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A COMBINATORIAL FORMULA FOR THE
CHARACTER OF THE DIAGONAL COINVARIANTS

J. HAGLUND, M. HAIMAN, N. LOEHR, J. B. REMMEL, and A. ULYANOV

Abstract
Let Rn be the ring of coinvariants for the diagonal action of the symmetric group Sn .
It is known that the character of Rn as a doubly graded Sn-module can be expressed
using the Frobenius characteristic map as ∇en , where en is the nth elementary sym-
metric function and ∇ is an operator from the theory of Macdonald polynomials.

We conjecture a combinatorial formula for ∇en and prove that it has many desir-
able properties that support our conjecture. In particular, we prove that our formula is
a symmetric function (which is not obvious) and that it is Schur positive. These results
make use of the theory of ribbon tableau generating functions of Lascoux, Leclerc,
and Thibon. We also show that a variety of earlier conjectures and theorems on ∇en

are special cases of our conjecture.
Finally, we extend our conjectures on ∇en and several of the results supporting

them to higher powers ∇
men .
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1. Introduction

1.1
Let Rn be the ring of coinvariants for the diagonal action of the symmetric group Sn

on Cn
⊕ Cn . In other words,

Rn = C[x, y]/I, (1)

where C[x, y] = C[x1, y1, . . . , xn, yn] is the ring of polynomial functions on Cn
⊕Cn ,

the symmetric group acts diagonally (i.e., permuting the x and y variables simultane-
ously), and the ideal I = ((x, y) ∩ C[x, y]

Sn ) is generated by all Sn-invariant polyno-
mials without constant term. The Sn-action respects the double grading

Rn =

⊕
r,s

(Rn)r,s (2)

given by the x- and y-degrees.
A formula for the character of Rn as a doubly graded Sn-module was conjectured

in [5] and proven in [13]. The formula expresses the character in terms of Macdonald
polynomials as follows. Let F denote the Frobenius characteristic, the linear map
from Sn-characters to symmetric functions which sends the irreducible character χλ

to the Schur function sλ(z). When we encode the graded character of Rn by means of
its Frobenius series

FRn (z; q, t) =

∑
r,s

qr t s F char(Rn)r,s, (3)

its value is given by the following theorem.

THEOREM 1.1.1 ([13, Proposition 3.5])
Let ∇ be the linear operator defined in terms of the modified Macdonald symmetric
functions H̃µ(z; q, t) by

∇ H̃µ = tn(µ)qn(µ′) H̃µ, (4)

where µ is a partition of n, µ′ is its conjugate, and n(µ) =
∑

i (i − 1)µi . Then we
have

FRn (z; q, t) = ∇en(z), (5)

where en is the nth elementary symmetric function.

The operator ∇ has been the subject of a series of theorems and conjectures of a
combinatorial nature (see [1], [5], [10], [13]; see also [14] for an overview). Specif-
ically, thanks to results of Garsia and Haiman in [5], Theorem 1.1.1 implies that the
dimension of Rn is given by

dimC Rn = (n + 1)(n−1) (6)
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and that the dimension of its subspace Rε
n of Sn-antisymmetric elements is given by

dimC Rε
n = Cn =

1
n + 1

(
2n
n

)
, (7)

the nth Catalan number. These and other related results suggest that we should try
to understand the rather mysterious quantity ∇en(z) in more combinatorial terms.
Taking a first step in this direction, Garsia and Haglund [3], [4] gave an explicit com-
binatorial formula for the Hall inner product

Cn(q, t) = 〈∇en, en〉, (8)

which by Theorem 1.1.1 and equation (7) is a q, t-analog of the Catalan number
Cn(1, 1) = Cn . Building on the Garsia-Haglund formula, Haglund and Loehr [9]
conjectured a combinatorial formula for the Hilbert series of Rn . By Theorem 1.1.1,
this Hilbert series is given by

Hn(q, t) = 〈∇en, en
1〉 =

∑
r,s

qr t s dim(Rn)r,s .

By [5], it was known that Hn(1, t) is a generating function enumerating parking func-
tions according to a suitably defined weight. The Haglund-Loehr conjecture inter-
prets Hn(q, t) as a bivariate generating function enumerating parking functions by
the usual weight together with another statistic counting certain kinds of inversions
(see §4.5).

In this paper we conjecture a combinatorial formula for the full expansion of
∇en(z) in terms of monomials, generalizing the Garsia-Haglund formula for Cn(q, t),
the Haglund-Loehr conjecture for Hn(q, t), and a conjecture in [2] expressing
〈∇en, hden−d〉 in terms of Schröder paths. We prove that our formula is, as it ought
to be, a symmetric function. As is shown, this property of our formula is not obvious
from its definition but follows from the theory of ribbon tableau generating functions
developed by Lascoux, Leclerc, and Thibon in [19], [20].

By Theorem 1.1.1, ∇en(z) is Schur positive; that is, its coefficients 〈∇en(z), sλ〉

on the Schur basis belong to N[q, t]. We prove that our conjectured formula is also,
as it ought be, Schur positive. For this, however, we must rely on an interpretation of
our formula in terms of Kazhdan-Lusztig polynomials, as in [20]. We are unable as
yet to provide a combinatorial interpretation for its Schur function expansion.

Finally, we extend our considerations to higher powers ∇
men(z), giving corre-

sponding conjectured formulas and examining their properties.
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2. Preliminaries

2.1. Notation for q-series
We use the following standard notation:

(z; q)k = (1 − z)(1 − zq) · · · (1 − zqk−1), (9)

[k]q =
1 − qk

1 − q
, (10)

[k]q ! =
(q; q)k

(1 − q)k = [k]q [k − 1]q · · · [1]q , (11)[
n
k

]
q

=
(qn−k+1

; q)k

(q; q)k
=

[n]q !

[k]q ![n − k]q !
, (12)[

n
k1, . . . , kr

]
q

=
[n]q !

[k1]q ! · · · [kr ]q !
, where k1 + · · · + kr = n. (13)

2.2. Partitions and tableaux
As usual, we represent an integer partition by the sequence

λ = (λ1, . . . , λl)

of its parts in decreasing order and denote its size by

|λ| =

∑
i

λi .

It is understood that λi = 0 for i > l. We may also write

λ = (1α1, 2α2, . . .)

to indicate the partition with αi parts equal to i . The conjugate partition λ′ is defined
by

λ′

i =

∑
j≥i

α j .

The Young diagram of λ is the set {(i, j) : 0 ≤ j < λi+1} ⊆ N×N. One pictures
elements (i, j) ∈ N × N as boxes or cells arranged with the i-axis vertical and the
j-axis horizontal, so that the rows of the diagram are the parts of λ. Abusing notation,
we usually write λ both for a partition and its diagram. A skew Young diagram λ/µ

is the difference of partition diagrams µ ⊆ λ. A skew diagram is a horizontal strip
(resp., vertical strip) if it contains no two cells in the same column (resp., row).

A semistandard Young tableau of (skew) shape λ is a function T from the diagram
of λ to the ordered alphabet

A+ = {1 < 2 < · · · },
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which is weakly increasing on each row of λ and strictly increasing on each column.
A semistandard tableau is standard if it is a bijection from λ to {1, 2, . . . , n = |λ|}.
More generally, we admit the alphabet

A± = A+ ∪ A− = {1 < 1̄ < 2 < 2̄ < · · · }

of positive letters 1, 2, . . . and negative letters 1̄, 2̄, . . . . A super tableau is a function
T : λ → A±, weakly increasing on each row and column, such that the entries equal
to a in T occupy a horizontal strip if a is positive and a vertical strip if a is negative.
Thus a semistandard tableau is just a super tableau with positive entries. We denote

SSYT(λ) = {semistandard tableaux T : λ → A+},

SSYT±(λ) = {super tableaux T : λ → A±},

SSYT(λ, µ) = {semistandard tableaux T : λ → A+ with entries 1µ1, 2µ2, . . .},

SSYT±(λ, µ, η) = {super tableaux T : λ → A± with entries 1µ1, 1̄η1, 2µ2, 2̄η2, . . .},

SYT(λ) =
{
standard tableaux T : λ → {1, . . . , n = |λ|}

}
= SSYT

(
λ, (1n)

)
.

2.3. Symmetric functions
We follow the notation of [24], writing eλ for the elementary symmetric functions, hλ

for the complete homogeneous symmetric functions, mλ for the monomial symmetric
functions, pλ for the power sums, and sλ for the Schur functions. We take these in
variables z = z1, z2, . . . so as not to confuse them with the variables x, y in Rn .

We write 〈−, −〉 for the Hall inner product defined by either of the identities

〈hλ, mµ〉 = δλµ = 〈sλ, sµ〉. (14)

We denote by ω the involution defined by any of the identities

ωeλ = hλ, ωhλ = eλ, ωsλ = sλ′ . (15)

We use square brackets f [A] to denote the plethystic evaluation of a symmetric
function f on a polynomial, rational function, or formal series A. This is defined by
writing f in terms of power sums and then substituting pm[A] for pm , where pm[A]

is the result of substituting a 7→ am for every indeterminate in A. The standard λ-ring
identities hold for plethystic evaluation, for example, en[A + B] =

∑
k ek[A]en−k[B],

and so forth. In particular, setting Z = z1 + z2 + · · · , we have f [Z ] = f (z) for all f .
Using this notation, we may write

ωW f [Z + W ] (16)
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to denote the result of applying ω to f [Z + W ] = f (z1, z2, . . . , w1, w2, . . .), con-
sidered as a symmetric function in the w-variables with functions of z as coeffi-
cients. Equations (14) and (15) then imply that the coefficient of a monomial zµwη

=

zµ1
1 zµ2

2 · · · w
η1
1 w

η2
2 · · · in ωW f [Z + W ] is given by

ωW f [Z + W ] |zµwη= 〈 f, eηhµ〉. (17)

If T is a semistandard tableau of (skew) shape λ, we set

zT
=

∏
x∈λ

zT (x). (18)

Then the familiar combinatorial formula for (skew) Schur functions reads

sλ(z) =

∑
T ∈SSYT(λ)

zT . (19)

Throughout what follows we fix

Z = z1 + z2 + · · · , W = w1 + w2 + · · · (20)

and adopt the convention that

zā stands for wa for every negative letter ā ∈ A±.

