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Control of Multiple Service, Multiple
Resource Communication Networks

Scott Jordan, Member, IEEE, and Pravin P. Varaiya, Fellow, IEEE

Abstract— The merging of telephone and computer networks
is introducing multiple resources into networks, and information
is becoming increasingly distributed across the network. Related
services are being integrated onto a single network rather than
being offered on separate uncoordinated networks. In this paper,
we focus upon communication networks that integrate multiple
services using multiple resources.

In particular, we look at the decision of whether to accept or
deny service requests in such a system. We prove a conjecture
for the optimal policy for a related system introduced in [7]
and characterize the optimal coordinate convex policy for our
multiple service, multiple resource system.

I. INTRODUCTION

N THIS PAPER, we focus upon communication networks

that integrate multiple services using multiple resources.
We investigate resource allocation strategies and try to capture
the nature of controlling such a system. In particular, we
prove a conjecture from [7] and then characterize the optimal
coordinate convex policy for our multiple service, multiple
resource model.

This work is motivated by several trends in networks. The
merging of telephone and computer networks is introducing
multiple resources into networks, and in formation is becoming
increasingly distributed across the network. Related services
are being integrated onto a single network rather than being
offered on separate uncoordinated networks.

These trends are made possible by the availability of fiber
and of inexpensive electronic storage, and by the introduction
of greater intelligence into the signaling system. Furthermore,
these trends are made profitable by the proliferation of desktop
computers and the increased demand for better information
transfer.

Proposals for implementing services in these multiple ser-
vice, multiple resource (MSMR) networks abound. A few
examples of these services might be electronic/voice mail,
mixed media telephone calls, video conferencing, distributed
databases, hypertext systems, electronic catalogues, electronic
yellow pages, and collaborative editors.
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Our premise is that each service relies upon a number
of underlying resources in the network. Examples of these
resources might be communication links, databases, switches,
storage devices, special purpose hardware and software. Al-
though the precise meaning of “service” and “resource” and
the relationship between them is a topic for future research,
we assume in this paper that we have identified each service
and the set of resources on which it depends.

Integrated services will share resources both for function-
ality and to decrease cost. Since these resources are limited,
there will be interaction among the services. What types of
interaction might we see? If you are the manager of a multiple
service, multiple resource system, what requests for service
do you accept? Based on what? If you base these decisons on
maximizing revenue, what prices do you charge? And what
resources should you acquire? The purpose of this research
effort is to address such resource allocation problems.

In [8], we investigated the nature of this interaction. In this
paper, we investigate the nature of controlling this type of
system.

Considerable effort has been put into understanding related
but simpler multiple service, single resource (MSSR) systems.
In [1], Aein constructs a Markov chain model and states
the resulting product form stationary distribution. Kaufman
[10] shows that this product form holds under more general
assumptions, including general service distributions. Foschini
et al. [6] characterizes the optimal control policy among a
wide class of policies for a two-service type one-resource
type system. Ross and Tsang [24] extend this characterization
for two-service type one-resource type systems to nonunit
resource usage and to different arrival types. Ross and Yao
[26] and Nain [20] investigate the effect of increasing traffic
intensity upon throughput.

Some effort has also been applied to MSMR systems.
In [14], [15], Kelly uses a MSMR framework to describe
a circuit-switched network. He introduces the framework,
states the stationary distribution, and obtains results relating
to blocking probabilities, optimization and shadow prices by
approximating the system as a collection of MSSR systems. In
[4], Burman et al. obtain an insensitivity result for the station-
ary distribution of a MSMR system. Virtamo [28] displays a
reciprocity relation in the sensitivity of blocking probabilities
to traffic intensity. Numerical aspects are investigated in [5],
[16], [19], [23], [25], [31], [33].

