condition in Kosoy et al. (2022).

influence the state of the machine. Specifically, some subset
of the objects, B ⊂ X, are said to be “blickets” in that they
have a causal influence on whether the blicket machine turns
on. Thus, the causal graph in this scenario always take the
form of a common effect, with edges {Xi → M : Xi ∈ B}.

The conjunctive and disjunctive overhypotheses specify
the form of the blickets’ causal influence on the machine.
For example, let Xi,X j ∈ B be blickets. In the conjunc-
tive case, both objects are needed at the same time to turn
the machine on. Formally, P(M = 1|Xi = 1,X j = 1) = 1,
while P(M = 0|Xi = 1) = 1 and P(M = 0|X j = 1) = 1. In
the disjunctive case, only one object (either Xi or X j) is
needed to turn the machine on, so P(M = 1|Xi = 1) = 1 and
P(M = 1|X j = 1) = 1. An illustration of the disjunctive versus
conjunctive overhypotheses can be found in Figure 1. We note
that while this setup is deterministic, it can easily be adapted
to a stochastic environment with minimal modifications.

Experiments with SOTA RL Models To adapt the vir-
tual blicket environment for agent learning in this work, we
made the following design choices regarding the observations,
actions, reward, and termination conditions.

Observations: We could allow the algorithms to observe
the same embodied visual space as the children, but this places
RL algorithms at a significant disadvantage, since they would
need to not only understand causal structures, but also learn
visual inputs and object detection. Thus, we choose to evaluate
the algorithms in a purely symbolic environment where the
objects are represented by one-hot indices. Formally, the state
space is a vector in o ∈ {0,1}N+1 where N is the number of
blickets. The index oi,0≤ i<N is 1 if oi is on the detector, and
0 otherwise. The index oN is 1 if the detector is illuminated,
and 0 otherwise.

Actions: In the experiments with children, actions consist
of placing a blicket onto the detector, removing a blicket from
the detector, and pressing the “check” button to evaluate the
detector’s state. For RL algorithms, we simplify this process
by allowing the agent to place multiple objects simultaneously,
automatically “checking” the state of the detector with every
action, and automatically resetting the detector after each
check, leading to 2N actions for N blickets. This means that
the agent gets feedback with every action, which significantly
improved training stability.

Reward: The reward function should capture whether the
algorithm has learned the causal overhypothesis of an environ-

ment. To do this, we evaluate the models using a quiz-based
framework. Models are allowed to make as many exploration
steps as needed, and then trigger an action which switches to
the evaluation mode. In the evaluation mode, models receive
as input a blicket and must produce an action indicating if
the object is a blicket or not. They receive a reward of 1 for
identifying a correct blicket, and a reward of −1 for incor-
rectly labeling an object (i.e., for both false positives and false
negatives). We also explored several reward modifications. In
one modification, models were asked to disambiguate between
Disjunctive and Conjunctive environments, with +1 reward
for identifying the correct modality. The environment is im-
plemented using the standard OpenAI Gym (Brockman et al.,
2016) interface, allowing it to be used across many different
pre-existing machine learning architectures and algorithms.

Deep Reinforcement Learning Algorithms

We evaluate the performance of two popular deep reinforce-
ment learning algorithms, Advantage Actor Criric (A2C)
(Mnih et al., 2016) and Proximal Policy Optimization (PPO2)
(Schulman et al., 2017), on the blicket environment. For each
algorithm, we use several policy variants: a standard MLP pol-
icy (no memory), an LSTM-based policy, and an LSTM-based
policy with layer normalization with two hidden dimension
variants of 256 and 512. For all of these policies, we found that
a network with a hidden size of 512 obtained the optimal per-
formance See the Appendix for learning hyperparameters. We
train all of these algorithms in the given hypothesis scenario,
where the agent is exposed during training to all possible over-
hypotheses, and asked to perform well given these scenarios.

Experimental Design We terminate training either after 3
million environment steps or when the agent obtains maximum
reward for 500 consecutive episodes, whichever comes first.
Each episode has 25 timesteps, so each agent is exposed to
at most 120,000 episodes. To evaluate whether the agent can
generalize to additional causal situations, we also train agents
on five held-out scenarios: holding out all of the conjunctive
overhypotheses, holding out all of the disjunctive overhypothe-
ses, and holding out either one conjunctive overhypothesis
or one disjunctive overhypothesis. The maximum achievable
reward for these experiments is 3.