In particular, this means that if T ∈ SSYT±(λ, µ, η), then zT
= zµwη by definition.

The super analog of (19) is then

ωW sλ[Z + W ] =

∑
T ∈SSYT±(λ)

zT , (21)

which follows immediately from (17) and the Pieri rule.

2.4. Quasi-symmetric functions
Let T (x) = a, T (y) = a + 1 be consecutive entries in a standard tableau T with
x = (i, j), y = (i ′, j ′). If j ≥ j ′, we say that a is a descent of T . The descent set of
T is the subset

d(T ) = {a : a is a descent of T } ⊆ {1, . . . , n − 1}.

Given any subset D ⊆ {1, . . . , n − 1}, Gessel’s quasi-symmetric function is defined
by the formula

Qn,D(z) =

∑
a1≤a2≤···≤an

ai =ai+1 ⇒ i 6∈D

za1 za2 · · · zan . (22)

Here the indices ai belong to the alphabet of positive letters A+.
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PROPOSITION 2.4.1 ([6, Theorem 7])
The (skew) Schur function sλ(z) is given in terms of quasi-symmetric functions by

sλ(z) =

∑
T ∈SYT(λ)

Q|λ|,d(T )(z).

We will need a super version of the above proposition. To this end, define super quasi-
symmetric functions

Q̃n,D(z, w) =

∑
a1≤a2≤···≤an

ai =ai+1∈A+ ⇒ i 6∈D
ai =ai+1∈A− ⇒ i∈D

za1 za2 · · · zan . (23)

Here the indices ai range over A±. Note that our convention zā = wa remains in
force; so the right-hand side stands for an expression involving both z and w vari-
ables. The next proposition generalizes Proposition 2.4.1. We review the well-known
proof because later on we want to prove similar results for other kinds of tableaux by
appealing to the same mode of reasoning.

PROPOSITION 2.4.2
The (skew) super Schur function s̃λ(z, w) = ωW sλ[Z + W ] is given in terms of super
quasi-symmetric functions by

s̃λ(z, w) =

∑
T ∈SYT(λ)

Q̃|λ|,d(T )(z, w). (24)

In particular, Proposition 2.4.1 follows on setting w = 0.

Proof
If ν is a horizontal strip, there is a unique labelling of the cells of ν to form a standard
tableau with no descents (namely, labelling the cells in increasing order by columns).
Symmetrically, if ν is a vertical strip, there is a unique standard tableau on ν with
descents at every position. From these observations it follows that every super tableau
T , say, of shape λ, has a unique standardization S such that S is standard, T ◦ S−1 is a
weakly increasing function, and if T ◦S−1( j) = T ◦S−1( j +1) = · · · = T ◦S−1(k) =

a, then { j, . . . , k − 1} ∩ d(S) is empty if a is positive and equal to { j, . . . , k − 1} if a
is negative.

Conversely, the shape of a standard tableau with no descents can only be a hori-
zontal strip, and symmetrically, the shape of a tableau with descents at every position
can only be a vertical strip. It follows that for a given standard tableau S of shape λ,
if T ′

: {1, . . . , n} → A± is a weakly increasing function that satisfies the conditions
above, then T = T ′

◦ S is a super tableau, and its standardization is equal to S. Since
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the sum of zT over all such T is equal to Q̃|λ|,d(S)(z, w), it follows that (24) is just
another way of writing (21).

COROLLARY 2.4.3
Let f (z) be any symmetric function homogeneous of degree n, written in terms of
quasi-symmetric functions as

f (z) =

∑
D

cD Qn,D(z). (25)

Then its superization f̃ (z, w) = ωW f [Z + W ] is given by

f̃ (z, w) =

∑
D

cD Q̃n,D(z, w). (26)

Proof
The quasi-symmetric functions Qn,D(z) are linearly independent; hence the coeffi-
cients cD are uniquely determined by f , and the right-hand side of (26) depends
linearly on f . When f is a Schur function, the result follows from Propositions 2.4.1
and 2.4.2. This implies the result for all f by linearity.

Figure 1. A partition λ ⊆ δn (shaded) and
its Dyck path (heavy line)

3. The main conjecture

3.1
Fix n, and let

δn = (n − 1, n − 2, . . . , 1, 0) (27)

be the staircase partition. Let λ ⊆ δn be a partition whose diagram is contained in the
staircase. Note that the outer boundary of λ, together with segments along the i- and



COMBINATORIAL FORMULA FOR DIAGONAL COINVARIANTS 203

j-axes, can be identified with a Dyck path, a lattice path from (n, 0) to (0, n) by steps
of the form (−1, 0) (south) and (0, 1) (east) which never goes above the diagonal line
i + j = n. Figure 2.4 illustrates this. The number of Dyck paths, or of partitions
λ ⊆ δn , is the Catalan number Cn .

Let T be a semistandard tableau of skew shape (λ + (1n))/λ, that is, the vertical
strip formed by the cells (i, λi+1) for i = 0, 1, . . . , n − 1. For every cell x = (i, j) ∈

N × N, let d(x) = i + j . So d(x) = k means that x is on the kth diagonal. Given two
entries T (x) = a and T (y) = b of T with a < b, put x = (i, j), y = (i ′, j ′). We say
that these two entries form a d-inversion if either
(i) d(y) = d(x) and j > j ′ or
(ii) d(y) = d(x) + 1 and j < j ′.
Set

dinv(T ) = number of d-inversions in T . (28)

For example, the tableau T in Figure 2 has dinv(T ) = 8, with d-inversions formed by
the pairs of entries (8, 2), (8, 4), (6, 1), (6, 3), (7, 1), (7, 3), (4, 1), and (2, 1).

8
6

7
5

1
2

4
3

Figure 2. A standard tableau of shape (λ + (1n))/λ

Definition 3.1.1
We set

Dn(z; q, t) =

∑
λ⊆δn

∑
T ∈SSYT(λ+(1n)/λ)

t |δn/λ|qdinv(T )zT . (29)

CONJECTURE 3.1.2
We have the identity

∇en(z) = Dn(z; q, t). (30)

Equivalently, for all µ, we have

〈∇en, hµ〉 =

∑
λ⊆δn

∑
T ∈SSYT(λ+(1n)/λ, µ)

t |δn/λ|qdinv(T ). (31)
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The bulk of our work in this paper serves to show that Conjecture 3.1.2 is consistent
with previously known or conjectured properties of ∇en . The most basic such property
is that ∇en is a symmetric function.

THEOREM 3.1.3
The quantity Dn(z; q, t) is a symmetric function in z, and it is Schur positive; that is,
〈Dn(z; q, t), sµ(z)〉 ∈ N[q, t] for all µ. In fact, each term

Dλ
n (z; q) =

∑
T ∈SSYT(λ+(1n)/λ)

qdinv(T )zT (32)

is individually symmetric and Schur positive.

Note that it is not at all obvious from the definition that Dn(z; q, t) is symmetric.
Its symmetry is equivalent to the assertion that the right-hand side of (31) does not
depend on the order of the parts of µ. Our proof uses Lascoux, Leclerc, and Thibon’s
theory of spin generating functions for ribbon tableaux. We give a synopsis of their
theory and prove Theorem 3.1.3 in §5. For now, we take the theorem for granted and
explore what can be deduced by more elementary means.

3.2. Superization
Our first goal is to show that Conjecture 3.1.2 implies a seemingly stronger formula,
giving the superization ωW (∇en)[Z + W ]. We extend the definition of dinv(T ) to
super tableaux T as follows. Let x, y ∈ (λ + (1n))/λ satisfy condition (i) or (ii) in
the definition of d-inversion in Section 3.1. Then entries T (x) = a, T (y) = b with
a, b ∈ A± form a d-inversion in T if a < b or if a = b ∈ A− is a negative letter.

THEOREM 3.2.1
The superization D̃n(z, w; q, t) = ωW Dn[Z + W ; q, t] is given by

D̃n(z, w; q, t) =

∑
λ⊆δn

∑
T ∈SSYT±(λ+(1n)/λ)

t |δn/λ|qdinv(T )zT . (33)

Equivalently, Conjecture 3.1.2 implies

〈∇en, eηhµ〉 =

∑
λ⊆δn

∑
T ∈SSYT±(λ+(1n)/λ, µ, η)

t |δn/λ|qdinv(T ). (34)

Proof
Consider the total ordering of N × N (reverse diagonal lexicographic order) defined
by x <d y if either

d(x) > d(y), or d(x) = d(y) and j < j ′,
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where x = (i, j), y = (i ′, j ′). On every (skew) shape ν, there is a unique standard
tableau whose labels are decreasing with respect to <d , and there is a tableau with
increasing labels, also unique, if and only if all cells of ν are in distinct rows and
columns. Suppose now that ν is contained in (λ + (1n))/λ. Then ν is a vertical strip
a fortiori, and it is a horizontal strip if and only if its cells are in distinct rows and
columns. Hence on ν there exists a <d -decreasing (resp., <d -increasing) standard
tableau if and only if ν is a vertical (resp., horizontal) strip. In either case, the tableau
in question is unique.

