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Evolution of Social Behavior:
Individual and Group Selection

Theodore C. Bergstrom

“A selector of suf�cient knowledge and power might perhaps obtain from the genes at present
available in the human species a race combining an average intellect equal to that of
Shakespeare with the stature of Carnera. But he could not produce a race of angels. For the
moral character or for the wings he would have to await or produce suitable mutations.”

—J.B.S. Haldane (1932, p. 110)

W hat can our evolutionary history tell us about human motivations and
social behavior? The genes that in� uence our own behavior are copies
of copies of copies of genes that have guided our ancestors to survive

and to reproduce. If sel� sh behavior leads to reproductive success, then we should
expect our genes to impel us toward sel� shness. Thus, Richard Dawkins (1976,
pp. 2–4) observed:

If we were told that a man lived a long and prosperous life in the world of
Chicago gangsters, we would be entitled to make some guesses as to the sort
of man he was . . . . Like successful Chicago gangsters, our genes have sur-
vived, in some cases for millions of years, in a highly competitive world . . . . If
you look at the way natural selection works, it seems to follow that anything
that has evolved by natural selection should be sel� sh.

Sir Alexander Carr-Saunders (1922), a sociologist who pioneered studies of
demography and social evolution, took an opposing view. Carr-Saunders main-
tained that evidence from primitive cultures suggests that prehistoric humans
clustered into groups that inhabited well-de�ned areas between which migration
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was infrequent. These groups usually managed to avoid overpopulation and the
attendant scourges of war, famine and disease. Population densities remained
roughly constant and close to the levels that maximized per capita food consump-
tion. To support these claims, Carr-Saunders offered evidence that in existing
primitive societies, fertility is deliberately restrained by means of abortion, infanti-
cide and long-term sexual abstinence. He argued that such reproductive restraint
is inconsistent with sel� sh maximization of individual fertility and must somehow
be explained by “group selection.”

In an encyclopedic study of the spatial dispersion of animal populations, V.C.
Wynne-Edwards (1962) proposed that this principle has far more ancient roots. He
believed that in much of the animal kingdom, species maintain population densi-
ties at an “optimal level for each habitat that they occupy.” Wynne-Edwards argued
that group selection is possible because “animal (and plant) species tend to group
into more or less isolated populations” who depend on food resources of a
“localized, immobile” character and that “the local stock conserves its resources and
thereby safeguards the future survival of its descendants.”

Some biologists viewed Wynne-Edwards’ book as academic heresy. George C.
Williams (1966) argued that the behavior that Wynne-Edwards cites as evidence for
group selection is consistent with individuals maximizing their own long-run re-
productive interests or those of close relatives. For example, individuals may � nd it
in their own reproductive interests to vary their birth rates inversely with population
density. It also may be in an individual’s sel� sh interest to defend territories that
exceed minimum requirements in normal years, because the extra territory will be
critically important in bad years. Other biologists have attempted to provide formal
underpinnings for Wynne-Edwards’s rather loosely argued proposition. A detailed
and interesting account of this controversy can be found in Sober and Wilson
(1999).

The polar theories of individual and group selection make dramatically dif-
ferent predictions about social interactions. Individual selection theory suggests a
world populated by resolutely sel� sh homo economicus and his zoological (and
botanical) counterparts. By contrast, a world shaped by group selection would likely
be inhabited by natural socialists, with an instinctive “Kantian” morality toward
other members of their group. Of course the localism that leads to group selection
would also tend to produce unsavory impulses toward xenophobia and intertribal
warfare.

Games and Social Interactions

Prisoners’ Dilemma Games
Evolutionary biologists, game theorists and anthropologists have frequently

used the prisoners’ dilemma game as a research vehicle to explore the polar
regions of individual and group selection theory and the interesting terrain that lies
between. A multiplayer prisoners’ dilemma is a game in which individuals may take
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actions that are, in the words of J.B.S. Haldane (1932), “socially valuable but
individually disadvantageous.” Speci� cally, we consider a game that has two possi-
ble strategies for each player, cooperate and defect, where the payoff to each player
depends on her own strategy and the number of other players who play cooperate.
An N-player prisoners’ dilemma is de� ned to be a game in which 1) all N players are
better off if all play cooperate than if all play defect, and 2) given the actions of
others, every individual necessarily gets a higher payoff from playing defect than
from playing cooperate.

The prisoners’ dilemma is especially useful for exploring the alternative the-
ories of individual and group selection, because for this game, the two theories
predict starkly different outcomes. If individuals are selected to act in their own self-
interest, all will defect. If they are selected to act in the group interest, all will
cooperate.

Much of the literature of evolutionary biology focuses on the special class of
N -player prisoners’ dilemma games in which each player’s payoff depends linearly
on the number of players who play cooperate. This game was introduced to
biologists in 1932 by J.B.S. Haldane, one of the founders of modern population
biology.1 Economists will recognize Haldane’s game as the linear “voluntary con-
tribution to public goods” game, much studied in experimental economics. (See
Ledyard, 1995, for a good survey of this work.) In this paper, we will call this game
the linear public goods game.

In an N-player linear public goods game, a cooperator bears a cost of c and by
so doing confers a bene� t of b/N on each of the N players, including herself.2 A
defector bears no costs and confers no bene� ts, but receives the bene� ts conferred
by cooperators in her group. Thus, if the fraction of cooperators in the group is x,
each cooperator gets a payoff of bx – c, and each defector gets a payoff of bx. For
a linear public goods game to be a prisoners’ dilemma, it must be that all players
are better off if all cooperate than if all defect and that given the actions of others,
each player gets a higher payoff from defecting than from cooperating. The � rst
condition is satis� ed if and only if b . c. By cooperating, an individual adds b/N
to her own payoff at a cost of c. Thus, the second condition is satis� ed if and only
if b/N , c. It follows that a linear public goods game is an N-player prisoners’
dilemma game if and only if b/N , c , b.