Results Figure 2a shows the performance of A2C and PPO2
when none of the hypotheses are held out. PPO2 outper-
forms A2C in almost all scenarios, achieving higher rewards
faster. Further, the LSTM models clearly outperform the non
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(a) Performance of PPO2 and A2C algorithms with MLP, LSTM,
and layer-norm LSTM policies on the blicket environment.
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(b) Accuracy of models over time when determining if the environ-
ment is conjunctive or disjunctive.
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(d) Performance of a standard A2C-LSTM model when forced to
explore for K steps before entering the quiz phase. While this explo-
ration helps the decision transformer, additional forced explanation
is harmful to all standard RL models.

Figure 2: Experiments with standard deep reinforcement learning algorithms

memory-based models; this is expected, since causal learning
requires memory. Unfortunately, none of the algorithms per-
form well on held-out causal examples, as shown in Figure 2c.
This suggests that they are primarily learning to memorize the
causal patterns, and thus are incapable of generalization. This
conclusion comes with a caveat: because there are only a hand-
ful of possible hypotheses, it may be possible that we do not
have enough data to perform well on held-out samples. Agents
are, however, able to easily distinguish between conjunctive
and disjunctive environments—Figure 2b shows that after very
few steps, in the held-out situation (with both overhypotheses),
agents can distinguish conjunctive from disjunctive environ-
ments, even though they are unable to determine which objects
exactly are blickets.

Behavior Cloning

Recently Chen et al. (2021) introduced the Decision Trans-
former, a simple transformer-based approach to imitation learn-
ing, shown to outperform most existing behavior cloning meth-
ods. The decision transformer works by applying a causally-
masked transformer to predict the reward-to-go of a flattened
sequence of (state, action, reward, next state) tuples, with an
ℓ2-norm loss. The model then chooses actions during test time
that maximize the predicted reward-to-go.

Model and Pre-Training Dataset Reward FCA
Decision Transformer

Random 0.16±1.747 0.67
Random (5-step forced exploration) 2.06±0.998 0.71
Random (10-step forced exploration) 2.16±0.872 0.73
Random (15-step forced exploration) 2.37±0.633 0.77
A2C-LSTM 0.14±1.847 0.63
PPO2-LSTM 0.26±0.990 0.66
A2C-LayerNorm-LSTM 0.18±0.983 0.62
PPO2-LayerNorm-LSTM 0.74±1.460 0.64

Behavior Cloning
Random 0.22±0.975 0.61
Random (5-step forced exploration) −0.16±0.987 0.58
Random (10-step forced exploration) 0.14±0.990 0.60
Random (15-step forced exploration) 0.04±0.999 0.61
A2C-LSTM 0.10±0.995 0.55
PPO2-LSTM 0.06±0.998 0.63
A2C-LayerNorm-LSTM 0.04±2.087 0.59
PPO2-LayerNorm-LSTM 0.12±0.995 0.68

Table 1: Performance of the imitation learning models with different
pre-training datasets. Reward is on the blicket-quiz task: +1 for
correctly identifying a blicket, and -1 for incorrectly identifying
a blicket. FCA refers to Forced Choice Accuracy, accuracy of the
model in determining if the environment is conjunctive or disjunctive.
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Experimental Design We collect trajectories for behavior
cloning by exploring randomly in the space (an approach
followed by Chen et al. (2021)), as well as with standard
behavior cloning. To do so, we adapt the approach from
Chen et al. (2021) to predict discrete actions in our space
by adding a sigmoid activation to the action predictions and
altering the action prediction loss accordingly. We evaluate the
model using a target reward of 3, corresponding to identifying
all of the blickets correctly, with additional training hyper-
parameters given in the Appendix.

Results Table 1 shows the performance of the decision
transformer and behavior cloning models when applied to
datasets generated by several policies. As we can see, while
expert policies allow for higher rewards using the decision
transformer, allowing the model additional forced exploration
time is the most important factor. This suggests that on their
own, the A2C and PPO2 trained policies do not lead to suf-
ficient exploration for learning a strong model of the reward,
whereas forcing additional exploration (even if it is random)
is much more useful. Notably, standard behavior cloning per-
forms very poorly, as copying actions with the same local
observations under different overhypotheses will likely lead
to incorrect or uninformative actions.