In addition, the MSMR system considered here is similar to
some queueing systems. Foschini and Gopinath [7] investigate
control policies to maximize throughput or minimize blocking
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probabilities in a MSSR queueing system. Souza e Silva
and Muntz [27] display sensitivity results for product form
queueing systems,

In [8], we investigated the MSMR model for the simplest
discipline: a request is granted if the necessary resources are
available; otherwise it is rejected. In this paper, we consider
strategies that may not accept all requests when the necessary
resources are available, but may instead hold out for high
paying requests. Section II displays the model originally
presented in [8], and discusses classes of control policies.
Section III introduces concepts relating to sets of states. In
Section IV, we digress to a similar problem considered in [7]
and prove a conjecture from that paper. Section V characterizes
the optimal policy for our original problem and provides a few
examples. In Section VI, we contrast this approach to the more
general dynamic programming approach.

II. THE MODEL

Consider the following model for resource allocation in un-
controlled multiple service, multiple resource (MSMR) com-
munication networks.

Model: Consider a system that offers n types of services.
Each service requires a set of resources (dependent upon
the service type) to process. If these resources are available
then the system manager accepts a service request, and then
processing starts immediately; if the necessary resources are
unavailable then the request is lost to the system. (In later
sections, we will allow the system manager to deny a service
request even if the necessary resources are available.)

Service requests arrive as independent Poisson processes.
Each request occupies each resource that it needs for the same
amount of time, and releases these resources simultaneously
upon service completion. This amount of time is exponentially
distributed, and independent of other service times.

We model this system as a Markov chain. Adopt the
following notation.

A = am x n matrix, with column 7 indicating the number
of each of m resources used by service i.

b = a vector of length m indicating the number of each
resource type in the system.

A= (A, /\,;), the rates of incoming service requests.

= (1, -, in), the rates of service.

P = (p1,- -, pn), the loads, given by p; = \;/p;.

L = (L1,---,Ly), the rates of accepted service requests
(throughput).

x = (%1, -*,Zn), the state of the system where z; =

number of type 4 requests being processed.

Z = {x| Az < b, ie., z can be simultaneously processed
with available resources}.

Fi={z|zeZbut (z1,---,2;+1,--,2,) & Z}, the
full set w.r.t. service type i.

Ei={z|zeZbut (z1,- 2, —1,--,z,) & Z}, the
empty set w.r.t. service type i.

n{z), the steady-state probabilities.

Our assumptions regarding the arrival and departure pro-
cesses gives us a Markov chain on state space Z with transition
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Fig. 1. The state space Z for a two service type, three resource type system.

rates:

)‘i7 lfl‘%E andyz(xl;"'1$i+1,"'axn)
Tipi, fz € By and y = (21, , 2, — 1, -+, 3p)
0, else.

Tey =

Assume that service completion is never blocked. This
implies that the state space Z is coordinate convex, i.e., if
z € Z and z; > 1, then (21, -+, 2; — 1,---,3,) € Z.

The Markov chain is time reversible with well-known
product form stationary distribution [4], [5]:

n ?’i 1
m(z) = o(0) T2 0)=— . (1)
;l;[lml' EweZH?:l%T!

As an example, consider a system that accepts only two
types of service requests: type 1 requires one of resource A
and one of resource B, and service type 2 requires one of
resource B and one of resource C. If there are 5 A’s in the
system, 6 B’s, and 4 C’s, the state space Z would be as
pictured in Fig. 1.

This model is discussed in more detail in [8].

A. Performance Measures

We now assume that the system manager can choose to
deny a service request even if the corresponding resources are
available. Why might she do this? Since resources are limited,
accepting a request of one type may preclude the possibility
of accepting a request of another type in the near future.
Two measures are often used in resource allocation problems:
throughput and blocking probability, see e.g., [6]. Fortunately,
in our model, the two are equivalent for the purposes of control
since they are linearly related by

L; = \i[1 - P(Fy)).

This suggests two measure of optimality:

1) min}",c; P(F;)

2) maxy ;r;L;

where the {¢;} and {r;} are costs and revenues correspond-
ingly.