Stag Hunt Games
In one-shot prisoners’ dilemma games, the socially optimal action is never a

best response for sel� sh individuals. But in many social interactions, the action that

1 The notation used here is that of Cohen and Eshel (1976), who credit Haldane (1932) in pp. 207–210
of their appendix.
2 David S. Wilson (1975) studies a variant of this game in which at a cost of c, a cooperator confers
expected bene� ts of b/N on every player except for herself. Results for one variant translate easily into
corresponding results for the other, since Wilson’s formulation of the game with costs c is equivalent to
the Haldane formulation with costs c 1 b N.
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best serves one’s self-interest depends on the actions taken by others. This suggests
the usefulness of a second exploratory vehicle, a simple two-person game, known as
the stag hunt. This game formalizes a story told by Jean Jacques Rousseau (1755
[1950], p. 428) of two hunters who could cooperate by jointly hunting a stag or
defect by individually hunting hare.3 Table 1 is a game matrix for a stag hunt game,
where entries represent payoffs to the row player. In contrast to a prisoners’
dilemma, where defect is the best response regardless of the other’s strategy, in stag
hunt games, defect is the best response to defect, but cooperate is the best response
to cooperate. Thus, the stag hunt has two equilibria, one where both players
cooperate and one where both defect.

Evolutionary Dynamics and Group Formation
We will explore the evolutionary dynamics of populations in which individuals

are “programmed,” perhaps genetically or perhaps by cultural experience, to play
either cooperate or defect in a game. We assume that the dynamics are payoff-
monotonic (Weibull, 1995), which means that for any two player types, the type
receiving the higher payoff in the game will reproduce more rapidly.

If the entire population participates in a single multiperson prisoners’ di-
lemma game, the prediction of payoff-monotonic dynamics is simple. Since defec-
tors always receive higher payoffs than cooperators, they will reproduce more
rapidly than cooperators, and eventually, the population will consist almost entirely
of defectors.4

Population biologists, like J.B.S. Haldane (1932) and Sewall Wright (1945),
proposed that cooperation is most likely to evolve in populations where social
interaction takes place within relatively small subpopulations, called demes, where
there is occasional, but relatively infrequent migration between subpopulations. To
investigate this conjecture, biologists have studied a class of dynamic models known

3 An engaging paper by Brian Skyrms (forthcoming) makes a strong case that social thinkers should pay
more attention to the stag hunt game.
4 The result that the proportion of defectors converges to one is less obvious than the result that this
proportion increases monotonically. A proof is found in Weibull (1995), who credits this result to John
Nachbar (1990).

Table 1
A Stag Hunt Game
(entries are payoffs to row player)

Column Player’s Strategy
Cooperate Defect

Row Player’s Strategy
Cooperate 4 0

Defect 3 3

70 Journal of Economic Perspectives



as haystack models.5 In haystack models, random group formation produces some
groups with more cooperators than others. Although cooperators have fewer
offspring than defectors in their own group, all members of groups with more
cooperators reproduce more rapidly. Haystack models are designed to explore
circumstances under which the between-group advantage of cooperation can over-
whelm the within-group advantage of defection.

In a haystack model, time is divided into discrete periods. Each period has a
reproductive phase and a dispersal phase. The reproductive phase begins with a
population that is partitioned into a large number of groups. During the repro-
ductive stage, which may continue for several generations, asexual reproduction
takes place within each group. Descendants of any individual are of the same type
as their ancestor. The number of descendants of each founding group member
present at the end of the reproductive phase depends on that individual’s type and
on the distribution of types in the founding group. At the end of the reproductive
phase comes the dispersal phase, where the entire population is pooled and new
groups are randomly formed from the pooled population. The process is repeated
as the newly formed groups reproduce and disperse once again.

In a haystack model, we de� ne group formation to be nonassortative if the
probability distribution of types of the other members of one’s group is indepen-
dent of one’s own type. Where individuals in the overall population can be of either
type C or type D, let us de� ne pi(M, N ) to be the probability that a type i individual
is assigned to a group of size N, in which M of the other group members are type Cs.
The assignment is de� ned to be nonassortative if pC(M, N ) 5 pD(M, N ) for all
relevant M and N. If the overall population is large and groups are formed by
random sampling without replacement from this population, then matching will be
almost nonassortative. There will be a slight difference between pC(M, N ) and
pD(M, N ) because the other members of a cooperator’s group are drawn from the
overall population less one cooperator, while the other members of a defector’s
group are drawn from the overall population less one defector. For a large
population size, this difference can be shown to be negligible.

Where Not to Look for Cooperation
In a survey of the literature on group selection, Alan Grafen (1984) states that

“with random selection there is no selection for altruism.” Grafen does not offer a
proof of this assertion.6 However, if we de� ne “altruism” to mean playing cooperate
in a prisoners’ dilemma and “random” to mean nonassortative, then Grafen’s claim
is equivalent to the following theorem.

Proposition 1: Iron Rule of Sel�shness. In a haystack model, if matching is
nonassortative and if reproductive rates are determined by a prisoners’

5 The � rst haystack model was introduced by John Maynard Smith (1964) and will be discussed below.
6 An earlier paper by David S. Wilson (1975) showed for a quite speci� c model that “random” formation
of groups must result in the elimination of altruism.
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dilemma game among group founders, then the only asymptotically stable
outcome is a population consisting entirely of defectors.

To prove Proposition 1, we show that in each time period, at the dispersal stage, the
expected number of descendants of a defector exceeds that of a cooperator.7 Thus,
each time the haystacks are dispersed and reformed, it will be with a higher
proportion of defectors. It follows that eventually the proportion of defectors in the
population becomes arbitrarily close to one.

It is important to understand that Proposition 1 does not rule out the possi-
bility that group selection can sustain cooperative behavior. Instead, this proposi-
tion allows us to classify environments where selection can favor cooperation as
follows: In a haystack model, cooperation will survive only if either a) the game
being played is not a prisoners’ dilemma, or b) matching is assortative.

Haystack Models of Group Selection

Maynard Smith’s Mice
John Maynard Smith (1964) introduced the � rst formal model of “group

selection” in which seemingly altruistic behavior is sustained in equilibrium, even
though the matching process is nonassortative. The key to Maynard Smith’s result
is that groups may remain intact for several generations before the population is
dispersed and randomly regrouped. Maynard Smith motivates his model with a
charming story of “a species of mouse which lives entirely in haystacks.”