When training the decision transformer model, we found
that in some cases, random (and even the PPO2/A2C trained)
models were unable to explore efficiently, as they entered the
quiz environment too soon. Note that random exploration will
enter the quiz environment after t steps with with probabil-
ity p = 1− 1

2t . Thus, we found it helpful to force the policy
to explore for several steps before allowing it to enter the
quiz environment. While this process helps the decision trans-
former, it negatively affects the performance of the standard
RL models, as shown in Figure 2d.

Large Language Models

Recently large language models (Brown et al., 2020; Chowdh-
ery et al., 2022) trained autoregressively on a large corpus of
text to predict the next token when given a sequence of tokens
have shown promising performance on a wide variety of tasks,
including logical inference, common-sense reasoning and even
causal reasoning (Veitch, Sridhar, & Blei, 2020; X. Wang, Xu,
Tong, Roberts, & Liu, 2021), however have not been applied
to causal overhypothesis tasks. Motivated by these approaches,
we investigate the performance of two such language mod-
els, GPT-3 (Brown et al., 2020) and PaLM (Chowdhery et al.,
2022), on the blicket environment using a purely text-based
interaction with the model in which we provide a prompt to the
model and evaluate its output. This prompt could be freeform,
in which it has no set structure, or it could be few-shot, where it
contains a small number of examples of correct prompt-output
pairs, followed by the test prompt.

As in the experiments with children, there are four con-
ditions: given versus not given hypotheses, and disjunctive
versus conjunctive. In the disjunctive case, one of the three

Condition, Model,
and Input

Blickets Chosen Causal Structure

Given hypotheses,
disjunctive

GPT-3, freeform 1/1 correct, 6 wrong correct
PaLM, freeform 1/1 correct, 1 wrong wrong
PaLM, two-shot 1/1 correct correct

Given hypotheses,
conjunctive

GPT-3, freeform 2/2 correct, 1 wrong correct
PaLM, freeform 2/2 correct correct
PaLM, two-shot 2/2 correct correct

Not given hypothe-
ses, disjunctive

GPT-3, freeform 1/1 correct, 7 wrong —
PaLM, freeform 0/1 correct —
PaLM, two-shot 1/2 correct, 1 wrong —

Not given hypothe-
ses, conjunctive

GPT-3, freeform 2/2 correct, 7 wrong —
PaLM, freeform 2/2 correct —
PaLM, two-shot 1/2 correct, 1 wrong —

Table 2: Results for GPT-3 and PaLM for the four conditions. Bold
font indicates a fully correct answer. For the not given hypotheses
setting, answering the causal structure question is impossible, as
there is not enough information to determine whether the blicket
detectors in the training phase are disjunctive or conjunctive. For
GPT-3, we use the text-davinci-002 model, with temperature 0.7,
maximum length 256, and frequency and presence penalties 0. For
PaLM, we use a temperature of 0 to obtain the greedy, or one-best
decoding. When given the freeform input, the PaLM model output
continues indefinitely, so we take only the first two sentences of the
output.

objects is a blicket. In the conjunctive case, two of the three
objects are blickets. We evaluate how well the models can:
1) identify the blickets and 2) identify whether the causal
structure is disjunctive or conjuctive. For GPT-3, we use the
OpenAI API1.

Freeform Prompt In the freeform prompt, we provide the
model with text that is as similar as possible to what children
receive in the blicket experiment. The only difference is that
we replace the visual components with text descriptions. We
include the exact prompts in the Appendix. The prompt starts
with a description of interacting with a striped blicket machine
and then a dotted blicket machine, each of which has three
unique objects. There are three interaction examples given
per machine, for example “If we put the blue pyramid on the
machine, then it does not light up”. In the given hypotheses
condition, the striped blicket machine is conjunctive and the
dotted blicket machine is disjunctive. In the not given hypothe-
ses condition, there is not enough information to determine
whether the striped and dotted blicket machines are disjunctive
or conjuctive. Thus the given hypotheses condition defines the
space of overhypotheses, whereas the not given hypotheses
condition does not. The prompt then introduces a new blicket
machine, along with examples of interactions with the ma-
chine and whether it lights up or not. Finally we ask the model
which objects are blickets and whether the new machine is

1Available at https://beta.openai.com/overview
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more similar to the striped or dotted machine.