Although the two measures are equivalent through appro-
priate choice of {c;} and {r;}, we find that they encourage
different views of the system. Concentrating on blocking
probability steers one to focus upon the effect of allowing or
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(a) Complete Sharing

(d) Coordinate Convex

(b) Complete Partitioning

(c) Trunk Reservation

(e) Dynamic Programming

Fig. 2. Classes of control policies. (a) Complete sharing. (b) Complete partitioning. (c) Trunk reservation. (d) Coordinate convex. (¢) Dynamic programming.

disallowing transitions in order to form desirable F; sets. On
the other hand, concentrating on throughput steers one to focus
upon the value of states, or sets of states, toward the objective.
This leads us to the next question: What do we know?

B. Information: Classes of Control Policies

On what information do you base your decision to accept or
deny a service request? This depends both on what information
you have available and on how much of that you choose to
use. The first factor, availability, brings up monitoring and
distributed system questions, all of which we are going to
duck by assuming a full state information centralized control
mechanism. The second factor affects the complexity of the
control. The more information we use, the tougher the control
policy is to implement. But closer to a personal point, the more
information we use, the tougher it is to characterize any form
of an optimal policy.

To help illustrate some possibilities, consider the simplest
MSMR system with sharing: one with two services and one
resource type. This system, if uncontrolled, has a triangular
state space as pictured in Fig. 2(a).

The simplest type of control, namely no control at all, is
to share the resource completely between the two services
[Fig. 2(a)]. This requires no information. The opposite strategy
is to completely partition the resources between the two
services [Fig. 2(b)]. This is equivalent to restricting the state
to some rectangular subset of the original triangular space,
and requires only separate knowledge of the number of each
service currently in the system.

A popular control class in telephone networks is trunk
reservation [Fig. 2(c)]. In this type of policy, all arrivals
of one type are accepted, but arrivals of the other type are

accepted only if there are at least some minimum number of
idle resources. This requires combined state information, but
bases control on only one parameter, the minimum number of
idle resources.

A more general class of policies than complete sharing or
complete partitioning is coordinate convex (c.c.) policies [Fig.
2(d)]. In this class, admission decisions depend on the state the
system would enter if the request is granted. This is equivalent
to restricting the state to some subset of the original space.
Since service completion can not be realistically blocked,
this subset, like the original state space, must be coordinate
convex. This class includes the complete sharing and complete
partitioning classes as subsets and also allows for policies that
reserve some resources for each service type and share the rest.

The most general class of policies base decisions not only
upon what state admission would place the system in, but
also upon what type of service is requested [Fig. 2(e)]. This
corresponds to allowing or disallowing each upward transition
in the Markov chain, and includes all of the above classes as
special cases. The only approach we are aware of that lends
insight into when to disallow individual transitions, however,
is dynamic programming, see, e.g., [23]. Although this is a
useful numerical technique, little ground has been made toward
characterizing optimal policies.

We therefore back off to coordinate convex policies. This
class has the nice property that the model of the controlled
system is the restriction of the uncontrolled time reversible
Markov chain to a subset, and is thus itself time reversible,
maintaining its nice product form stationary distribution. Co-
ordinate convex policies have thus been a popular class of
control policies, see e.g., [6], [24].

Having chosen this class of policies, we return to the
question of the previous section: what performance measure do
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we use? Since c.c. policies can be represented by a set of states,
we choose the approach that lends itself to focusing upon states
rather than transitions. The following notation helps:

r; = revenue generated by servicing request type 7, per unit
of time.

r(z) = rate of revenue generated while in state z, namely
2 Tl

R = Er(X) = r(EX)

= the average revenue per time unit generated by the

system.

Our objective is then to choose the c.c. subset Z* C Z, that
maximizes E[r(X) | X € Z*].

III. SET OF STATES

To talk about sets of states it is helpful to introduce some
constructs that relate sets to each other:

Evr(z) = E[r(X)| X € V]where VC Z
V is annexable to Z iff VNZ =Q3&V U Z is c.c.
V is removable from Z iff V C Z&Z — V is c.c.

Annexable and removable sets were introduced by Fos-
chini in [6], [7], initially as “incrementally admissible” and
“incrementally removable” sets.