A meadow contains many haystacks, each of which is colonized every year by
exactly two mice. These mice and their descendants reproduce asexually through-
out the summer until harvest time when the haystacks are cleared.8 The dislodged
resident mice scramble out into the meadow, and when new haystacks are built in
the next year, each haystack is colonized by exactly two mice randomly selected
from the survivors of last year’s breeding season. If there are more than enough
mice to provide two founders for each new haystack, the extra mice are consumed
by predators.

7 The expected number of descendants of a cooperator is ¥M ¥N pC (M, N )IIC(M, N ), which is the sum
over all possible group con� gurations of the probability that a cooperator belongs to that type of group
times her number of descendants in this case. Similarly, the expected number of descendants of a
defector is ¥M ¥N pD(M, N )IID(M, N ). Since matching is nonassortative, it must be that pC(M, N ) 5
pD(M, N ) for all M and N. Therefore, the difference between the expected number of descendants of
a cooperator and that of a defector is equal to ¥M ¥N pC(M, N )(IIC(M, N ) 2 IID(M, N )). If the game
is prisoners’ dilemma, it must be that IIC(M, N ) 2 IID(M, N ) , 0 for all M and N. It follows that
¥M ¥N pC(M, N )(IIC(M, N ) 2 IID(M, N )) , 0, and therefore, in every period, the expected number
of offspring of a cooperator is less than that of a defector.
8 In Maynard Smith’s (1964) telling, mice reproduce as sexual diploids. However, his model is mathe-
matically equivalent to one with asexual reproduction. To ease exposition, and to make this model
directly comparable to extensions introduced by Cohen and Eshel (1976), I present the equivalent
asexual model here.
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In a haystack settled by two timid mice, all descendants are timid, and in a
haystack settled by two aggressive mice, all descendants are aggressive. In a haystack
settled by one mouse of each type, the descendants of the aggressive mouse
eliminate the descendants of the timid mouse, and the number of its descendants
at harvest time is the same as the number in a haystack colonized by two aggressive
mice. Although timid mice do poorly when matched with aggressive mice, haystacks
inhabited entirely by timid mice produce more surviving offspring at harvest time
than do haystacks inhabited by aggressive mice. Thus, a haystack colonized by two
timid mice produces 1 1 K times as many descendants as does a haystack with
aggressive mice.

Since the reproduction rate enjoyed by a founding mouse depends on its own
type and that of its cofounder, these rates can be represented as the payoffs in a
game between the two mice who colonize each haystack. If two aggressive mice
colonize a haystack, they will have a total of r descendants, half of whom are
descended from each founder. Thus, each mouse has r/ 2 descendants. If an
aggressive mouse and a timid mouse colonize a haystack, the timid mouse will have
no descendants, and the aggressive mouse will have r descendants. If two timid mice
colonize a haystack, they will have a total of r(1 1 K ) descendants, and each will
have r(1 1 K )/ 2 descendants. In the game played by cofounders, payoffs to the
row player are shown in Table 2.

If 0 , K , 1, the haystack game is a prisoners’ dilemma, since regardless of
its cofounder’s type, an aggressive mouse will have more offspring than a timid
mouse. If K . 1, the haystack game is not a prisoners’ dilemma, but a stag hunt.
If matched with a timid mouse, a mouse will have more offspring if it is timid than
if it is aggressive. But if matched with an aggressive mouse, a mouse will have more
offspring if it is aggressive than if it is timid.

For the prisoners’ dilemma case with K , 1, the only equilibrium is a
population made up entirely of defectors. For the stag hunt case, with K . 1, there
are two distinct stable equilibria, one in which all mice are timid and one in which
all are aggressive. We demonstrate this as follows: Let the proportion of timid mice
in the population at time t be xt. Since matching is random, any mouse is matched
with a timid cofounder with probability xt and with an aggressive cofounder with
probability 1 2 xt. Given the payoffs in Table 2, the expected reproduction rate of
an aggressive mouse is xtr 1 (1 2 xt)r/ 2, and the expected reproduction rate of

Table 2
The Haystack Game
(entries are payoffs to row player)

Column Player’s Strategy
Cooperate Defect

Row Player’s Strategy
Cooperate r(11K )/2 0

Defect r r/2
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a timid mouse is xtr(1 1 K )/ 2. Subtracting the latter expression from the former,
we � nd that the difference between the expected reproduction rates of timid mice
and of aggressive mice is proportional to x tK 2 1. Therefore, timid mice reproduce
more rapidly than aggressive mice if xtK . 1, and aggressive mice reproduce more
rapidly if xtK , 1. These dynamics are illustrated by Figure 1. The graph on the left
shows the case where K . 1, so that the game played between founders is a stag
hunt. In this case, when the proportion of timid mice is large, timid mice reproduce
more rapidly than aggressive mice, and when the proportion of timid mice is small,
aggressive mice will reproduce more rapidly. Thus, there are two stable equilibria,
one in which all mice are timid and one in which all are aggressive. (There is also
an unstable equilibrium where the fraction 1/K of mice are timid.) The graph on
the right shows the case where K , 1, so that the game played between founders
is a prisoners’ dilemma. In this case, aggressive mice always reproduce more rapidly
than timid mice, and there is a unique equilibrium in which all mice are aggressive.

According to Proposition 1, a population of cooperators will be stable only if
either a) the game played is not a prisoners’ dilemma, or b) matching is assortative.
We see that the survival of cooperation in Maynard Smith’s haystack model falls
into the � rst case. If K . 1, the game played between founders is a stag hunt rather
than a prisoners’ dilemma and there are two stable equilibria, one with cooperators
only and one with defectors only. Where K , 1, the game played between founders
is a prisoners’ dilemma, and as Proposition 1 predicts, the only stable equilibrium
is a population of defectors.