Define a to be a d-descent of a standard tableau S ∈ SYT(λ + (1n)/λ) if S(x) =

a, S(y) = a + 1 with x >d y, and denote by dd(S) the set of d-descents of S.
Define the standardization of a super tableau T ∈ SSYT(λ+ (1n)/λ) to be the unique
standard tableau S such that T ◦ S−1 is weakly increasing; and if T ◦ S−1( j) =

T ◦ S−1( j + 1) = · · · = T ◦ S−1(k) = a, then { j, . . . , k − 1} ∩ dd(S) is empty if a
is positive, and equal to { j, . . . , k − 1} if a is negative. The proof of Proposition 2.4.2
again goes through to show that the standardization in this new sense exists and that
the sum

∑
T zT over all super tableaux T with standardization S is equal to the super

quasi-symmetric function Q̃n,dd(S)(z, w).
Note that if cells x, y satisfy conditions (i) or (ii) in the definition of d-inversion,

then x >d y. In particular, a standard tableau labelled in <d -increasing order has no
d-inversions, while one labelled in <d -decreasing order has a d-inversion in every
such pair of cells x, y. With this in mind, we see that if T is a super tableau and S is
its standardization, then dinv(S) = dinv(T ). This yields the formula∑

T ∈SSYT±(λ+(1n)/λ)

qdinv(T )zT
=

∑
S∈SYT(λ+(1n)/λ)

qdinv(S) Q̃n,dd(S)(z, w). (35)

Setting w = 0, we obtain the quasi-symmetric function expansion

Dn(z; q, t) =

∑
λ⊆δn

∑
S∈SYT(λ+(1n)/λ)

t |δn/λ|qdinv(S)Qn,dd(S)(z). (36)

By (35), the right-hand side of (33) is the superization of this, and the theorem now
follows from Theorem 3.1.3 and Corollary 2.4.3.

3.3. Shuffle formulation
Recall that a parking function on n cars is a function f : {1, . . . , n} → {1, . . . , n}

satisfying ∣∣ f −1({1, . . . , k})
∣∣ ≥ k for all k = 1, . . . , n. (37)

For every function f : {1, . . . , n} → N>0, there is a unique partition λ with at most n
parts and a standard tableau T of shape (λ + (1n))/λ such that each entry a of T lies
in column f (a) − 1. Namely, the parts of λ are the values f (i) − 1, and the entries



206 HAGLUND, HAIMAN, LOEHR, REMMEL, and ULYANOV

of T in the cells (i − 1, λi ) for which λi = j − 1 are the elements of f −1({ j}). It is
easy to see that f is a parking function if and only if λ ⊆ δn .

Let f be a parking function encoded by λ ⊆ δn and T ∈ SYT(λ + (1n)/λ).
Reading off the entries of T in <d -increasing order yields a permutation w( f ) with
descent set

D
(
w( f )−1)

= dd(T ). (38)

For example, for the parking function encoded by the tableau in Figure 2, we have
w( f ) = 82467135 and D(w( f )−1) = dd(T ) = {1, 3, 5, 7}.

Say that a permutation w is a µ, η-shuffle if its inverse is the concatenation of
alternately increasing and decreasing sequences of lengths µ1, η1, µ2, η2, . . . . Define
the area a( f ) to be |δn/λ| =

(n+1
2

)
−

∑
i f (i); this is equal to the traditional weight

of the parking function, as in [5], [9], and [10]. Define dinv( f ) = dinv(T ). Then we
have the following corollary to Theorem 3.1.3 and the proof of Theorem 3.2.1.

COROLLARY 3.3.1
Conjecture 3.1.2 implies that 〈∇en, eηhµ〉 is the generating function∑

f

ta( f )qdinv( f ) (39)

summed over parking functions f such that w( f ) is a µ, η-shuffle. Even without as-
suming Conjecture 3.1.2, the above sum is independent of the order of the parts of η

and µ.

Remark. The sum in (39) is also independent of the way in which µ and η are in-
terleaved, as can be seen by setting some of the parts in the standard interleaving
µ1, η1, µ2, η2, . . . to zero.

4. Specializations

4.1. Value at q = 1
By [5, Theorems 2.1, 2.2, 3.6], we have the formula

∇en(z)|q=1 =

∑
λ⊆δn

t |δn/λ|eα(z), (40)

where λ = (0α0, 1α1, 2α2, . . .) with α0 defined to make
∑

i αi = n. We verify that
Conjecture 3.1.2 is consistent with this formula.

PROPOSITION 4.1.1
We have Dn(z; 1, t) = ∇en(z)|q=1.
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Proof
Since the skew Schur function s(λ+(1n))/λ is equal to eα , the proposition is obvious
from (40) and Definition 3.1.1.

Remark. Although Dn(z; 1, t) is trivial to evaluate, Dn(z; q, 1) is not (see §7, Prob-
lem 4).

4.2. Value at t = 0
LEMMA 4.2.1
We have

∇en(z)|t=0 = (q; q)nhn[Z/(1 − q)]. (41)

Proof
Equation (5) implies that ∇en(z)|t=0 is the Frobenius series in one parameter q of the
classical coinvariant ring Rn ∩ C[x]. By a result of Stanley [28], this is given by the
right-hand side of (41).

PROPOSITION 4.2.2
We have

Dn(z; q, 0) = ∇en(z)|t=0. (42)

Proof
Only the term λ = δn contributes when t = 0. Then every cell x ∈ (λ+ (1n))/λ is on
the diagonal d(x) = n, a tableau T ∈ SSYT(λ+(1n)/λ) is just a word in the alphabet
A+, and dinv(T ) is its number of inversions in the ordinary sense. Hence

Dn(z; q, 0) =

∑
µ

[
n

µ1, . . . , µl

]
q
mµ(z). (43)

By the Cauchy formula,

(q; q)nhn[Z/(1 − q)] =

∑
µ

(q; q)nhµ[1/(1 − q)]mµ(z), (44)

which is equal to the right-hand side of (43).

4.3. Value at q = 0
We begin by observing that if λ ⊆ δn and λ′ has distinct parts, then for a parking
function f encoded by a tableau T ∈ SYT(λ + (1n)/λ), the permutation w( f ) is
obtained simply by reading T from the top row to the bottom row. Fix w0 ∈ Sn to be
the permutation w0(i) = n + 1 − i , so that w( f )w0 is w( f ) read backwards.
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LEMMA 4.3.1
A standard tableau T ∈ SYT(λ + (1n)/λ) has dinv(T ) = 0 if and only if λ′ has
distinct parts and the descent set of w( f )w0 is the set of parts of λ′, where f is the
parking function encoded by T .

Proof
Suppose that λ′ does not have distinct parts. Then the associated Dyck path contains
two or more consecutive horizontal steps, not on the j-axis, and there is a cell x ∈

(λ + (1n))/λ bordering the vertical step that follows them. There is at least one other
cell y ∈ (λ+(1n))/λ with d(y) = d(x) and y to the left of x . Fix y to be the rightmost
of these. By assumption, y and x are not consecutive on their common diagonal.
Hence the cell z directly below y in N×N is also in (λ+ (1n))/λ; otherwise, y would
not have been the rightmost cell. No matter what the entries of T in the three cells x ,
y, z are, they form at least one d-inversion.

We have shown that dinv(T ) = 0 implies that λ′ has distinct parts. Once this is
given, it is easy to see that dinv(T ) = 0 if and only if, in addition, the descents of
w( f )w0 are the parts of λ′.

PROPOSITION 4.3.2
We have

Dn(z; 0, t) = ∇en(z)|q=0. (45)

Proof
Recall that the major index maj(w) of a permutation or a tableau is defined as the sum
of its descents. Every permutation w occurs uniquely as w( f ) for a shape λ, tableau
T , and parking function f satisfying the conditions in Lemma 4.3.1. Moreover, we
have |δn/λ| = maj(w0w( f )w0). Lemma 4.3.1 and equations (36) and (38) therefore
imply that

Dn(z; 0, t) =

∑
w∈Sn

tmaj(w0ww0)Qn,D(w−1)(z). (46)

Recall that if (Pw, Qw) is the pair of standard tableaux associated to w by the Schen-
sted correspondence, then d(Qw) = D(w) and d(Pw) = D(w−1). Recall further
that Qw0ww0 = ev(Qw), where ev is the evacuation operator of Schützenberger [27].
Hence we can rewrite (46) as

Dn(z; 0, t) =

∑
(Pw,Qw)

tmaj(ev Qw)Qn,d(Pw)(z). (47)

Recall (see [29, Proposition 7.19.11]) that

(t; t)nsλ

( 1
(1 − t)

)
=

∑
T ∈SYT(λ)

tmaj(T ). (48)
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Figure 3. The arm and leg of a cell x in a Young diagram

Using this and Proposition 2.4.1, we see that the right-hand side of (47) decomposes
as ∑

λ

(t; t)nsλ

( 1
(1 − t)

)
sλ(z), (49)

which is equal to ∇en(z)|q=0 by Lemma 4.2.1 and the Cauchy formula.