Few-shot Prompt In the few-shot prompt, we structure the
input into two prompt-output demonstrations, one per machine,
containing the same information as in the freeform prompt.
Unlike the information given to children, in the outputs we
explicitly state which objects are blickets. In addition, for
the given hypotheses condition, in the preamble we define the
disjunctive and conjunctive hypotheses: “A striped machine
needs two blickets to make it light up, and a dotted machine
needs one blicket to make it light up”, and in the outputs
we state whether this is more similar to a striped or dotted
machine.

The results are reported in Table 2. We find that when given
hypotheses, GPT-3 and PaLM are almost always able to select
the correct causal structure, but they are not always able to se-
lect the correct blickets. In particular, GPT-3 frequently names
too many objects as blickets, including those associated with
other machines. In contrast, PaLM never identified objects as
blickets that were not one of the three objects in the test task.
In the two-shot setting, PaLM performs best when the space
of overhypotheses is covered perfectly by the two examples
given, as one would expect. However, when this space is not
covered, i.e. in the not given hypothesis setting, PaLM strug-
gles in the two-shot setting because the test example’s causal
structure does not match either of the two given examples.
Adding chain-of-thought reasoning in the PaLM prompt did
not improve results in either setting.

Q-Learning

We also train tabular Q-Learning on the symbolic version of
the blicket environment. We append the full history of previous
observations to the current observation in order to give the
agent memory. The Q-values are initialized to zero. We used
ε-greedy exploration with an exploration probability of 0.1,
and we found the best learning rate was 0.95. Q-learning is
able to learn the task very quickly due to a small search space—
it took an average of 70 episodes and 292 steps for the agent
to converge to maximum reward. However, tabular Q-learning
is incapable of generalizing to new scenarios, so we do not
test Q-Learning agents in the held-out scenarios.

Causal Discovery Baselines

Most deep learning models do not explicitly model the causal
structure of the data. Thus, to explore the performance of exist-
ing causal discovery models on the benchmark, we used the re-
cent Differentiable Causal Discovery from Interventional Data
(DCDI) approach (Brouillard, Lachapelle, Lacoste, Lacoste-
Julien, & Drouin, 2020). We evaluated the model on causal
structure learning for both disjunctive and conjunctive set-
tings. For disjunctive settings, the model achieved a structured
hamming distance (SHD) of 2.3. Noting that the graph has 4
variables and hence 16 possible edges in the graph structure,
the model achieved a SHD ratio of 85%. For the conjunctive
setting, the model achieved a SHD of 2.6, a ratio of 83%.

Discussion & Conclusion

In this work, we looked into evaluating and understanding
how machine learning models learn causal overhypotheses, by
evaluating these models in the blicket environment. In contrast
to existing benchmark tasks, in which there is a fixed causal
structure, this environment focuses on the need for causal
overhypotheses in order to explore effectively to determine the
underlying causal structure. We focused on three categories
of state-of-the-art methods—deep RL, behavior cloning, and
large language models—for tasks in this environment. In
blicket detector experiments, children are able to learn causal
overhypotheses from only a handful of observations and can
apply these overhypotheses to explore effectively for a new
situation (Kosoy et al., 2022). In contrast, our experiments
indicate that state-of-the-art machine learning algorithms have
difficulty learning and using causal overhypotheses for explo-
ration and inference—we saw this in the weak performance
of deep RL algorithms on held-out environments and in the
tendency of decision transformer models to under-explore.
With language models, we provide the same observations that
the children were given in Kosoy et al. (2022), along with a
full set of examples for the new situation (thus removing the
need for exploration). Despite this, language models struggle
when the hypotheses are not given, and are not able to express
uncertainty about the causal structure in that case.

Given that understanding and leveraging causal structure is
essential to developing general intelligence, this work high-
lights an opportunity for improvement in this direction, and
provides a set of concrete benchmark tasks to measure im-
provement. One direction of future work is to build machine
learning models that can better learning causal overhypotheses.
Modular architectures have shown to be helpful in understand-
ing causal hypotheses of the environment (Goyal et al., 2019,
2021; Ke et al., 2021); it would be promising to explore such
models for causal overhypotheses understanding. Another
direction of future work is to improve on exploration in RL
agents by explicitly learning and incorporating causal overhy-
potheses, in order to narrow down the search over possibilities.
Furthermore, an interesting direction is to train models on chil-
dren’s exploration behavior used in solving causal problems,
for instance the trajectories provided by Kosoy et al. (2020).