Since the Markov chain is time-reversible, the removal of a
set V from Z affects the distribution on Z — V only through
the normalization constant 7 (0). Therefore, Ey r(z) does not
depend on the policy Z*. Furthermore, the removal of V from
Z increases the average revenue on Z only if Eyr(z) < R.
We can therefore characterize an optimal c.c. policy as a subset
of Z to which nothing above average can be added and nothing
below average removed [6], i.e.,

A c.c. set Z* C Z is optimal iff:

AV C Z 5V is annexable to Z* & Eyr(z) > R*
AV 3V is removable from Z* & Evr(z) < R*
where R* = Ez-r(X).

Partition Z into those states generating an above average
rate of revenue, Z* = {z | v € Z & r(z) > R} and those
generating a below average rate of revenue, Z~ ={z |z € Z
& r(z) < R}. Our control problem is to keep states in Z+
and get rid of states in Z~ such the remaining set is c.c. and
generates the highest possible average rate of revenue.

Define the supporting set of V' to be the minimum set
required to make V' c.c., namely,

ss(V)={z¢V|0<z <u Vi for some v € V'}.

Consider a c.c. set Z C Z. . R
Certainly we should remove from Z any states in Z~ that
do not support states in Z, namely,

junk(Z2) = 2~ —ss(27F)

since junk(Z) is removable from Z and since junk(Z)
generates a beloxy average rate of revenue, namely,
Ejunk (4)7(X) < R where R = ?Z*T(X).

Similarly, we should annex to Z any above average states
in Z that are supported by Z, namely,

free (Z) = largest set V C Z such that:

X4

r(x) = R 2

X3

X2
Fig. 3. The state space Z and the plane r(z) = R.

junk(2)

3

X2
Fig. 4. Junk(Z).

r(z) > R

Ve eV
&VNZ=02

&ss(V)C Z

since free (Z) is annexable to Z and Efree(yr(X) > R

To help picture what these sets may loof( like, consider
a system with three service types and one resource type, as
pictured in Fig. 3.

Junk (Z) is then those states in Z~ that we can remove
without removing any states in Z7, pictured as the set of states
above the shaded triangle in Fig. 4. To see how we might use
these constructs, we digress to a similar problem.
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{@) Inthe original state space

(b) Cross sections displaying variation of r(x)

Fig. 5. The rate of revenue earned in each state v(z). (a) In the original
state space. (b) Cross-sections displaying variation of r(z).

IV. A MSSR QUEUING SYSTEM

Consider a system that can accept n service types but
that can only work on one request of each type at a time.
Assume the remainder of requests are accepted into the system
and queued in a shared buffer if buffer space exists, and
blocked if the buffer is full. Assume that each request queued
occupies one slot in the shared buffer. Foschini and Gopinath
[7] considered the problem of maximizing revenue in such
a system and conjectured that the optimal coordinate convex
policy is to limit sums of the number of each type in the
system. We prove this conjecture here.

For a buffer with C slots, the state space would be

Z= {z Z:x,-gc}.

The transitions rates in this Markov chain are

Ai, fx g Fyand y = (x1,-+-,zi +1,- -+, 2,)
pi, fe g F;and y = (z1,---,2: — 1,- -+, Zp)
0, else.

Toy =
The stationary distribution is product form [7]:

n
1

m(z) = 7(0 T 7(0) = =—=7—5-

(z) = m( )gp, (0) I Y Y

The stationary distribution is time reversible, and hence
coordinate convex control policies correspond to subsets of the
state space with time reversible product form distributions, as
in the MSMR model. For a system with three types of requests,
r(z) is pictured in Fig. 5(a), with darker shading representing
higher r(z). Cross sections are shown in Fig. 5(b) to help
visualize the effect of placing restrictions upon the system.
Let N be the set of all service types {1,---,n}.

Theorem 1: There exist a set of constants! such that the
optimal coordinate convex policy Z* for the MSSR queueing
system given above, can be represented as:

g Z* iff z¢€Z or

E:ci >c¢r forsome I C N. ?)
igl

!For the remainder of this paper, I C N is understood to exclude the case
I=a.
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or equivalently

reZ* iff reZ and

in <e¢r foral ICN.
i€

This form was called “simple” by Foschini and Gopinath.
Sketch of Proof: Define a projection function:

JEI
0, jelI

z 1 I=(y;), yj:{xj, for I C N.