4.4. The q, t-Catalan formula
Haglund [7] conjectured and with Garsia [3], [4] proved a formula for the q, t-Catalan
polynomial

Cn(q, t) = 〈∇en, en〉. (50)

Haglund and Loehr [9] later showed that the formula of [3] and [4] can also be written
in the form

Cn(q, t) =

∑
λ⊆δn

t |δn/λ|qdinv(λ), (51)

where dinv(λ) is defined to be dinv(T ) for the super tableau of shape (λ +

(1n))/λ whose every entry is 1̄. It is immediate from (34) that this coincides with
〈Dn(z; q, t), en〉.

The formulation of (51) in terms of dinv(λ) was motivated by a conjecture of
Haiman whose original form was slightly different. Namely,

Cn(q, t) =

∑
λ⊆δn

t |δn/λ|qb(λ), (52)

where b(λ) is the number of cells x ∈ λ such that

l(x) ≤ a(x) ≤ l(x) + 1. (53)

Here the arm a(x) (resp., leg l(x)) is the number of cells in the hook of x which are
in the same row (resp., column) as x , excluding x itself (see Figure 3). To tie (51) and
(52) together, let us show that in fact b(λ) = dinv(λ).
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LEMMA 4.4.1
The number b(λ) defined above is equal to the number of pairs of cells x, y ∈ (λ +

(1n))/λ satisfying condition (i) or (ii) in the definition of d-inversion in §3.1.

Proof
Let x be a cell of λ, let u be the cell of (λ + (1n))/λ just outside the end of the arm
of x , and let t be the cell just outside the end of the leg of x . Travelling along the
diagonal i + j = d(t), starting at t and moving in the increasing i-direction, let v

be the first cell of (λ + (1n))/λ encountered. (It always exists.) Then a(x) = l(x) if
and only if u, v satisfy (i) in the definition of d-inversion, while a(x) = l(x) + 1 if
and only if v, u satisfy (ii). Moreover, every pair of cells satisfying (i) or (ii) arises
uniquely in this way. A fully detailed argument in a more general setting is given in
the proof of Lemma 6.3.3.

4.5. The Haglund-Loehr conjecture
The Hilbert series of Rn is given by Hn(q, t) = 〈∇en, en

1〉. Conjecture 3.1.2 implies
that this is equal to〈

Dn(z; q, t), en
1
〉
=

∑
λ⊆δn

∑
T ∈SYT(λ+(1n)/λ)

t |δn/λ|qdinv(T ). (54)

If desired, one may express the same thing as a sum
∑

f ta( f )qdinv( f ) over all parking
functions f on n cars. It is none other than the value given for Hn(q, t) by a conjecture
of Haglund and Loehr [9, Conjecture 2]. Thus the Haglund-Loehr conjecture is an
immediate consequence of Conjecture 3.1.2.

4.6. Fermionic formula
The original “fermionic formula” is that of Kerov, Kirillov, and Reshetikhin [17], [18],
giving the q-Kostka coefficient Kλµ(q) as a sum of products of q-binomial coeffi-
cients. By analogy, we use the same terminology for an expansion of a q, t-quantity
as a sum of powers of t times products of q-binomial coefficients. Haglund [7] gave
a fermionic formula in this sense for Cn(q, t). Here we give a fermionic formula for
〈Dn(z; q, t), eηhµ〉.

Let σ = σ1 · · · σn ∈ Sn be a permutation with descents at positions r1 < · · · <

rk−1, and set r0 = 0, rk = n. Let A j = A j (σ ) = {σl : r j−1 + 1 ≤ l ≤ r j } be
the j th run of σ . Denote by F(σ ) the set of all parking functions f whose encoding
tableau T has the property that A j is the set of entries of T in cells x on the diagonal
d(x) = n + 1 − j . Define

H(σ ; q, t) =

∑
f ∈F(σ )

qdinv( f )ta( f ). (55)
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With this notation, [9, Theorem 1] can be formulated as

H(σ ; q, t) = tcomaj(σ )
n∏

i=2

[v(σ, i) + χ(i ≤ r1)]q , (56)

where χ(a ≤ b) equals 1 if a ≤ b and 0 otherwise, comaj(σ ) =
∑k−1

i=1 (n − ri ) =

maj(σw0), and v(σ, i) is the largest value of p, 1 ≤ p ≤ i −1, for which the sequence

(σi−p − σi mod n), (σi−p+1 − σi mod n), . . . , (σi−1 − σi mod n) (57)

is increasing. (In other words, σi−p, . . . , σi is a rotation of an increasing se-
quence.) Hence 〈Dn(z; q, t), en

1〉, that is, our conjectured value for the Hilbert series
Hn(q, t) = 〈∇en, en

1〉 of Rn , is the sum of the right-hand side of (56) over all σ ∈ Sn .
Let

Hµ(σ ; q, t) =

∑
f ∈Fµ(σ )

qdinv( f )ta( f ), (58)

where Fµ(σ ) is the set of all parking functions f ∈ F(σ ) such that w( f ) is a µ, ∅-
shuffle. Note that if f ∈ F(σ ), then σ is the permutation obtained by sorting each
block of w( f ) contributed by the cells on one diagonal d(x) = n+1− j in the tableau
T that encodes f . (These blocks are the sets A j .) Clearly, Hµ(σ ; q, t) = 0 if σ is not
a µ, ∅-shuffle. Otherwise, if σ is a µ, ∅-shuffle, define B j = {M j−1 + 1, . . . , M j },
where M j = µ1 + · · · + µ j . In other words, the collection {B j : 1 ≤ j ≤ l(µ)} is the
partition of {1, . . . , n} into blocks of consecutive integers of sizes µ j .

Note that if f ∈ Fµ(σ ), then the elements of Ai ∩ B j occur in w( f ) in increasing
order for each i and j . Let S ⊆ Sn be the subgroup consisting of permutations τ

which map each set Ai ∩ B j into itself. Then, given any g ∈ F(σ ), there is a unique
f ∈ Fµ(σ ) and τ ∈ S such that w(g) = τ ◦ w( f ). Hence( ∏

i, j

bi, j !
)

Hµ(σ ; 1, t) = H(σ ; 1, t), (59)

where bi, j = |Ai ∩ B j |. Moreover, taking into account the definition of dinv, it is clear
that

Hµ(σ ; q, t) =
H(σ ; q, t)∏

i, j [bi, j ]q !
. (60)

Now set Vi, j = v(σ, k) + χ(k ≤ r1), where σk is the largest element of Ai ∩ B j .
Using the fact that the elements of Ai ∩ B j form an increasing sequence of adjacent,
consecutive integers in σ , the definition of v(σ, i) implies that

H(σ ; q, t)∏
i, j [bi, j ]q !

= tcomaj(σ )
∏
i, j

[
Vi, j

bi, j

]
q
. (61)
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Combining this with (60) yields the fermionic formula

〈
Dn(z; q, t), hµ

〉
=

∑
σ∈Sn

σ is a µ, ∅-shuffle

tcomaj(σ )
∏
i, j

[
Vi, j

bi, j

]
q
. (62)

More generally, there is a similar formula for 〈Dn(z; q, t), eηhµ〉. Set M j = µ1 +

· · · + µ j as before, and set E j = η1 + · · · + η j . In this setting we redefine B j =

{M j−1 + E j−1 + 1, . . . , M j + E j−1} and set C j = {M j + E j−1 + 1, . . . , M j + E j }.
We define A j to be the j th run of σ , just as before. Let σ̃ be the permutation obtained
by reversing each block Ai ∩ C j in σ .

Put bi, j = |Ai ∩ B j | and ci, j = |Ai ∩ C j |. Define Vi, j as before, and set Wi, j =

v(σ, k)+χ(k ≤ r1), where σk is the largest element of Ai ∩C j . Then similar reasoning
yields the formula

〈
Dn(z; q, t), eηhµ

〉
=

∑
σ∈Sn

σ̃ is a µ, η-shuffle

tcomaj(σ )

( ∏
i, j

[
Vi, j

bi, j

]
q

)( ∏
i, j

q(
ci, j

2 )
[

Wi, j

Ci, j

]
q

)
.

(63)

Remarks
(1) In the above we do not assume that µ and η are partitions. Thus “the” fermionic

formula is really a separate formula for each possible ordering of the parts of
µ and η. The symmetry part of Theorem 3.1.3 is equivalent to the statement
that all these formulas yield the same result.

(2) The reader may enjoy verifying that the special case µ = ∅, η = (n) of (63)
agrees with the fermionic formula in [7] for the q, t-Catalan polynomial.

4.7. Schröder paths
In [2, Conjecture 1], Egge, Haglund, Killpatrick, and Kremer conjectured a combina-
torial formula for 〈∇en, en−d hd〉. In this section we first show how this conjecture is
a special case of (34). Then we briefly discuss how some ideas in Haglund’s recent
proof of their conjecture suggest a refinement of Conjecture 3.1.2.

A Schröder path is a lattice path from (n, 0) to (0, n) composed of steps of the
form (−1, 0) (south), (0, 1) (east), and (−1, 1) (diagonal) which never goes above the
line i + j = n.∗ In [2], the authors gave two different formulations of their conjec-
ture, one involving a pair of statistics (area, bounce) on Schröder paths and another
involving a pair of statistics (dinv, area). They showed that the two formulations are
equivalent by exhibiting a bijection that sends (dinv, area) to (area, bounce).