In the real world, there exist many types of overhpotheses,
as well as conditional probability distributions and it remains
essential future work to extend either the blicket or other RL
environments (such as (Ahmed et al., 2020; Ke et al., 2021))
to include other types of causal overhypotheses. Indeed, with
minor changes, one could extend the blicket environment to
test other kinds of causal overhypotheses, such as inferring
whether systems are stochastic or deterministic, or require
sequential or unordered interventions. This environment also
allows for multiple measures of causal inference, including
interventions and counterfactuals, as well as predictions.
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Appendix

Additional Environment Details

(a) No objects on the detector

(b) One object on the detector, but detector does not light up.

(c) Two objects, triggering the detector

Figure 3: A visualization of some of the possible states of the blicket
environment when rendered in Unity.

A2C and PPO2 Hyperparameters
Table 3 gives the set of hyper-parameters for the PPO2 and
A2C algorithms used in the paper. We use the reference im-
plementations from Stable Baselines (Hill et al., 2018) for
our standard RL models. For model size variants, we use the
standard policy networks available in Hill et al. (2018) with
no additional modification (asides from the hidden dimension,
as specified in the main paper).

Behavior Cloning Hyperparameters
The decision transformer was trained using a batch size of
128, a K-value of 30, embedding dimension of 128, 3 layers,
one head, and dropout of 0.1. For standard behavior cloning,

A2C PPO2
Discount Factor 0.99 0.99

Steps/Update 5 128
Value Function Coefficient 0.25 0.5

Entropy Coefficient 0.01 0.01
Learning Rate 0.0007 0.00025
LR Schedule Constant Constant

Gradient Clipping (Max Norm) 0.5 0.5
GAE Bias/Variance Lambda - 0.95

Table 3: Hyperparameters for A2C and PPO2 RL algorithms.

we use an MLP with a hidden-dimension of 128. The weights
are optimized using ADAM, with a learning rate of 1e−4 and
weight decay of 1e−4. Both models are trained for 10 epochs
using one Nvidia Titan-X Maxwell GPU, which takes less
than one hour, and the best validation set checkpoint is used
for each during test time. Models are evaluated on 100 rollouts
in the environment, and the mean reward is reported.

Language Model Prompts
The prompts we used for GPT-3 and PaLM are based on the
instructions and examples that children are given in (Kosoy et
al., 2022).

Freeform Prompts

We modelled the freeform prompt as closely as possible to
the experiment done with children in (Kosoy et al., 2022).
The main difference is that we replace the visual components
with textual descriptions. The freeform prompt first explains
that blicket machines turn on when objects called blickets are
placed on them. It explains that some objects are blickets and
some are not, and machines need either one, two, or three
blickets placed on it in order to turn on. Next, the prompt
introduces a striped blicket machine and three objects, and
gives three examples of whether the machine lights up or not
when certain objects are placed on it—for example, “If we
put the blue pyramid on the machine, then it does not light
up”. Then the prompt does the same for the dotted blicket
machine and three different objects. Finally, the prompt does
the same for a new blicket machine with three different objects,
and asks which of these objects are blickets, and whether this
new machine works like the striped machine or like the dotted
machine.

We tested the language models in four conditions, each
with its own prompt. The conditions consist of either hypoth-
esis given or not given, combined with either disjunctive or
conjunctive causal structure. The new machine either has a
conjunctive or disjunctive causal structure, depending on what
the condition is. In the conditions where the hypothesis is
given, it is clear from the examples that the striped machine
has a conjunctive causal structure and the dotted machine has
a disjunctive structure. In the conditions where the hypothesis
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is not given, it is not clear from the examples whether the
striped and dotted machines have conjunctive or disjunctive
structure. Thus in the not-given hypothesis conditions, when
the model is asked whether the new machine works like the
striped or dotted machine, the correct response is to be unsure.

Below are the exact freeform prompts for all four conditions;
the same prompts are given to both GPT-3 and PaLM.

• All conditions: A blicket detector is a special kind of
machine, objects that are different colors and shapes either
make the machine turn on or not. If the object is a blicket
and placed on the machine then the machine will turn on.
Sometimes 1, 2 or 3 blickets make the machine turn on.
Our goal is to make the machine turn on and figure out
which shapes make it do so.