An alternate representation to (2) is then

zeZ* iff r€Z and z1I€G} foralll,

where Gi=(«z

Y wi<ery. 3)

gl
The proof proceeds by showing the following.

1) Z* must contain all states in the interior of Z (z; >
0 Vi) that can be supported by Z*, since these states
are in free (Z*). This reduces the problem of finding Z*
to that of finding sets Gy, with Z* given by x € Z* iff
re€ZadzT1€eGr VI

2) The optimal G} must be of the linear form of (3). This

reduced the problem of finding Z* to that of finding the
constants {cy}.
The full proof is presented in the Appendix.

This form for the optimal policy is very nice. Knowing that
we can just look among policies that limit sums of services and
that an optimal policy can be described by the set of constants
{cr} is powerful information. For example, consider a two
service type, one resource type queueing system. Theorem 1
guarantees that the optimal c.c. policy can be described by

z*={z|z€Z, z1<c, z2<c2}

for some constants c¢; and cs.
The question arises: is something similar true for the original
MSMR model?

V. A BLOCKING MSMR SYSTEM

A. The Optimal Coordinate Convex Policy

We first present a characterization of the optimal c.c. policy,
and in the later sections get at what this means.

Theorem 2 : There exist a set of constants {c¥, I ¢ N} and
a set of constants {a; x, 7} such that the optimal coordinate
convex policy Z* for the MSMR model presented in Section
II, can be represented as:

zgZ* iff x¢Z or Fk>
Za'z’,k, T > c’} forall I C N. ()]
igl
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Fig. 6. A MSSR system with a nonconvex optimal c.c. policy.

Sketch of Proof: The form of (4) is similar to that in
Theorem 1 (2), except for two changes:

1) aremoval of a set V from Z may now be characterized
by the union of a set of inequalities rather than by a
single inequality, due to lack of guaranteed convexity of
Z*. The k in (4) is used to label the set;

2) coefficients « are introduced to accommodate resource

usage in quantities other than 1. .
The proof proceeds by showing that if Z* cannot be

expressed in the claimed form, then there exists a set annexable
to Z* with average revenue greater than R*, namely free (Z*),
or that there exists a set removable from Z* with average
revenue less than R*, namely junk(Z*).

The full proof is presented in the Appendix.

B. Commentary

Theorem 2 is a weaker characterization of the optimal policy
than Theorem 1. This is due to a loss of guaranteed convexity
of Z*. To illustrate this, consider a system with two services
and one resource type. Suppose service #1 requires two of
the common resource, service #2 requires 3 and there are six
resources in the system (Fig. 6).

Assume r; = 2, ro = 3, and that the load is very high.
Then state (1, 1) generates a rate of revenue r(z) = 5. The
overall rate of revenue, however, is R = 6, since almost
all the probability is in states (0, 2) and (3, 0). Thus, the
optimal control policy would exclude state (1, 1), namely,
Z* = Z —{(1, 1)}. Note that Z* is not convex. The problem
stems from resource usage in noninteger multiples.

If we restrict ourselves to convex policies, we can state a
stronger characterization.

Corollary 1: There exist a set of constants {c;, I C N}
and a set of constants {o; r} such that the optimal convex
coordinate convex policy Z* for the MSMR model presented
in Section II, can be represented as

z@gZ" iff x€Z or
Zai, 1T > cr forsome ICN 5)
igl
or equivalently
zeZ* iff z€Z and
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(a) without controi

(b) optimal coordinate convex policy

Fig. 7. A MSSR example. (a) Without control. (b) Optimal coordinate
convex policy.

forall I CN.

Zai, 1z < cf

igl
For a two service one resource type system, Corollary 1
guarantees that the optimal convex c.c. policy can be described

by

Z*={z|z € Z, 72 < c2}. ©)

Convexity of Z* holds for a few special MSSR systems.