∗In [2], partitions are drawn in the fourth quadrant, English style, while we draw them in the first quadrant,
French style. Correspondingly, our Schröder paths are mirror images of those in [2].
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Given a Schröder path 5, let λ(5) be the partition whose associated Dyck path
is obtained by replacing each diagonal step of 5 with a south step followed by an east
step. If 5 has d diagonal steps, let T (5) be the super tableau of shape (λ + (1n))/λ

obtained by placing the number 1 in each square bordered by one of the d new pairs
of south, east steps replacing the former diagonal steps, and setting all other entries
to 1̄. The reader will have no problem checking from the definitions of dinv(5) and
area(5) given in [2] that dinv(5) = dinv(T (5)) and area(5) = |δn/λ(5)|. Thus [2,
Conjecture 1] is equivalent to the special case of (34) for eηhµ = en−d hd .

More recently, Haglund [8] has proven [2, Conjecture 1] and also the hµ =

hn−d hd case of (31). An important role in both proofs is played by functions En,k ,
defined as the coefficients in the Newton interpolation series expansion

en

[
Z

1 − u
1 − q

]
=

n∑
k=1

(u; q)k

(q; q)k
En,k(z). (64)

Note that by setting u = q in (64), we see that
∑n

k=1 En,k = en . The En,k were first
introduced by Garsia and Haglund [3] in their proof of (51). In [8] it is conjectured
that

〈1sβ ∇En,k, sµ〉 ∈ N[q, t] (65)

for all µ, β. Here 1 f is a linear operator defined on the modified Macdonald basis as

1 f H̃µ = f [Bµ]H̃µ, (66)

where
Bµ =

∑
(i, j)∈µ

t i q j . (67)

In particular, (65) implies
〈∇En,k, sµ〉 ∈ N[q, t]. (68)

The conjectured truth of (65) is largely motivated by [13, Corollary 3.5], which im-
plies

〈1sβ ∇en, sµ〉 ∈ N[q, t]. (69)

We now introduce a refinement of Conjecture 3.1.2 which implies (68), namely,
the following.

CONJECTURE 4.7.1
For 1 ≤ k ≤ n,

∇En,k =

∑
λ⊆δn

|{i :λi =n−i}|=k

t |δn/λ|Dλ
n (z; q). (70)
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5. Proof of Theorem 3.1.3
In this section we summarize some results of Lascoux, Leclerc, and Thibon [19], [20],
adding to these a new description of their “spin” statistic on ribbon tableaux, and use
all this to prove Theorem 3.1.3.

5.1. Cores and quotients
We begin by recalling some standard facts from the combinatorial theory of n-cores
and n-quotients, as developed, for instance, in [15] and [30]. An n-ribbon is a con-
nected skew shape of size n and depth 1, that is, one containing no (2 × 2)-rectangle.
A partition µ is an n-core if there is no ν ⊆ µ such that µ/ν is an n-ribbon. Every
µ contains a unique n-core ν = coren(µ) such that µ/ν can be tiled by n-ribbons.
In other words, if we successively remove as many n-ribbons from µ as possible, the
shape ν that remains does not depend on any choices made.

The content of a cell x = (i, j) ∈ N × N is defined as c(x) = j − i . Define
the content of an n-ribbon to be the maximum of the contents of its cells. If ν is
an n-core, there are exactly n shapes µ such that µ/ν is an n-ribbon, and the con-
tents s0, s1, . . . , sn−1 of these ribbons are distinct (mod n). We always index them so
that si ≡ i (mod n). Then the n-cores are in one-to-one correspondence with cosets
(s0, s1, . . . , sn−1) + Z · (n, n, . . . , n) satisfying si ≡ i (mod n) for all i .

Fix an n-core ν with content sequence (s0, s1, . . . , sn−1). If

(µ(0), µ(1), . . . , µ(n−1))

is any n-tuple of partitions, we define the adjusted content of a cell x ∈ µ(i) to be

c̃(x) = nc(x) + si . (71)

Note that c̃(x) determines which µ(i) the cell x belongs to via its congruence class
(mod n). Let P be the set of all partitions, and let Pν = {µ ∈ P : coren(µ) = ν}.
There is a bijection

quotn : Pν → Pn, (72)

written quotn(µ) = (µ(0), µ(1), . . . , µ(n−1)), characterized by the following property.
In any tiling of µ/ν by n-ribbons, the multiset of contents of the ribbons is equal to the
multiset of adjusted contents c̃(x), taken over all i and all cells x ∈ µ(i). In particular,
we have

|µ/ν| = n| quotn(µ)| =
def

n
∑

i

|µ(i)
|. (73)

For λ, µ ∈ Pν we also have

λ ⊆ µ ⇐⇒ λ(i)
⊆ µ(i) for all i. (74)
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Therefore quotn extends to a bijection quotn(µ/λ) = (µ(0)/λ(0), . . . , µ(n−1)/λ(n−1))

from skew shapes µ/λ with λ, µ ∈ Pν to n-tuples of skew shapes. To avoid notational
ambiguity, we henceforth apply quotn only to skew shapes, so if µ is a partition with
coren(µ) = ν, we write (µ(0), µ(1), . . . , µ(n−1)) = quotn(µ/ν).

We remark that a given skew shape may have multiple representations θ = µ/λ

with different n-cores ν = coren(µ) = coren(λ). However, the resulting n-quotients
quotn(θ) differ only by translations of the components θ (i), which compensate for
the change in the contents si associated with ν so that the adjusted contents c̃(x) for
x ∈ quotn(θ) remain the same.

A standard, semistandard, or super tableau on an n-tuple of shapes

(µ(0), . . . , µ(n−1))

just means a tableau of the specified sort on the disjoint union of the shapes µ(i).
A standard n-ribbon tableau on a (skew) shape µ is a tiling of µ by n-ribbons and
a function T : µ → {1, 2, . . . , N = |µ|/n}, weakly increasing on each row and
column, which is constant on each ribbon and induces a bijection from the ribbons
to {1, 2, . . . , N }. It follows from (74) that quotn induces a bijection between standard
n-ribbon tableaux of shape µ and SYT(quotn(µ)).

Call µ a horizontal (resp., vertical) n-ribbon strip if it can be tiled by n-ribbons
and each µ(i) is a horizontal (resp., vertical) strip. Then there is a unique standard
ribbon tableau T of shape µ in which the ribbons are labelled in increasing (resp.,
decreasing) order of content—namely, quotn(T ) is the unique standard tableau of
shape quotn(µ) in which the cells are labelled in increasing (resp., decreasing) order
of adjusted content c̃(x). The ribbon tiling given by this distinguished tableau is the
official tiling of the strip µ. In the case of a horizontal ribbon strip µ, the official tiling
is characterized by the property that the cell of maximum content in each ribbon is
the minimum cell in its column in the shape µ.

A semistandard n-ribbon tableau of shape µ is a tiling of µ by n-ribbons and a
function T : µ → A+, weakly increasing on each row and column and constant on
each ribbon, such that for each a ∈ A+, T −1(a) is a horizontal n-ribbon strip with the
official tiling. Define zT to be the product of zT (θ) over the n-ribbons θ in the given
tiling of µ or, equivalently,

∏
x∈µ zT (x) = (zT )n . It is immediate that quotn induces

a weight-preserving bijection between the set SSRTn(µ) of semistandard n-ribbon
tableaux of shape µ and SSYT(quotn(µ)).

5.2. Spin generating functions
As in [19], the spin s(θ) of an n-ribbon θ is one less than the number of its rows.
Given a (semi)standard n-ribbon tableau T , we set s(T ) equal to the sum of s(θ) over
all ribbons θ in the tiling underlying T . One proves that (−1)s(T ) depends only on the
shape of T . Let smin(µ) and smax(µ) be the minimum and maximum of s(T ) over
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all T of shape µ. The spin and cospin of a tableau T of shape µ are then defined to
be the integers sp(T ) = (s(T ) − smin(µ))/2 and csp(T ) = (smax(µ) − s(T ))/2,
respectively.

THEOREM 5.2.1 ([19, Theorem VI.1])
For every (skew) shape µ, the spin generating function

Gµ(z; q) =

∑
T ∈SSRTn(µ)

qsp(T )zT (75)

is a symmetric function.

To apply this theorem in our setting, we need an alternative description of spin. Fix
a content sequence (s0, s1, . . . , sn−1) with si ≡ i (mod n) and an n-tuple of shapes
� = (µ(0), µ(1), . . . , µ(n−1)). Let S be a semistandard tableau of shape �. An inver-
sion is a pair of entries S(x) = a, S(y) = b such that a < b and 0 < c̃(x)− c̃(y) < n.
Denote by inv(S) the number of inversions in S.

LEMMA 5.2.2
Given a (skew) shape µ, there is a constant e such that for every standard n-ribbon
tableau T of shape µ, we have sp(T ) = e − inv(quotn(T )).