The Cohen-Eshel Linear Public Goods Model
Dan Cohen and Ilan Eshel (1976) generalize Maynard Smith’s (1964) haystack

model in an instructive way. They study haystack models with cooperators and
defectors, where founding groups may be of arbitrary size and where reproduction
rates vary continuously with the proportion of cooperators in the group. Groups
remain intact for a � xed length of time T and then are dispersed, and new groups
are formed with nonassortative matching. We will pay special attention to one of
the cases that they study. This is a linear public goods game in which x(t) is the
proportion of cooperators in a group at time t and where cooperators in the group
reproduce at the instantaneous rate a 1 bx(t) and defectors reproduce at the rate
a 1 bx(t) 2 c. For this model, Cohen and Eshel are able to solve the resulting
differential equations and thereby determine when the more rapid growth rates of
groups with more cooperators is suf� cient to offset the fact that cooperators
reproduce less rapidly within groups than defectors. Their answer is expressed in
the following proposition.

Proposition 2: Cohen-Eshel Theorem. In the Cohen-Eshel linear public goods
model, where groups are of size N and where T is the length of time for which
groups remain intact: i) If T is small, there is a unique asymptotically stable
equilibrium. The equilibrium population is made up entirely of defectors if
b/N , c and entirely of cooperators if b/N . c. ii) If T is suf� ciently large,
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and b . c . 0, there exist two distinct stable equilibria: one with sel� sh
players only and one with altruists only.

A heuristic explanation of part (i) is that if T is small, the reproduction rate
over the life of the group is approximately bx for defectors and bx 2 c for
cooperators, where x is the proportion of cooperators among the founders. If
b/N , c , this game is a prisoners’ dilemma. If b/N . c, then the game is not a
prisoners’ dilemma, since the private bene� ts that an individual gets from cooper-
ating exceed the cost of cooperation, and so cooperate rather than defect is a
dominant strategy. Thus, we see that part (i) of Proposition 2 is consistent with
Proposition 1.

Part (ii) is the more surprising result. Where groups are suf� ciently long-lived,
a population of cooperators can be sustained as a stable equilibrium, even if the
game played between contemporaries is a prisoners’ dilemma. To see how this can
happen, let us suppose that T is large and ask whether a population of cooperators
can be invaded by defectors. A defector who joins N 2 1 cooperators in founding
a group will have fewer expected offspring than would a cooperator in a group
made up entirely of cooperators. The reason is that for large T, a group that has at
least one defector among its founders will eventually consist almost entirely of
defectors, and thus, the reproduction rate of every member of that group will
eventually be lower than the reproduction rate of the normal population of
cooperators who live in communities founded by cooperators only. This implies
that if groups are suf� ciently long-lived, a mutant defector will have fewer descen-
dants than the normal cooperators who live among cooperators. Thus, mutant
defectors cannot invade the population.

How does part (ii) of the Cohen-Eshel theorem square with Proposition 1? If
we consider the game played between founders and if the survival duration T of
groups is large, then as we have seen, the game that determines reproductive rates
over the lifetime of a group is not a prisoners’ dilemma. Thus, there is no con� ict
with Proposition 1. It is also instructive to look at the situation another way. We note
that the linear public goods game that determines instantaneous reproduction

Figure 1
Dynamics of the Haystack Model
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rates is a prisoners’ dilemma if b/N , c. But after a group has been intact for some
length of time, the individuals who participate in this game will not be nonassor-
tatively matched, but will tend to share common ancestry.

Absolute and Relative Payoff Within Groups
There is an interesting class of games in which every player gets a higher payoff

from cooperating than from defecting, but where, paradoxically, it is also true that
within each group, defectors receive higher payoffs than cooperators. The root of
this paradox is the difference between absolute and relative payoffs. Consider an
N -player linear public goods game, where in a group with the fraction x of
cooperators, cooperators’ payoffs are bx 2 c and defectors’ payoffs are bx. By
cooperating rather than defecting, a player increases x by 1/N and hence confers
a bene� t of b/N on all group members, including herself. If b/N . c . 0, the
private bene� ts she gets from cooperating exceed the cost of cooperation, so
cooperating increases her absolute payoff. But defectors enjoy all of the bene� ts
from cooperators’ efforts and bear none of the costs. Therefore, in any group, the
defectors have higher payoffs than the cooperators.

D.S. Wilson (1979) noticed this possibility and suggested that someone who
cooperates when b/N . c but not when b/N , c be called a “weak altruist,” while
someone who cooperates whenever b . c be called a “strong altruist.” Wilson
argued that “many, perhaps most, group-advantageous traits such as population
regulation, predation defense, and role differentiation” may be explained by weak
altruism. Grafen (1984) responded that Wilson’s “weak altruism” is not really
altruism, since weak altruists cooperate only when it is in their self-interest as
measured by absolute (but not necessarily relative) payoffs. Grafen suggests that
Wilson’s weak altruism would be better called “a self-interested refusal to be
spiteful.”

Whether we speak of “weak altruism” or “refusal to be spiteful,” it is interesting
to determine whether natural selection favors maximization of absolute payoff or of
relative payoffs when these two objectives con� ict. Cohen and Eshel’s Proposi-
tion 2 offers an answer. Where the lifetime T of groups is short, a stable equilibrium
population of cooperators can be supported if and only if b/N . c. Thus, natural
selection favors maximization of absolute payoffs, even at the expense of relative
payoffs. However, if groups remain intact for a long time, maximization of absolute
payoffs is not unambiguously favored. The Cohen-Eshel result is that for large T,
there exist two distinct equilibria— one populated by cooperators only and one by
defectors only.

Variations on the Haystack Model
In the haystack model, groups survive in perfect isolation until they are

simultaneously disbanded. More realistic models would allow migration between
groups and would have asynchronous extinctions and resettlements. Such models
have been studied by Eshel (1972), Levins (1970), Levin and Kilmer (1974) and
Boorman and Levitt (1980). In these models, defectors reproduce more rapidly
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than cooperators within their own group, but groups face a higher probability of
group extinction the greater the proportion of defectors. For some parameter
values, a population of cooperators will be sustained in equilibrium. This is more
likely if the size of founding populations is relatively small, if the migration rate is
relatively small and if the difference between the extinction rates of sel� sh and
altruistic groups is relatively large.