First, if two services use a single common resource type, it
has been shown that the optimal c.c. policy consists of a single
threshold [24]. Second, if two services each share a common
resource type and both

1 < C1,

# resources in system
# resources used by service 2

and
# resources used by service 2
# resources used by service 1

are integers, it has been shown that the optimal c.c. policy
consists of at most two thresholds as in (6) [24].

We will consider MSSR systems with greater than 2 services
in a forthcoming paper [9].

C. Examples

Two examples are provided in this section.

First consider a MSSR system with three service types and
one resource type, with each service requiring one of four
available resources. The feasible state space Z is shown in
Fig. 7(a). Assume that each service type has a load of 0.75,
but that they pay differently, specifically that r; = 1, rp, = 2,
and r3 = 10. Without any control, the system generates an
average revenue of 8.56; the corresponding r(z) = R plane is
indicated by a dark band in Fig. 7(a).

The optimal coordinate convex policy, shown in Fig. 7(b),
does not allow transitions to any state with z; > 1, or to states
(1, 3, 0) and (0, 4, 0). It can be described by

Z*={z|zxe€eZ =z <1, z1+z2<3}

and achieves a rate of revenue of 8.67.
In general, improvements to any policy are made by cutting
off as much of the Z~ portion of the state space, and as little
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(a) without control (b) optimal coordinate convex policy

Fig. 8. A MSMR example. (a) Without control. (b) Optimal coordinate
convex policy.

of the Z* portion, as possible without violating coordinate
convexity. In this particular example, it is simple to conclude
that eliminating state (4, 0, 0) is worthwhile, since it is in
Z~[r(4,0,0) = 4 < 8.56] and since eliminating it does
not violate coordinate convexity. It is also worth cutting off
the entire third and second tiers, since here the Z~ portion
outweights the Zt portion. However, at ; = 1, the Zt
portion now outweighs the Z~ portion. Similarly, cuts are
worthwhile starting in from the (0, 4, 0) corner [r(0, 4, 0) =
8 < 8.56), in a slanted direction. The restriction of the state
space increases the percentage of time that the system is close
to the (0, 0, 4) corner, where it earns the highest rate of
revenue [r(0, 0, 4) = 40].

If the load were to increase, then the optimal coordinate
convex policy would be constricted even more from that
shown in Fig. 7(b). The 7(z) = R plane passes through the
point EX, and has normal vector (r1,---,7,). Therefore, as
the load increases, £X moves outward from the origin, the
r(x) = R plane moves outward from the origin, and more of
the state space moves into Z . This means that deeper cuts
become worthwhile.

As a second example, consider a MSMR system with three
service types, and three types of resources. Assume that service
type 1 requires one of resource type A and one of type B,
service type 2 requires one of resource type A and one of
type C, and service type 3 requires one of resource type B
and one of type C'. Assume that there are 4 resources of type
A, 4 of type B, and 6 of type C in the system. The state
space of this example is shown in Fig. 8(a). Assume that each
service type has a load of 2, but that they pay differently,
specifically that 7y = 1, ro = 1, and 73 = 5. Without any
control, the system generates a average revenue of 9.86; the
corresponding 7(z) = R plane is shown in Fig. 8(a).

As in the first example, the optimal coordinate convex policy
cuts off portions of the state space near the relatively low pay-
ing corners (4, 0, 0) and (0, 4, 0) [7(4, 0, 0) = r(0, 4, 0) =
4 < 9.86]. This policy is shown in Fig. 8(b). It can be described
by

Zr={z|z€Z x1<1, z3<3}

and generates a rate of revenue of 10.44.
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it ) —{

() p=(0.5,0.5,0.5) r=(1,2,8) RDW'3'057 Hccn.’l. 128 Rpp=3.130

Fig. 9. Comparison of dynamic programming and coordinate convex
solutions. (a) p = (0.7, 0.7, 0.7)r = (1, 4, 8) Rorig = Roc = 4.848
Rpp = 4852. ®) p = (1,1,1) r = (1,4, 8)Rorig = 5.367
Rce = 5.371 Rpp = 5.379. (c) p = (0.5,0.5,0.5) r = (1,2,8)

Rorig = 3.057 Roc = 3.128 Rpp = 3.130.