Proof
Say that standard tableaux S, S′ of shape � = quotn(µ) differ by a switch if they are
identical except for the positions of two consecutive entries a, a + 1. Every pair of
tableaux is connected by a sequence of switches. If S and S′ differ by a switch, then the
only entries that might form an inversion in one tableau but not the other are a, a + 1.
Assuming, as we may, that inv(S′) ≥ inv(S), we therefore have inv(S′) = inv(S) + ε

with ε ∈ {0, 1}.
Let S = quotn(T ), S′

= quotn(T ′). What must be shown is that sp(T ) = sp(T ′)+

ε. Since T and T ′ are identical except for the ribbons labelled a and a+1, the problem
reduces to the case |µ| = 2n, |�| = 2. Let x , y be the two cells of �, with S(x) = 1,
S(y) = 2 and S′(x) = 2, S′(y) = 1. Note that c̃(x) 6= c̃(y). We have ε = 0 if and
only if |c̃(y) − c̃(x)| ≥ n. This means that µ is the union of two ribbons whose cells
have no contents in common, and these ribbons are unique. Hence sp(T ) = sp(T ′).

Conversely, we have ε = 1 if and only if |c̃(y) − c̃(x)| < n, which means that
µ can be tiled by two ribbons whose cells have at least one content in common. In
this case, µ has exactly two ribbon tilings, as in Figure 4, each supporting one of the
standard tableaux T , T ′. In fact, µ is both a horizontal and a vertical n-ribbon strip,
the tiling of T is the official tiling of µ as a horizontal strip, and that of T ′ is the
official tiling as a vertical strip. In the horizontal tiling, each ribbon has one more row
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1

21

2

Figure 4. A shape with two tilings by two n-ribbons

than the corresponding ribbon with the same content in the vertical tiling (see [25,
Lemma 4.1]). Hence sp(T ) = sp(T ′) + 1.

LEMMA 5.2.3
Lemma 5.2.2 holds also for semistandard tableaux.

Proof
If S is a standard tableau of shape � = quotn(µ), call a a descent of S if S(x) = a,
S(y) = a + 1, with c̃(x) > c̃(y). If � is a horizontal strip, there is a unique standard
tableau of shape � with no descents, and, conversely, such a tableau exists only on a
horizontal strip. As in the proof of Proposition 2.4.2, it follows that each semistandard
tableau T has a unique standardization S such that T ◦ S−1 is weakly increasing, and
if T ◦ S−1( j) = T ◦ S−1( j +1) = · · · = T ◦ S−1(k), then d(T )∩{ j, . . . , k −1} = ∅.

By definition, equal entries T (x) = T (y) = a contribute nothing to inv(T ). In
the standardization S, equal entries are replaced with entries labelled in increasing
order of adjusted content c̃ which contribute nothing to inv(S). On the other hand,
unequal entries of T give rise to entries ordered in the same way in S, so inv(T ) =

inv(S).
Given a semistandard n-ribbon tableau T , we define its standardization to be

the unique standard n-ribbon tableau S such that quotn(S) is the standardization of
quotn(T ), as above. The important point to notice here is that for each letter a, the
horizontal ribbon strip T −1({a}) has its ribbons labelled in S in increasing order
of content, and hence it is tiled in S by the official tiling. This shows that T and
its standardization have the same underlying ribbon tiling and hence the same spin
sp(T ) = sp(S).

These observations reduce the lemma for semistandard tableaux to the standard
case.

Remark. Schilling, Shimozono, and White [26] defined an inversion number inv′(T )
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such that csp(T ) = inv′(quot(T )) exactly, without the constant error term e in Lemma
5.2.2. An inversion by their definition is an inversion by ours which also satisfies some
extra conditions. Haiman’s student Michelle Bylund and Haiman found the simpler
definition used here and the proof given above.

COROLLARY 5.2.4
Fix an n-tuple of shapes � = (µ(0), . . . , µ(n−1)) and a sequence of content offsets
si ≡ i (mod n) as in the definitions of c̃ and inv. Then there exists µ with quotn(µ) =

� such that
qeGµ(z; q−1) =

∑
T ∈SSYT(�)

q inv(T )zT (76)

for some exponent e. In particular, the expression on the right-hand side is a symmet-
ric function.

Proof
This is immediate from Lemma 5.2.3 if (s0, s1, . . . , sn−1) is the content sequence of
some n-core ν. But we can always make it one by adding c(n, n, . . . , n) for some c.
This change does not alter the value of inv(T ).

Proof of Theorem 3.1.3 (Symmetry)
We show that the expression Dλ

n (z; q) in (32) is a symmetric function. Write λ =

(0α0, 1α1, . . . , (n −1)αn−1), defining α0 so that
∑

j α j = n. Set µ( j)
= (1α j ), a single

column of the same height as column j in (λ + (1n))/λ. Translating the columns of
(λ + (1n))/λ onto the corresponding columns µ( j) gives a bijection between the cells
of (λ+(1n))/λ and those of � = (µ(0), . . . , µ(n−1)). This induces in the obvious way
a bijection between semistandard tableaux of these shapes.

Take the offsets s j = j − n( j + λ′

j+1). Then if x ∈ (λ + (1n))/λ corresponds to
x ′

∈ µ( j), we have
c̃(x ′) = j − nd(x). (77)

It follows that a pair of cells x, y ∈ (λ + (1n))/λ satisfies condition (i) or condition
(ii) in the definition of d-inversion if and only if the corresponding cells x ′, y′

∈ �

satisfy the condition 0 < c̃(x ′) − c̃(y′) < n. If T ∈ SSYT(λ + (1n)/λ) corresponds
to T ′

∈ SSYT(�), we therefore have dinv(T ) = inv(T ′). Hence Dλ
n (z; q) coincides

with the right-hand side of (76) for this choice of � and si .

Example
We make the constructions in the proof more explicit for the tableau T shown in
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Figure 2. For this T , we have � = ((12), (12), ∅, (1), ∅, (1), (12), ∅) and

T ′
=

(
8

6
,

7

5
, ∅ , 1 , ∅ , 2 ,

4

3
, ∅

)
.

The content offsets are (−48, −39, −46, −45, −52, −51, −42, −49), giving ad-
justed contents (

−56

−48
,

−47

−39
, ∅ , −45 , ∅ , −51 ,

−50

−42
, ∅

)
.

The reader can verify that each d-inversion in T listed after equation (28) corresponds
to a pair of entries T ′(x ′) < T ′(y′) in cells x ′, y′ with adjusted contents 0 < c̃(x ′) −

c̃(y′) < 8. For example, the d-inversion (4, 1) has c̃(x ′) = −45, c̃(y′) = −50.

5.3. Positivity
Leclerc and Thibon [20] have shown that when µ is a partition with coren(µ) = ∅,
the coefficient 〈

qsmin(µ)Gµ(z; q2), sλ(z)
〉

(78)

(which is a q-analog of the Littlewood-Richardson coefficient cλ
µ(0),...,µ(n−1)) coincides

with a parabolic Kazhdan-Lusztig polynomial P−

µ+ρ,nλ+ρ(q) for a suitable affine
symmetric group Ŝr . In turn, Kashiwara and Tanisaki [16] have interpreted the coeffi-
cients of these polynomials as decomposition multiplicities for certain nonirreducible
perverse sheaves on affine partial flag varieties, which shows that they are positive.
This, together with our work in §5.2, would immediately imply the positivity part of
Theorem 3.1.3 were it not for the fact that we had to introduce nontrivial offsets si .
To account for them and complete the proof of Theorem 3.1.3, we need the following
small improvement on the results of [20].

PROPOSITION 5.3.1
Let µ be a partition, and set ν = coren(µ). Then〈

qsmin(µ/ν)Gµ/ν(z; q2), sλ(z)
〉
= P−

µ+ρ,ν+nλ+ρ(q) (79)

is a parabolic Kazhdan-Lusztig polynomial, written here using the notation of [20].

Since this is essentially a result of Leclerc and Thibon, we confine ourselves to
brief remarks on what is needed to deduce it from the contents of [20]. Leclerc
and Thibon work in a q-Fock space Fr , where r is arbitrary, provided that it is
greater than or equal to the length of all partitions under discussion. The space Fr
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is equipped with a natural basis, whose elements are denoted |µ + ρ〉 (with ρ = δr ),
and a Kazhdan-Lusztig-type basis, denoted G−

µ+ρ . The Kazhdan-Lusztig polynomi-
als P−

λ+ρ,µ+ρ(−q−1) are the coefficients of G−

µ+ρ with respect to the natural ba-
sis. The use of −q−1 is an artifact of the notation; it gets replaced by q in the end.
The algebra of symmetric functions in r variables acts on Fr in such a way that
〈(−q)− smin(µ/ν)Gµ/ν(z; q−2), sλ(z)〉 is the coefficient of |µ + ρ〉 in sλ · |ν + ρ〉.
A partition ν is called n-restricted if νi − νi+1 < n for all i . Leclerc and Thibon
prove that if ν is n-restricted, then sλ · G−

ν+ρ = G−

ν+nλ+ρ . Proposition 5.3.1 follows
immediately from the foregoing and the following two additional facts.

LEMMA 5.3.2
Any n-core is n-restricted.

Proof
The proof is obvious.

LEMMA 5.3.3
If ν is an n-core, then G−

ν+ρ = |ν + ρ〉.