Can you tell me which objects are blickets? Does this
checkerboard pattern blicket detector behave like the striped
pattern blicket detector or like the dotted pattern blicket
detector?

• Given hypotheses: First I have a striped pattern blicket
detector, it behaves in the following way: I have 3 objects,
one blue pyramid, one green cube and one orange sphere.
First I put the blue pyramid on the striped pattern blicket
machine and it does not light up. Then I put the orange
sphere on the striped pattern blicket machine and it does not
light up. Then I put the blue pyramid and the orange sphere
on the striped pattern blicket machine and it did light up!
Then I have a dotted pattern blicket detector. I have 3
different objects now, a yellow cylinder, a purple cone, and
a red dome. First I put the purple cone on the dotted pattern
blicket detector and it did light up! Then I put the yellow
cylinder on the dotted pattern blicket detector and it does
not light up. Then I put the yellow cylinder and the purple
cone on the dotted pattern blicket detector and it did light
up!

• Not-given hypotheses: First I have a striped pattern blicket
detector, it behaves in the following way: I have 3 objects,
one blue pyramid, one green cube and one orange sphere.
First I put the blue pyramid on the striped pattern blicket
detector and it does not light up. Then I put the green cube
on the striped pattern blicket detector and it does not light
up. Then I put the blue pyramid and the orange sphere on
the striped pattern blicket detector and it did light up!
Then I have a dotted pattern blicket detector. I have 3
different objects now, a yellow cylinder, a purple cone, and
a red dome. First I put the purple cone on the dotted pattern
blicket detector and it does not light up. Then I put the
yellow cylinder on the dotted pattern blicket detector and
it does not light up. Then I put the red half dome and the
purple cone on the dotted pattern blicket detector and it did
light up!

• Disjunctive: Then I have a checkerboard pattern blicket
detector. I have 3 new objects, a teal prism, a pink frustum
and a brown torus. This machine could work like the dotted
patterned blicket detector or it could work like the striped
pattern blicket detector. First I put the brown torus on the
checkerboard pattern blicket detector and it does light up!
Then I put the pink frustum on the checkerboard pattern
blicket detector and it does not light up. Then I put the teal
prism on the checkerboard pattern blicket detector and it
does not light up. Then I put the brown torus and the pink
frustum on the checkerboard pattern blicket detector and it
did light up! Then I put the teal prism and the brown torus
on the checkerboard pattern blicket detector and it did light
up! Then I put the teal prism and the pink frustum and the
brown torus on the checkerboard pattern blicket detector
and it did light up! Then I put the pink frustum and the teal
prism on the checkerboard pattern blicket detector and it
does not light up.

• Conjunctive: Then I have a checkerboard pattern blicket
detector. I have 3 new objects, a teal prism, a pink frustum
and a brown torus. This machine could work like the dotted
patterned blicket detector or it could work like the striped
pattern blicket detector. First I put the brown torus on the
checkerboard pattern blicket detector and it does not light
up. Then I put the pink frustum and the brown torus on the
checkerboard pattern blicket detector and it does not light
up. Then I put the teal prism on the checkerboard pattern
blicket detector and it does not light up. Then I put the
teal prism and the pink frustum on the checkerboard pattern
blicket detector and it does not light up. Then I put the
pink frustum on the checkerboard pattern blicket detector
and it does not light up. Then I put the teal prism and the
brown torus on the checkerboard pattern blicket detector
and it does light up! Then I put the teal prism and the pink
frustum and the brown torus on the checkerboard pattern
blicket detector and it did light up!

Below are the outputs that GPT-3 produces for each of the
conditions, at three differnet settings for temperature, 0, 1 and
0.7:

• Temperature = 0.7, Given hypothesis, disjunctive: The
objects that are blickets are the blue pyramid, the orange
sphere, the purple cone, the yellow cylinder, the brown
torus, the pink frustum and the teal prism. This checker-
board pattern blicket detector behaves like the dotted pattern
blicket detector.

• Temperature = 0.7, Given hypothesis, conjunctive: The
objects that are blickets are the teal prism, the pink frustum
and the brown torus. This checkerboard pattern blicket
detector behaves like the striped pattern blicket detector.

• Temperature = 0.7, Not-given hypothesis, disjunctive:
The objects that are blickets are the blue pyramid, the or-
ange sphere, the yellow cylinder, the purple cone, the red
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dome, the teal prism, the pink frustum, and the brown torus.
This checkerboard pattern blicket detector behaves like the
striped pattern blicket detector.