V1. COMPARISON TO DYNAMIC PROGRAMMING

We know, from an example presented by Ross and Tsang
[24], that the optimal coordinate convex policy, which restricts
the state space, sometimes produces a solution inferior to
the optimal policy, found using dynamic programming, in
a class of policies that restrict individual transitions-of the
Markov chain. In this section, we briefly compare these two
different approaches using a few variations on Ross and
Tsang’s example.

Consider a MSSR system with 10 identical resources that
accepts three types of requests. These service requests, if
accepted, occupy 1, 4, and 8 resources, respectively. The state
space is shown in each of Fig. 9(a)-(c). Detailed below each
figure are the loads presented by each service type, and the
rates of revenue paid by each. The optimal policy, found
by dynamic programming, is indicated by arrows showing
allowed arrivals. The optimal coordinate convex policy is
given by the state space from the origin up to striped bars, if
any. The resulting average rates of revenue for the uncontrolled
(R), coordinate convex (Rcc), and dynamic programming
(Rpp) solutions are shown below each figure.

It is evident that the two types of control can give very
different solutions. The dynamic programming technique tends
to break links one at a time, as the load increases, until the
state space becomes reducible. The coordinate convex policy,
unable to exercise this type of fine control, generates this
reduced state space at a load lower than that at which the
dynamic programming solution reduces, but higher than that
at which the dynamic programming solution starts to deny
arrivals out of the subset.
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It seems, however, that the two solutions, although some-
times very different, generate average rates of revenue that are
not very different. Since the dynamic programming technique
quickly becomes burdensome to calculate as the size of the
state space increases, it may be valuable to write an algorithm
to find the optimal coordinate convex policy, or a close
approximation to that policy.

VII. PARTING THOUGHTS

We have considered the decision of whether to accept or
deny service requests in a multiple service, multiple resource
system. We have been able to strongly characterize the optimal
policy for a simpler but related queueing system, and weakly
characterize the optimal policy for our MSMR system, by
restricting ourselves to policies that base this decision only on
the state the system would enter if the request were granted.

These characterizations simplify the task of finding and
describing the optimal policy and may provide the basis for
more reasonable algorithms than have yet been devised.

Future work will address the descriptive gap between the
two characterizations presented here, and the lack of com-
putationally feasible approaches to designing management
strategies for particular MSMR systems.

APPENDIX
PROOFS

A. Theorem 1

Define the marginal expectation of X;, conditioned on a
maximum value

where

fi(z) =[] ¥
=1
and define a cross section:
Coet={yeZ|yrI=all}).

Note that Cz(z T I) is a |I| dimensional subset of Z. And
finally, define a translation operator:

Ti, ’L;é],k
Tin(z) = (w), wi={zi—1, i=j
zi+1, i=k

We will use Tji(z) to take advantage of the uniform one
buffer slot per queued request.

First we will show that Z* must contain all states in the
interior of Z (z; > 0 Vi) that can be supported by Z*. Focus
on the set of states that have been removed from Z to obtain
Z*, namely,

V=Z-2*

Define W to be those states in V, if any, that are in the
interior of Z and can be supported by Z*, namely,

W={zeV]|z1{i} ez Vi}.
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Now

zEW#’r(a:):Zr,-
which is the highest rate of revenue, so certainly Ewr(X) >
R*. By construction, W is annexable to Z* since ss(W) € Z*.
Therefore, we can add W to Z* and it would increase the
average revenue to do so. Thus, if Z* is optimal, W = &.

This reduces the problem of finding Z* to that of finding sets
G, with Z* givenbyz € Z* iff r€ Zandx {1 I € G; VI
It remains to show that the optimal sets G} are given by
the G} in (3). Partition V into sets Uy, I C N where
zelUi oz I¢gZ adz 1 {i} € Z* i & I. The
set I will correspond to the subscripts {:} which don’t appear
in the I constraint.