Proof
Using the notation of [20], it suffices to prove that |ν + ρ〉 = |ν + ρ〉. By [20,
Proposition 5.9], there are well-defined elements |γ 〉 ∈ Fr for any sequence γ =

(γ1, . . . , γr ), not necessarily decreasing, satisfying the following straightening rela-
tions when γi+1 − γi = kn + j with k ≥ 0 and 0 ≤ j < n:

|γ 〉 = 0 if j = k = 0, (80)

|γ 〉 = −|σiγ 〉 if j = 0 and k 6= 0, (81)

|γ 〉 = −q−1
|σiγ 〉 if k = 0 and j 6= 0, (82)

|γ 〉 = −q−1
|σiγ 〉 − |y−k

i yk
i+1γ 〉 − q−1

|yk
i y−k

i+1σiγ 〉 otherwise. (83)

Here σi is the transposition exchanging γi and γi+1, and yi is the operator that adds
n to γi . Let w0 denote the longest permutation in Sr . By [20, Proposition 5.7 and
Corollary 5.10], we have

|ν + ρ〉 = (−1)l(w0)qe
|w0(ν + ρ)〉 = |ν + ρ〉 +

∑
λ

aλ+ρ,ν+ρ(q)|λ + ρ〉 (84)

for a suitable exponent e, and all terms |λ + ρ〉 in the sum on the right, which arise
from the process of straightening |w0(ν + ρ)〉, are lexicographically less than ν + ρ.
From the straightening relations we see that all these terms have |λ| = |ν|, and the
multiset of congruence classes λi +ρi (mod n) is the same as that of ν +ρ. However,
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this last condition implies that coren(λ) = coren(ν) = ν, which is absurd since
|λ| = |ν| and λ 6= ν. In short, the final sum on the right in (84) vanishes, yielding the
desired result.

Remark. It is conjectured that Gµ/ν(z; q) is Schur positive even when ν is not an n-
core. One can use the results of [20] to write 〈qsmin(µ/ν)Gµ/ν(z; q2), sλ(z)〉 explicitly
in terms of Kazhdan-Lusztig polynomials, but in general the resulting expressions
contain negative terms.

Proof of Theorem 3.1.3 (Positivity)
In the proof of the symmetry part of the theorem, we have shown that Dλ

n (z; q) =

qeGµ(z; q−1) for a suitable exponent e and skew shape µ. For this µ, each µ(i)
=

(1αi ) is a partition shape, so µ = η/ν, where ν = coren(η) is the n-core associated to
the specified offsets si . Hence Gµ(z; q) is Schur positive by Proposition 5.3.1.

6. Higher powers
In this section we explore the extent to which preceding conjectures and results gen-
eralize to the higher powers ∇

men(z).

6.1. The meaning of ∇
men(z)

As explained in the introduction, ∇en(z) is the Frobenius series of the diagonal coin-
variant ring Rn . The higher powers ∇

men(z) have a similar interpretation, which
shows that they are also Schur positive.

PROPOSITION 6.1.1
Let I = ((x, y) ∩ C[x, y]

Sn ) be the ideal in C[x, y] generated by all Sn-invariant
polynomials without constant term, and let J = (C[x, y]

ε) be the ideal generated by
all antisymmetric polynomials. Then

∇
men(z) = Fεm−1⊗J m−1/I J m−1(z; q, t), (85)

where ε is the sign representation.

Proof
Although this follows from the methods of [13], it was not shown explicitly there, so
we explain what more needs to be said. As in [13, Corollary 3.5, equation (110)], the
quantity ∇

men(z) coincides with [13, Theorem 3.3, equation (107)] with the factor
sν[Bµ(q, t)] there replaced by em−1

n [Bµ(q, t)] = t (m−1)n(µ)q(m−1)n(µ′). It follows
from that theorem that ∇

men(z) is the Frobenius series of(
R(n, (m − 1)n)/mR(n, (m − 1)n)

)ε
, (86)
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where l = (m − 1)n, R(n, l) and m are as in [13], and (−)ε denotes the space of
antisymmetric elements with respect to the action of Sm−1

n ⊆ Sl . The proof of [12,
Proposition 4.11.1] identifies R(n, (m − 1)n)ε with εm−1

⊗ J m−1, and with this iden-
tification, (86) becomes εm−1

⊗ J m−1/I J m−1 in our present notation.

6.2. An extension of Conjecture 3.1.2
We begin by generalizing the notion of d-inversion and the statistic dinv(T ). Our
new definitions depend on the integer m and reduce for m = 1 to the definitions of
d-inversion and dinv(T ) in §3.1.

For each cell x = (i, j) ∈ N × N, put dm(x) = mi + j . (This keeps track of
which diagonal of slope −1/m contains x .) Given λ ⊆ mδn , let T be a semistandard
tableau of shape (λ + (1n))/λ. Let T (x) = a, T (y) = b be two entries with a < b,
and put x = (i, j), y = (i ′, j ′). We say that this pair of entries contributes anywhere
from 0 to m d-inversions according to the following rules:
(i) if j > j ′, this pair contributes max(0, m − |dm(y) − dm(x)|) inversions;
(ii) if j < j ′, it contributes max(0, m − |dm(y) − dm(x) − 1|) inversions.
We also allow equal entries to contribute. Define the reverse diagonal lexicographic
order by x <d y if either

dm(x) > dm(y), or dm(x) = dm(y) and j < j ′,

where x = (i, j), y = (i ′, j ′). Then a pair of equal entries T (x) = T (y) = a con-
tributes the same number of d-inversions as would a pair of unequal entries T (x) = a,
T (y) = b, with x <d y and a < b.

We extend these definitions to super tableaux by applying the rules above for
unequal entries T (x) = a, T (y) = b and for equal entries T (x) = T (y) = a ∈ A+.
For negative entries, we use the opposite rule: a pair of entries T (x) = T (y) = a ∈

A− contributes the same number of d-inversions as would a pair of unequal entries
T (x) = a, T (y) = b with x >d y and a < b.

Remark. Another way to formulate the rule for a pair of equal entries T (x) = T (y) =

a is the following. If a is positive, it contributes the minimum of the two alternatives
described by (i) and (ii) above; if a is negative, it contributes the maximum.

Let dinvm(T ) denote the total number of d-inversions contributed by pairs of entries
in T . The extensions of Definition 3.1.1 and Conjecture 3.1.2 are as follows.

Definition 6.2.1
We set

D(m)
n (z; q, t) =

∑
λ⊆mδn

∑
T ∈SSYT(λ+(1n)/λ)

t |mδn/λ|qdinvm(T )zT . (87)



COMBINATORIAL FORMULA FOR DIAGONAL COINVARIANTS 223

CONJECTURE 6.2.2
We have the identity

∇
men(z) = D(m)

n (z; q, t). (88)

Equivalently, for all µ, we have

〈∇
men, hµ〉 =

∑
λ⊆mδn

∑
T ∈SSYT(λ+(1n)/λ, µ)

t |mδn/λ|qdinvm(T ). (89)

Theorem 3.1.3 now generalizes just as we should expect.

THEOREM 6.2.3
The quantity D(m)

n (z; q, t) is a symmetric function in z, and it is Schur positive. In
fact, each term

D(m),λ
n (z; q) =

∑
T ∈SSYT(λ+(1n)/λ)

qdinvm(T )zT (90)

is individually symmetric and Schur positive.

Theorem 6.2.3 is proven in §6.4. Granting it for the moment, let us deduce some
consequences.

THEOREM 6.2.4
The superization D̃(m)

n (z, w; q, t) = ωW D(m)
n [Z + W ; q, t] is given by

D̃(m)
n (z, w; q, t) =

∑
λ⊆mδn

∑
T ∈SSYT±(λ+(1n)/λ)

t |mδn/λ|qdinvm(T )zT . (91)

Equivalently, Conjecture 6.2.2 implies

〈∇
men, eηhµ〉 =

∑
λ⊆mδn

∑
T ∈SSYT±(λ+(1n)/λ, µ, η)

t |δn/λ|qdinvm(T ). (92)

Proof
The proof of Theorem 3.2.1 applies almost verbatim. Only the verification that a super
tableau T and its standardization S satisfy dinv(S) = dinv(T ) needs to be adapted to
the case of general m. But this is immediate given our rule for the number of d-
inversions contributed by a pair of equal entries.

6.3. Specializations
We examine the analogs for D(m)

n (z; q, t) of some of the specializations of Dn(z; q, t)
described in §4. Beginning with the easiest specialization, at q = 1, we have by [5,
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Theorems 5.2, 5.3] the following analog of (40):

∇
men(z)|q=1 =

∑
λ⊆mδn

t |mδn/λ|eα(z), (93)

where λ = (0α0, 1α1, 2α2, . . .) and
∑

i αi = n. Clearly, this coincides with
D(m)

n (z; 1, t).
For the specializations t = 0 and q = 0, we first observe that the analog of

Lemma 4.2.1 is the identity

∇
men(z)|t=0 = q(m−1)(n

2)(q; q)nhn[Z/(1 − q)]. (94)

This can be deduced from Lemma 4.2.1 either by observing that the right-hand side
of (41) is the modified Macdonald polynomial H̃(n) or by using Proposition 6.1.1 and
the fact that J m−1

∩ C[x] is the principal ideal generated by 1(x)m−1, where 1(x)

is the Vandermonde determinant in the variables x = x1, . . . , xn . Multiplication by
1(x)m−1 induces an isomorphism Rn ∩ C[x] → (J m−1

∩ C[x])/(I J m−1
∩ C[x])

which is homogeneous of degree (m − 1)
(n

2

)
.

PROPOSITION 6.3.1
We have

D(m)
n (z; q, 0) = ∇

men(z)|t=0. (95)

Proof
This is the same as the proof of Proposition 4.2.2, except that now the sole term is
λ = mδn , and dinvm(T ) is the number of ordinary inversions plus (m − 1)

(n
2

)
.