Assortative Group Formation

In the prisoners’ dilemma, defect always yields a higher payoff than cooperate,
but everyone gets a higher payoff if matched with a cooperator rather than a
defector. Proposition 1 tells us that defection will prevail if types are matched at
random to play prisoners’ dilemma. But if matching is assortative rather than
random, the cost of cooperation may be repaid by a higher probability of playing
with another cooperator.

The Index of Assortativity
Sewall Wright (1921) de� ned the assortativeness of mating with respect to a

trait as “the coef� cient of correlation m between two mates with respect to their
possession of the trait.” Cavalli-Sforza and Feldman (1981) pointed out that
Wright’s correlation coef� cient is equivalent to a matching process where the
fraction m are assigned to their own type with certainty and the remaining fraction
(1 2 m) mate at random.9 For a population of cooperators and defectors,
Bergstrom (2002) de� ned the index of assortativity a( x) to be the difference
between the expected fraction of cooperators that a cooperator will encounter in
her group and the expected fraction of cooperators that a defector will encounter.
He shows that this de� nition reduces to Wright’s correlation coef� cient m when
matching is pairwise and a( x) is constant. As we will see, in some important
applications a( x) is constant, but there are interesting cases where it is not.

Recall that in an N-player linear public goods game, a player who cooperates
increases the fraction of cooperators in her group by 1/N and thus adds b/N to the
payoff of each player, including herself. Therefore, the net cost of cooperating is
c* 5 c 2 b/N , and the game is a prisoners’ dilemma whenever c* . 0. Proposi-
tion 3 tells us that if the index of assortativity is positive, then in haystack models,
individuals in equilibrium will act as if they “discount” bene� ts to other group
members at a rate equal to the index of assortativity.

9 Let Ii be an indicator variable that takes on value 1 if mate i has the trait and 0 otherwise. Wright’s
assortativeness m is the correlation between I1 and I2. Thus, m 5 (E(I1I2) 2 E(I1) E(I2))/(s1s2),
where si is the standard deviation of Ii. Now E(I1I2) 5 xp( x), and for i 5 1, 2, E(Ii) 5 x and si 5
=x(1 2 x). Therefore, m 5 ( xp(x) 2 x2)/x(1 2 x). Rearranging terms, one � nds this expression
equivalent to p(x) 5 m 1 x (1 2 m).
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Proposition 3: In a haystack model in which the game played among founders
is an N-player linear public goods game, where a( x) is the index of assorta-
tivity, a population of cooperators will be stable if and only if a(1)b 2 c* . 0,
and a population of defectors will be stable if and only if a(0)b 2 c* , 0,
where c* 5 c 2 b/N .

The proof of Proposition 3 is sketched as follows: Recall that where x is the
fraction of cooperators in the population, the index of assortativity a(x) is the
difference between the expected fraction of cooperators encountered by cooper-
ators and that encountered by defectors. Therefore, the expected difference be-
tween the total bene� ts experienced by cooperators and by defectors is just a(x)b,
and since c* is the net cost of cooperating, the reproduction rate of cooperators will
exceed that of defectors if a(x)b 2 c* . 0. A large population of cooperators is
stable if a mutant defector in this population will reproduce less rapidly than
cooperators. This happens if a(1)b 2 c* . 0. A large population of defectors is
stable if a mutant cooperator in a population of defectors will reproduce less
rapidly than defectors. This will happen if a(0)b 2 c* , 0.

Bergstrom (1995, 2002) generalizes Proposition 3 from the special class of
linear public goods games to games in which payoffs are not linear in the number
of cooperators. For the case of pairwise matching with a constant index of assor-
tativity, a, the equilibrium behavior can be described as follows: Take the action
that you would choose if you believed that with probability a, your partner will
mimic your action and with probability 1 2 a, your partner will mimic a random
draw from the population at large. Bergstrom calls this the semi-Kantian rule, since
it can be viewed as a probabilistic version of Kant’s categorical imperative.

Family Groups and Assortative Matching
Families are conspicuous examples of nonrandomly formed groups. William

Hamilton (1964) developed kin selection theory, which predicts the willingness of
individuals to make sacri� ces to bene� t their relatives according to a bene� t-cost
principle known as Hamilton’s rule. Hamilton’s rule states that individuals are willing
to reduce their own expected number of offspring by c in order to add b to that of
a relative if and only if br . c, where r is the coef�cient of relatedness between the two
relatives. Biologists de� ne the coef� cient of relatedness between two individuals as
the probability that a rare gene found in one of them also appears in the other. In
a population without inbreeding, the coef� cient of relatedness is one-half for full
siblings, one-fourth for half siblings and one-eighth for � rst cousins.

Hamilton (1964) obtained his result for a simpli� ed genetic model, known as
sexual haploidy. In sexual haploids, an inherited trait is determined by a single gene
that is inherited from a random draw of the heir’s two parents.10 The sexual
haploid model seems appropriate for studying cultural transmission, where behav-

10 See Boorman and Levitt (1980) and Bergstrom (1995) for similar results applying to sexual diploids.
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ior is passed from parents to children by imitation. Bergstrom (2002) and Berg-
strom and Stark (1993) show that if mating between parents is not assortative and
if inheritance follows the sexual haploid model, then the index of assortativity
between two relatives is equal to their coef� cient of relatedness. For example, two
full siblings inherit their behavior from the same parent with probability 1/2 and
from different parents with probability 1/2. The difference between the probability
that a cooperator has a cooperative sibling and the probability that a defector has
a cooperative sibling is a( x) 5 1/ 2, which is also their degree of relatedness. Since
Hamilton’s model of interactions is equivalent to a two-player linear public goods
game,11 Hamilton’s rule is a special case of Proposition 3.

Bergstrom (2002) shows that the index of assortativity can be calculated under
a variety of alternative assumptions about cultural or genetic inheritance. These
include cases where parents mate assortatively, where children may copy a ran-
domly chosen stranger rather than one of their parents, where children preferen-
tially copy mother or father and where marriage is polygamous.