Fix I, and focus upon the states U; removed by the Gy
constraint. Fix some z € Uj. Since all queued requests occupy
one buffer space, exchanging one of service j for one of
service k does not affect the capacity for services other than
j or k [See Fig. 5(b)]. Formally, we can express this as; the
values of the “I”” components of the “I” type cross sections are
invariant with respect to 7T}, ;, operations (j, k£ ¢ I), namely,

T, k[Cz(z T )] = Cz(Tj,k[2] T 1)
J, k & I (when the quantities are defined).

Furthermore, the distribution on Z is product form, hence
the distribution (of the “I” components of x) on these cross
sections, namely, dist[z 1 (N —I) | 2 € Cz(z 1 I)], are
invariant with respect to T} ; operations.

Therefore, certainly the expectation on these cross sections,
E¢(z1ryr(X), is constant with respect to 7}, x operations on
z 11, (4, k ¢ I). We can conclude that if Z* is optimal, then
cuts of type I must be made with slope 1, namely, z ¢ Z*
(& z € Z) = T; r(z) & Z*. Therefore the upper boundaries
of the optimal G} are of slope 1 and hence given by

Zmi <cr

igl

Gi=4=z

This concludes the proof.
B. Theorem 2

The discreteness and coordinate convexity of the state space
implies that any constriction of the state space can be described
by a set of hyper-planar faces, with states on one side of each
face to remain in the optimal state space, and states on the other
side of the face to be excluded from the optimal state space. In
a discrete space, however, many hyperplanes may accomplish
the same division of states; therefore, in the remainder of this
paper, we uniquely define the hyperplane representing a face to
be the one which passes through the states nearest the division
that are to be included in the optimal state space. Note this
“connect-the-dots” approach implies that each o; %, 7 > 0.

The proof proceeds by showing that if Z* is not the claimed
form, then Jjunk(Z*) # & or Ifree(Z*) # &, and that
Z = Z* — junk (Z*) + free (Z*) generates a higher rate of
revenue than Z*. Suppose Z* C Z is optimal. We claim that
Z* can be represented in the form of (4). Now Z* can be
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*3

X
2
Fig. 10. A proposed removal.

Fig. 11. Rotating the face to produce a better face.

represented as the result of a series of exclusions of removable
sets, so it suffices to show that each removal can be represented
by a set k of equations in the form of (4).

Focus on one such removal, of a set V' from Z’ to obtain Z"
where Z 2 Z' D Z" 2 Z*.Now if Eyr(z) < R’ then V must
either intersect the r(z) = R’ hyperplane, or lie entirely below
it. We consider these two cases separately. First consider the
case where V lies entirely below the 7(z) = R’ hyperplane.
Since V' C Z'~ and V is removable from Z’, it follows
that V' C junk (Z'). By construction, however, junk (Z’) can
be represented by a set k£ of equations in the form of (4).
Therefore, if Z* is optimal, V can be represented by a set k
of equations in the form of (4).

Now consider the case where V' intersects the 7(z) = R’
hyperplane. For the example in Figs. 34, such a set is shown
in Fig. 10 as the region above the shaded triangle.

Consider a related set V*, obtained as follows: rotate each
face of V' that intersects r(z) = R’ until one of the coefficients
of the face is zero and the rest are positive. V* is also
removable from Z’. (Rotating a face to obtain a negative
coefficient would have invalidated this claim.) Furthermore,
V* can be represented as a set k of equations in the form
of (4).

Now V-VNV* Cjunk(Z') and V* -V NV* C free (2’).
Therefore, V* is at least as good a removal as V. This if Z*
is optimal, V' can be represented by a set k of equations in
the form of (4).
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X3

2 (@) Junk(Z) 2 (b) Froe(2)

Fig. 12. The difference between the original and altered faces. (a) Junk (Z').
(b) Free(Z2').

For our running example, this alteration is shown in Figs. 11
and 12. Note the intersection of the 7(x) = R’ plane and the
proposed face, shown as a dashed line. Junk (Z’) and free (Z')
can be thought of as the product of rotating the face about this
intersection until it is constant with respect to at least one
service type.

This concludes the proof.
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