• Temperature = 0.7, Not-given hypothesis, conjunctive:
The objects that are blickets are the blue pyramid, the green
cube, the orange sphere, the yellow cylinder, the purple
cone, the red dome, the teal prism, the pink frustum, and
the brown torus. This checkerboard pattern blicket detector
behaves like the dotted pattern blicket detector.

• Temperature = 0, Given hypothesis, disjunctive: The
objects that are blickets are the blue pyramid, the orange
sphere, the purple cone, the yellow cylinder, the brown torus,
the pink frustum and the teal prism. The checkerboard pat-
tern blicket detector behaves like the striped pattern blicket
detector.

• Temperature = 0, Given hypothesis, conjunctive: The
objects that are blickets are the blue pyramid, the orange
sphere, the purple cone, the yellow cylinder, the teal prism,
the pink frustum and the brown torus. The checkerboard pat-
tern blicket detector behaves like the striped pattern blicket
detector.

• Temperature = 0, Not-given hypothesis, disjunctive: The
objects that are blickets are the blue pyramid, the orange
sphere, the purple cone, the yellow cylinder, the brown torus,
the pink frustum and the teal prism. The checkerboard pat-
tern blicket detector behaves like the striped pattern blicket
detector.

• Temperature = 0, Not-given hypothesis, conjunctive:
The objects that are blickets are the blue pyramid, the or-
ange sphere, the yellow cylinder, the purple cone, the red
dome, the teal prism, the pink frustum, and the brown torus.
This checkerboard pattern blicket detector behaves like the
striped pattern blicket detector.

• Temperature = 1, Given hypothesis, disjunctive: The
checkerboard pattern blicket detector behaves like the dotted
pattern blicket detector.

• Temperature = 1, Given hypothesis, conjunctive: From
the data, it seems that the checkerboard pattern blicket de-
tector behaves like the dotted pattern blicket detector. This
is because in order for the machine to turn on, two blickets
are needed.

• Temperature = 1, Not-given hypothesis, disjunctive: The
objects that are blickets are the blue pyramid, the orange
sphere, the purple cone, the red dome, the brown torus, the
pink frustum, and the teal prism. This checkerboard pat-
tern blicket detector behaves like the striped pattern blicket
detector.

• Temperature = 1, Not-given hypothesis, conjunctive: The
objects that are blickets are the blue pyramid, the orange

sphere, the purple cone, the yellow cylinder, the teal prism,
the pink frustum and the brown torus. The checkerboard pat-
tern blicket detector behaves like the striped pattern blicket
detector.

Below are the outputs that PaLM produces for each of the
conditions. We only take into account the first two sentences
of the output when evaluating the model’s performance.

• Given hypothesis, disjunctive: The answer is that the
checkerboard pattern blicket detector behaves like the
striped pattern blicket detector. The blickets are the brown
torus and the pink frustum. The reason why the checker-
board pattern blicket detector behaves like the striped pat-
tern blicket detector is because the machine only turns on
when the brown torus and the pink frustum are on the ma-
chine. The machine does not turn on when the brown torus
and the teal prism are on the machine. The machine does
not turn on when the pink frustum and the teal prism are on
the machine. The machine does not turn on...

• Given hypothesis, conjunctive: The checkerboard pat-
tern blicket detector behaves like the striped pattern blicket
detector. The blickets are the teal prism and the brown
torus. The checkerboard pattern blicket detector behaves
like the dotted pattern blicket detector. The blickets are the
teal prism and the brown torus. The checkerboard pattern
blicket detector behaves like the striped pattern blicket de-
tector. The blickets are the teal prism and the pink frustum.
The checkerboard pattern blicket detector behaves like the
dotted pattern blicket detector. The blickets are the...

• Not-given hypothesis, disjunctive: This is a very difficult
problem. It is not possible to figure out which objects are
blickets and which are not. It is not possible to figure out
how the checkerboard pattern blicket detector works. This is
a very difficult problem. It is not possible to figure out which
objects are blickets and which are not. It is not possible
to figure out how the checkerboard pattern blicket detector
works. This is a very difficult problem. It is not possible to
figure out which objects are blickets and which are not. It
is not possible to figure out how the checkerboard...