Assortative Matching with Partner Choice
In a multiplayer prisoners’ dilemma game, everyone prefers being matched

with cooperators rather than defectors. Thus, if groups could restrict entry and
players’ types were observable, cooperators would not admit defectors to their
groups, two types would be strictly segregated, and cooperators would reproduce
more rapidly than would defectors. In more realistic environments, type detection
is imperfect, and the index of assortativity falls between zero and one.

Bergstrom (2002) studies players who are labeled with an imperfect indicator
of their type. Everyone sees the same labels, and so when players choose partners,
there are only two distinguishable types: players who are labeled cooperator and
players who are labeled defector. Although everyone realizes that the indicators are
imperfect, everyone prefers to match with an apparent cooperator rather than with
an apparent defector. Therefore, with voluntary matching, all individuals are
matched with others of the same label. The expected proportion of true cooper-
ators encountered by true cooperators will exceed that encountered by true defec-
tors. The index of assortativity a(x) is shown to vary with the proportion of
cooperators in such a way that a(0) 5 a(1) 5 0, while a(x) is positive for
intermediate values. Where groups play a linear public goods game, there turns out
to be a unique stable polymorphic equilibrium, that includes positive fractions of
both types. Frank (1987) presents an alternative model with two types who emit
partially informative type indicators and also � nds a unique polymorphic
equilibrium.

Skyrms and Pemantle (2000) study dynamic formation of groups by reinforce-
ment learning. Individuals initially meet at random and play a game. The payoffs
determine which interactions are reinforced, and a social network emerges. The

11 In Hamilton’s formulation, the bene� t b accrues only to one’s relative and not to oneself. This model
is equivalent to a linear public goods game with c* 5 c.
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networks that tend to form in their model consist of small interaction groups within
which there is partial coordination of strategies and which can support cooperative
outcomes.

Assortative Matching Induced by Spatial Structure
Evolutionary biologists have stressed the importance of spatial structure on the

spread of mutations, genetic variation and the formation of species. Wright (1943)
studied the degree of inbreeding in a population distributed over a large area
where individuals are more likely to mate with those who live nearby. Kimura and
Weiss (1964) studied genetic correlations in a one-dimensional “stepping stone
model” with colonies arrayed along a line and where “in each generation an
individual can migrate at most ‘one step’ in either direction.” Nowak and May
(1993) ran computer simulations with agents located on a two-dimensional grid
playing the prisoners’ dilemma with their neighbors. After each round of play, each
site is occupied by its original owner or by one of its neighbors, depending on who
had the highest score in the previous round. This process generates chaotically
changing spatial patterns in which the proportions of cooperators and defectors
� uctuate about long-term averages.

Bergstrom and Stark (1993) considered a population of farmers located on a
road that loops around a lake. Each farmer plays the prisoners’ dilemma with his
two neighbors. The farmers’ sons observe the strategies and payoffs of their fathers
and their immediate neighbors and imitate the most successful. In this case, it turns
out that an arrangement is stable if cooperators appear in clusters of three or more
and defectors in clusters of two or more. With slightly different rules, they show that
spatial patterns of behavior “move in a circle” around the lake. Thus, a long-lived
chronicler, who observed behavior at a single farm would see cyclic behavior in
which spells of cooperation are interrupted by defection according to a regular
temporal pattern.

Eshel, Samuelson and Shaked (1998) studied a similar circular setup, but
allowed the possibility of random mutations. They discovered that in the limit as the
mutation rate becomes small, the only stationary states that have positive probabil-
ity are those in which at least 60 percent of the population are cooperators. As the
authors explain: “Altruists can thus invade a world of Egoists with only a local burst
of mutation that creates a small string of Altruists, which will then subsequently
grow to a large number of Altruists. Mutations can create small pockets of egoism,
but these pockets destroy one another if they are placed too close together, placing
an upper bound on the number of Egoists that can appear.”

Eshel, Sansone and Shaked (1999) constructed another circular model in
which each individual plays the prisoners’ dilemma with her k nearest neighbors
and observes the payoffs realized by her n nearest neighbors. They showed that the
population dynamics can be determined from an explicitly calculated index of
assortativity r(k, n) for critical players who are located on the frontier between a
string of cooperators and a string of defectors. Where the game played between
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neighbors is a linear public goods game, cooperation will prevail if r(k, n) b . c
and defection will prevail if r(k, n)b , c.

Cooperation without the Prisoners’ Dilemma

Ken Binmore (1994b) has observed: “If our Game of Life were the one-shot
Prisoners’ Dilemma, we should never have evolved as social animals.” Binmore
argues that the “Game of Life” is best modeled as an inde� nitely repeated game in
which reciprocal rewards and punishments can be practiced. As Binmore points
out, this idea is not new. In the seventh century before Christ, Hesiod (1929) stated
the maxim, “Give to him who gives, and do not give to him who does not.” David
Hume (1739 [1978], p. 521) used language that is suggestive of modern game
theory: “I learn to do service to another, without bearing him any real kindness,
because I foresee, that he will return my service in expectation of another of the
same kind, and in order to maintain the same correspondence of good of� ces with
me and others. And accordingly, after I have serv’d him . . . he is induced to do his
part, as foreseeing the consequences of his refusal.”

The Equilibrium Selection Problem
Several game theorists in the 1950s nearly simultaneously discovered a result

known as the folk theorem, which tells us that in inde� nitely repeated games, almost
any pattern of individual behavior can be sustained as a Nash equilibria by a stable,
self-policing norm. Such a norm prescribes a course of action to each player and
includes instructions to punish anyone who violates his prescribed course of action.
For game theorists, this is discouraging news, since it means that the usual tools of
game theory have little predictive power. Those who want further guidance from
theory must seek some way to distinguish “plausible” Nash equilibria from implau-
sible ones. Game theorists call this the “equilibrium selection problem.”

The repeated prisoners’ dilemma, like other repeated games, has many Nash
equilibria, some of which are Pareto superior to others. Group selection can play a
powerful role here, as suggested by Boyd and Richerson (1990, 1992, 2002) and
Binmore (1992, 1994a, b). A mechanism that allows groups with higher total
payoffs to “reproduce” more rapidly will not be directly opposed by individual
selection within groups. As Boyd and Richerson (1990) explain: “Viewed from the
within-group perspective, behavior will seem egoistic, but the egoistically enforced
equilibria with the greatest group bene� t will prevail.”