• Not-given hypothesis, conjunctive: The checkerboard pat-
tern blicket detector behaves like the striped pattern blicket
detector. The blickets are the teal prism and the brown
torus. The checkerboard pattern blicket detector behaves
like the dotted pattern blicket detector. The blickets are the
teal prism and the brown torus. The checkerboard pattern
blicket detector behaves like the striped pattern blicket de-
tector. The blickets are the teal prism and the pink frustum.
The checkerboard pattern blicket detector behaves like the
dotted pattern blicket detector. The blickets are the...

Few-Shot Prompts

The few-shot prompts consist of a preface, two input-output
examples, and a new input (that the model is must provide
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the corresponding output for). The input describes the three
objects and three examples of whether the machine lights up
or not when certain combinations of objects are placed on it.
The output specifies which of the three objects are blickets,
and whether the machine is like the striped or dotted machine.

Below are the exact texts of the few-shot prompts that we
used as inputs to the PaLM model.

• All conditions: If we put objects on the machine, then it
will either light up or not. Some objects are blickets, and
others are not. A striped machine needs two blickets to
make it light up, and a dotted machine needs one blicket to
make it light up. Please identify which objects are blickets
and whether the machine behaves like the striped machine
or the dotted machine.
<insert given/not-given hypothesis portion>

<insert disjunctive/conjunctive portion>

• Given hypotheses:
Input: There is a blue pyramid, a green cube, and an orange
sphere. If we put the blue pyramid on the machine, then it
does not light up. If we put the orange sphere on the ma-
chine, then it does not light up. If we put the blue pyramid
and the orange sphere on the machine, then it does light up.
Output: The blue pyramid and orange sphere are blickets.
This machine behaves like the striped machine.
Input: There is a yellow cylinder, a purple cone, and a red
dome. If we put the purple cone on the machine, then it
does light up. If we put the yellow cylinder on the machine,
then it does not light up. If we put the yellow cylinder and
the purple cone on the machine, then it does light up.
Output: The purple cone is a blicket. This machine behaves
like the dotted machine.

• Not-given hypotheses:
Input: There is a blue pyramid, a green cube, and an orange
sphere. If we put the blue pyramid on the machine, then it
does not light up. If we put the green cube on the machine,
then it does not light up. If we put the blue pyramid and the
orange sphere on the machine, then it does light up.
Output: The orange sphere is a blicket, and the blue pyramid
is maybe a blicket.
Input: There is a yellow cylinder, a purple cone, and a red
dome. If we put the purple cone on the machine, then it
does light up. If we put the yellow cylinder on the machine,
then it does not light up. If we put the red dome and the
purple cone on the machine, then it does light up.
Output: The red dome is a blicket and the purple cone is
maybe a blicket.

• Disjunctive:
There is a teal prism, a pink frustum, and a brown torus. If
we put the brown torus on the machine, then it does light
up. If we put the pink frustum and the brown torus on the

machine, then it does light up. If we put the teal prism on
the machine, then it does not light up. If we put the teal
prism and the pink frustum on the machine, then it does not
light up. If we put the pink frustum on the machine, then
it does not light up. If we put the teal prism and the brown
torus on the machine, then it does light up. If we put the
teal prism and the pink frustum and the brown torus on the
machine, then it does light up.
Output:

• Conjunctive:
Input: There is a teal prism, a pink frustum, and a brown
torus. If we put the brown torus on the machine, then it
does not light up. If we put the pink frustum and the brown
torus on the machine, then it does not light up. If we put
the teal prism on the machine, then it does not light up. If
we put the teal prism and the pink frustum on the machine,
then it does not light up. If we put the pink frustum on the
machine, then it does not light up. If we put the teal prism
and the brown torus on the machine, then it does light up.
If we put the teal prism and the pink frustum and the brown
torus on the machine, then it does light up.
Output:

Below are the outputs that PaLM produces for each of the
conditions:

• Given hypothesis, disjunctive: The brown torus is a
blicket. This machine behaves like the dotted machine.

• Given hypothesis, conjunctive: The teal prism and brown
torus are blickets. This machine behaves like the striped
machine.

• Not-given hypothesis, disjunctive: The brown torus is a
blicket, and the pink frustum is maybe a blicket.

• Not-given hypothesis, conjunctive: The teal prism is a
blicket, and the pink frustum is maybe a blicket.
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