Since norms and the amount of cooperation differ greatly across societies, it
seems that the attainment of ef� cient cooperation by group selection is neither
swift nor inevitable. Soltis, Boyd and Richerson (1995) propose a model of group
selection that requires that there is variation in norms among groups, that extinc-
tion of groups is fairly common and that new groups are formed by � ssion of
existing groups. Using data on group extinction rates of New Guinea tribes, the
authors estimate that the amount of time needed for a rare advantageous cultural
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attribute to replace a common cultural attribute is of the order of 500 to 1000 years.
However, Boyd and Richerson (2002) show that the spread of socially bene� cial
norms will be much faster if individuals occasionally imitate strategies of inhabitants
of successful neighboring groups.

The Punishment Problem
Although we know from the folk theorem that punishment norms can main-

tain cooperation as Nash equilibria, it is not obvious that evolutionary processes will
sustain the willingness to punish. As Henrich and Boyd (2001) put it: “Many
students of human behavior believe that large-scale human cooperation is main-
tained by threat of punishment . . . . However, explaining cooperation in this way
leads to a new problem: why do people punish noncooperators? . . . Individuals
who punish defectors provide a public good, and thus can be exploited by non-
punishing cooperators if punishment is costly.”

The standard game theoretic answer is that equilibrium strategies include
instructions to punish others who are “supposed to punish” and fail to do so. These
instructions for punishing include instructions to punish those who won’t punish
others when obliged to, and so on ad in� nitum. From an evolutionary point of view,
this resolution seems unsatisfactory. It does not seem reasonable to expect individ-
uals to be able to keep track of higher order failures to punish deviations from
punishment norms. Moreover, if a society is in an equilibrium where all attempt to
obey the norm, direct violations would be suf� ciently infrequent that selection for
punishing violators would be weak.

“The Viability of Vengeance,” by Friedman and Singh (1999), has a nice
discussion of the evolutionary stability of costly punishment. They suggest that
within groups, one’s actions are observed and remembered. A reputation for being
willing to avenge harmful actions may be suf� cient compensation for the costs of
retribution. In dealing with outsiders, however, one is remembered not as an
individual but as a representative of her group. Accordingly, a willingness to avenge
harm done by outsiders is a public good for one’s group, since it deters outsiders
from uncooperative behavior to group members. They propose that failure to
avenge wrongs from outsiders is punished (costlessly) by one’s own group, through
loss of status.

Henrich and Boyd (2001) propose an interesting explanation for the viability
of vengeance. They argue that “the evolution of cooperation and punishment are
a side effect of a tendency to adopt common behaviors during enculturation.” Since
it is not possible for humans to analyze and to “solve” the complex social games that
they play, imitation becomes important. It is often easier to observe a player’s
actions than to observe both actions and consequences. Thus, Henrich and Boyd
suggest that imitation may take the form of “copy-the-majority” rather than “copy-
the-most-successful.”

Henrich and Boyd (2001) show that it takes only a slight tendency toward
conformity to maintain an equilibrium that supports punishment strategies. In a
simpli� ed version of their model, community members engage in a two-stage game.
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The � rst stage is a linear public goods game where players decide to cooperate or
defect, but with a small probability, a player who intends to cooperate inadvertently
defects. In the second stage, individuals decide whether to punish � rst-stage defec-
tors. Punishing is costly both to the punisher and the punished. Consider a
population in which initially everyone intends to cooperate at the � rst stage and
where in the second stage, everyone intends to punish those who defected in the
� rst stage. Since everyone intends to cooperate, the only defections observed are
mistakes. Since everyone intends to punish those who defect in the � rst stage, the
payoff to those who defect in the � rst stage is lower than the payoff to those who
cooperate. Individuals who fail in the second stage to punish � rst-stage defectors
get higher payoffs than those who cooperate by punishing � rst-stage defectors, but
only slightly higher since there are very few � rst-stage defections. Since most
individuals conform to the norm, the expected cost of punishing observed defec-
tions is low, and thus, even a very small weight on the conformity measure is
suf� cient to overcome the payoff loss from punishing. Henrich and Boyd show that
when higher levels of punishment are accounted for, an even smaller weight on
conformity suf� ces to maintain cooperation at all stages.

Fehr and Gächter (2000) � nd interesting experimental evidence of the viabil-
ity of vengeance. In their experiment, subjects play a linear public goods game
repeatedly with anonymous partners who are reshuf� ed after each play. The game
also has a punishment stage in which at a cost to themselves, players can impose
punishments on those who have defected. Fehr and Gächter � nd that although
subjects are unlikely to reencounter those whom they punish, they frequently
punish defectors. In consequence, in later rounds of play, most subjects cooperate
fully.

Cultural versus Genetic Transmission
There is room to question whether the visceral, seemingly irrational anger that

people feel when they are cheated or otherwise violated can be explained by
cultural transmission rather than as genetic hard-wiring. Cosmides and Tooby
(1989) offer experimental evidence indicating that people are much better at
solving logical problems that are framed as “cheater detection” problems than at
solving equivalent problems in other frameworks. In their view, this is evidence that
humans have evolved special mental modules for solving such problems.

There is, however, evidence that culture in� uences readiness to anger. Exper-
iments by Nisbett and Cohen (1996) subjected male college students to rude and
insulting behavior in the laboratory. Using questionnaires, behavioral responses
and checks of testosterone levels, they found that students raised in the American
South become much angrier and more ready to � ght than those raised in the
North. The authors attribute this difference to the existence of a “culture of honor”
in the South that is not present in the North.

Economists and anthropologists have conducted a remarkable cross-cultural
series of experiments in which subjects play the ultimatum game. In the ultimatum
game, two players are matched to divide a � xed sum of money. The � rst player, “the
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proposer” offers a portion of the total to the second player, “the responder.” If the
responder accepts the offer, the money is divided as proposed. If the responder
rejects, both players receive nothing. If this game is played by rational players who
care only about their own monetary payoffs, then in equilibrium the proposer
offers a very small share, and the responder accepts. In laboratory experiments,
proposers typically offer a share of about one half, and this is accepted. When
proposers attempt to capture a signi� cantly larger share, responders usually reject
the proposal, in effect foregoing a small gain in order to “punish” a greedy
proposer. A study conducted in the United States, Israel, Japan and Slovenia found
similar results across these countries (Roth, Prasnikar, Okuno-Fujiwara and Zamir,
1991). But very different results were found when the ultimatum game was con-
ducted with the Machiguenga, a hunter-gatherer group who live in small extended
family hamlets scattered through the tropical forests of the Amazon. Henrich
(2000) found that the modal share offered by the Machiguenga was only
15 percent. Despite the fact that responders were offered a small share, they
accepted these offers about 95 percent of the time. Henrich reports that in ordinary
Machiguenga life, “cooperation above the family level is almost unknown.” A recent
study reports on ultimatum game experiments conducted in a total of 15 “small-
scale societies,” including hunter-gathers, pastoralists, farmers and villagers (Hen-
rich et al., 2001). The studies found wide divergence among these societies.

The great diversity of norms across societies indicates that the details of
prescribed behavior must be transmitted culturally rather than genetically. On the
other hand, it appears that the emotional and intellectual prerequisites for the
support of cultural norms are part of the common genetic endowment of humans.
By analogy, humans raised in different environments grow up to speak different
languages, but all normal humans appear to be genetically endowed with an innate
ability to learn language and manage grammar and syntax. It would be interesting
to know more about just which abilities and instincts are genetically transferred and
which are culturally transmitted. While the qualitative character of evolutionary
dynamics may be roughly the same for either transmission mechanism, the rates of
mutation and of selection for traits transmitted culturally are likely to be much
faster than for genetically transmitted traits.

Final Remarks

Further Reading
The literature on social evolution is large, diverse and multidisciplinary, and I

have con� ned my attention to a small portion of this work. For those who want to
read further in this area, here are a few works that I have found especially
stimulating.

Cavalli-Sforza and Feldman’s Cultural Transmission and Evolution (1981) pio-
neered formal modeling of this subject. Their introductory chapter presents a
clear-headed formulation of the implications of mutation, transmission and natural
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selection for culturally transmitted characteristics. There is also an empirical study
of the transmission from parents to children of such cultural behavior as religious
beliefs, political af� liation, listening to classical music, reading horoscopes and
high salt usage.

Rajiv Sethi and R. Somanathan’s “Understanding Reciprocity” (2002) lucidly
presents much interesting work not discussed here. Sober and Wilson’s (1999)
book Unto Others contains an extensive history of theoretical controversies between
group and individual selectionists. They also offer a fascinating survey of � eld
observations of group norms in a sample of 25 cultures selected from anthropo-
logical studies.

H. Peyton Young’s (1998) Individual Strategy and Social Structure: An Evolutionary
Theory of Social Institutions contains a remarkably accessible introduction to the
mathematical theory of stochastic dynamics and to its applications in the study of
the evolution of social institutions. Young maintains that a proper treatment of the
very long run must directly incorporate the stochastic process into the laws of
motion, and he shows that in models with multiple equilibria, “long run average
behavior can be predicted much more sharply than that of the corresponding
determinate dynamics.”

Skyrms’s (1996) Evolution of the Social Contract is a beautifully written applica-
tion of evolutionary dynamics to the study of bargaining games and the evolution
of notions of fairness and social contracts.

Finally, my own thinking about the evolutionary foundations of social behavior
has been much in� uenced by Ken Binmore’s (1994a, b) two-volume work, Game
Theory and the Social Contract. These books combines social philosophy, political
theory, evolutionary theory, anthropology and modern game theory with great
depth and subtlety.

Conclusion
I have attempted to map the territory between the opposing poles of individual

and group selection theory. The former predicts outcomes that are Nash equilibria
in games played by sel� sh individuals, while the latter predicts outcomes in which
individuals act so as to maximize the total reproductive success of their own groups.

Haystack models occupy interesting intermediate terrain. In this setting, vari-
ations in reproductive success depend both on individuals’ own actions and on the
composition of the groups to which they are assigned. In haystack models, if groups
are assembled nonassortatively and if the reproductive success of founding group
members is determined by a multiperson prisoners’ dilemma, then cooperation
cannot be sustained in equilibrium. But the assumptions that ensure the defeat of
cooperation are not always satis� ed, and there are many important social situations
in which at least some cooperation is sustained.

Stable groups of moderate size are likely to foster social interactions where,
unlike in prisoners’ dilemmas, individual self-interest is consistent with behavior
that maximizes group success. Interaction in such groups is best modeled as a
repeated game. In repeated games, where one’s actions can be observed and
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remembered by others, almost any pattern of individual behavior, including
behavior that maximizes group payoff, can be sustained by social norms that include
obligations to punish norm violations by others. Where many equilibria are possi-
ble, group selection is likely to play a major role in determining which equilibrium
will obtain. In a population where different groups maintain different internally
stable equilibria, each supported by a different norm, those groups following norms
that lead to higher group success may be expected to reproduce more rapidly, in
which case the behavior predicted by group selection models may predominate.

Evolutionary theory, laboratory experiments and � eld observations indicate
that humans are “social animals” who take a strong interest in the effects of their
actions on others and whose behavior is not always explained by simple models of
sel� sh behavior. Does this mean that our familiar analytic tool, sel� sh old homo
economicus, is an endangered species? I don’t think his admirers have reason to
worry. Among modern humans, and probably among our distant ancestors, match-
ing is far from perfectly assortative. While reciprocity and the presence of norms
can support a great deal of cooperation, much human activity and most human
motivation is impossible for others to observe and, hence, lies beyond the reach of
punishment or reward. If you seek empirical evidence that homo economicus survives,
you need only venture onto a congested freeway, where you will observe his close
relatives piloting their gargantuan sports utility vehicles.

y I thank Carl Bergstrom, Jack Hirschleifer and the JEP referees for encouragement and
useful advice.
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