PROPOSITION 6.3.2
We have

D(m)
n (z; 0, t) = ∇

men(z)|q=0. (96)

Proof
One can verify that the criterion in Lemma 4.3.1 for a standard tableau T ∈ SYT(λ +

(1n)/λ) to have dinvm(T ) = 0 is the same for general m as it is for m = 1. The
only difference for m > 1 is that |mδn/λ| = |δn/λ| + (m − 1)

(n
2

)
, which shows that

D(m)
n (z; 0, t) = t (m−1)(n

2)Dn(z; 0, t). Exchanging q and t in (94) and using Proposi-
tion 4.3.2, we see that this agrees with (96).

Next we turn to the Catalan specialization. Higher q, t-Catalan polynomials were de-
fined in [5] (see also [11]) by a formula that amounts to

C (m)
n (q, t) = 〈∇

men, en〉. (97)
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ux

v

s

t

Figure 5. Construction of the cells u, v corresponding to x

From (92), we see that Conjecture 6.2.2 implies the following analog of (51):

C (m)
n (q, t) =

∑
λ⊆mδn

t |mδn/λ|qdinvm(λ). (98)

The analog of (52) is a conjecture of Haiman (see also [22]) that

C (m)
n (q, t) =

∑
λ⊆mδn

t |mδn/λ|qbm(λ), (99)

where bm(λ) is the number of cells x ∈ λ such that

ml(x) ≤ a(x) ≤ ml(x) + m. (100)

We verify that (98) and (99) are equivalent (but not that they are true; see §7, Prob-
lem 2).

LEMMA 6.3.3
We have bm(λ) = dinvm(T ), where T is the super tableau of shape (λ + (1n))/λ

whose every entry is the negative letter 1̄.

Proof
Let D be the lattice path from (n, 0) to (0, mn) formed by the outer boundary of λ

together with segments of the i- and j-axes. When m = 1, this is the Dyck path
associated with λ. In the general case, it is a lattice path that never goes above the line
i + j/m = n.

Given a cell x ∈ λ, let u be the cell of (λ + (1n))/λ just outside the end of the
arm of x . Let t be the unit-width segment at the end of the leg of x . Project t along
diagonals of slope −1/m onto a vertical segment s of D of height 1/m, as indicated
in Figure 5, and let v be the cell of (λ + (1n))/λ containing s on its left border. Note
that the point of N × N represented by each cell is its lower-left corner.
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If s0 is the lower end of the segment s and t0 is the left end of t , then we have

dm(s0) = dm(t0) = dm(x) + ml(x) + m, (101)

dm(u) = dm(x) + a(x) + 1, (102)

whence a(x) − ml(x) = dm(u) − dm(s0) + m − 1. If x satisfies (100), we therefore
have

dm(u) − 1 ≤ dm(s0) ≤ dm(u) + m − 1. (103)

Conversely, given u ∈ (λ + (1n))/λ and a vertical segment s of D of height 1/m,
situated to the left of u and with endpoints in ((1/m)N) × N, the inequality dm(s0) ≤

dm(u)+m −1 implies that the diagonal through the upper endpoint s1 lies on or to the
left of the upper-left corner of u. Hence we can project s onto a unit-width horizontal
segment t of D with t and u belonging to the hook of a (unique) cell x ∈ λ, as in the
construction above. Condition (100) for this x is then equivalent to (103).

Now, given u, v ∈ (λ + (1n))/λ with v to the left of u, the number of segments s
as above which lie on the left border of v and satisfy (103) is equal to

min
(
dm(v) + m − 1, dm(u) + m − 1

)
− max

(
dm(v), dm(u) − 1

)
+ 1 (104)

or to zero if this expression is negative. If dm(u) > dm(v), this simplifies to

max
(
0, m − (dm(u) − dm(v) − 1)

)
.

Otherwise, it is max
(
0, m − (dm(v) − dm(u))

)
.

In T , the cells u and v contain equal negative entries. If dm(u) > dm(v), then
u <d v and this pair contributes

max
(
0, m − |dm(u) − dm(v) − 1|

)
= max

(
0, m − (dm(u) − dm(v) − 1)

)
d-inversions. Otherwise, u >d v and it contributes

max
(
0, m − |dm(v) − dm(u)|

)
= max

(
0, m − (dm(v) − dm(u))

)
d-inversions. The lemma is proven.

The analog for m > 1 of the Haglund-Loehr conjecture discussed in §4.5 is a conjec-
ture of Loehr and Remmel [23] for the value of 〈∇

men, en
1〉. It is a simple observation

that their conjecture is equivalent to 〈∇
men, en

1〉 = 〈D(m)
n (z; q, t), en

1〉. In this connec-
tion we should mention that Loehr [22] has given a fermionic formula for the quantity
here denoted 〈D(m)

n (z; q, t), en
1〉 and also for similar quantities in which D(m)

n (z; q, t)
is replaced by a sum over partitions λ contained in a more general trapezoidal shape
(ln) + mδn .

Finally, we expect the analog for m > 1 of Conjecture 4.7.1 to be the following.
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CONJECTURE 6.3.4
For 1 ≤ k ≤ n,

∇
m En,k =

∑
λ⊆mδn

|{i :λi =m(n−i)}|=k

t |mδn/λ|D(m),λ
n (z; q). (105)

6.4. Proof of Theorem 6.2.3
In this section, d-inversions and <d are always defined with respect to the given inte-
ger m. We begin with a lemma.

LEMMA 6.4.1
Let u, v be cells in different columns of a tableau T with v to the left of u.
(a) If 1−m ≤ dm(u)−dm(v) ≤ 0, then entries T (u) < T (v) contribute one more

d-inversion than entries T (u) > T (v).
(b) If 1 ≤ dm(u) − dm(v) ≤ m, then entries T (u) > T (v) contribute one more

d-inversion than entries T (u) < T (v).
(c) Otherwise, the number of d-inversions contributed by entries T (u), T (v) is

zero in any case.

Proof
Referring to the rule in §6.2 for the number of d-inversions contributed, we see that
case (i) occurs when T (u) < T (v), and it contributes max(0, m −|dm(v)−dm(u)|) =

max(0, m−|dm(u)−dm(v)|) d-inversions. Otherwise, case (ii) occurs and contributes
max(0, m − |dm(u) − dm(v) − 1|) d-inversions.

If dm(u) > dm(v), then both dm(u)−dm(v) and dm(u)−dm(v)−1 are nonnega-
tive. Then case (ii) contributes one more d-inversion than case (i) unless dm(u) −

dm(v) > m, in which event both cases contribute zero d-inversions. If dm(u) ≤

dm(v), then both dm(u) − dm(v) and dm(u) − dm(v) − 1 are nonpositive. Then case
(i) contributes one more d-inversion than case (ii) unless dm(u) − dm(v) ≤ −m, in
which event there are again zero d-inversions in either case.

Using this lemma, we can simplify the rule for counting d-inversions at the price of
adding an overall constant. Let T be semistandard of shape (λ + (1n))/λ. We say that
entries T (x) = a, T (y) = b, with a < b and x = (i, j), y = (i ′, j ′), contribute a
reduced d-inversion if either
(i)′ 0 ≤ dm(y) − dm(x) ≤ m − 1 and j > j ′ or
(ii)′ 1 ≤ dm(y) − dm(x) ≤ m and j < j ′.
Pairs of equal (positive) entries do not contribute any reduced d-inversions. Note that
this agrees with the rule that equal entries count as if they were unequal entries a < b
with x <d y since both (i)′ and (ii)′ imply x >d y.
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Let dinv′
m(T ) denote the number of reduced d-inversions in T . Then we can

rephrase Lemma 6.4.1 as follows.

COROLLARY 6.4.2
There is a constant e(ν) depending only on ν = (λ + (1n))/λ such that dinvm(T ) =

e(ν) + dinv′
m(T ) for all T ∈ SSYT(ν). Consequently,

D(m),λ
n (z; q) = qe(ν)

∑
T ∈SSYT(λ+(1n)/λ)

qdinv′
m(T )zT . (106)

Remark. In effect, the constant e(ν) is dinvm(T0), where T0 is the tableau of shape ν

whose entries are all 1. (However, T0 is generally not a legal semistandard tableau.)

To prove Theorem 6.2.3, it suffices to identify the sum on the right-hand side of (106)
with an expression of the form (76), in this case with n replaced by mn + 1, so that
� = (µ(0), . . . , µ(mn)) and each µ( j) is a partition shape, in order to deduce positivity
along with symmetry.

To this end, write λ = (0α0, 1α1, . . . , mnαmn ) with α0 defined so that
∑

j α j = n.
Let β be the permutation of {0, 1, . . . , mn} such that

β( j) ≡ −nj (mod mn + 1). (107)

It exists because n is relatively prime to mn + 1. Note that for m = 1, β is the identity
permutation, which is why it did not come up earlier in the proof for that case. Define
each µ( j) to be a single column such that

µ(β( j))
= (1α j ). (108)

We have a natural bijection between cells x ∈ (λ + (1n))/λ and x ′
∈ �, which trans-

lates column j of (λ + (1n))/λ onto µ(β( j)). This induces a bijection of semistandard
tableaux in the obvious way.

Define content offsets

sβ( j) = −nj − (mn + 1)λ′

j+1. (109)

Note that the right-hand side is congruent to β( j) (mod mn+1), as it should be. With
these offsets, the adjusted content of the cell x ′

∈ � corresponding to x = (i, j) ∈

(λ + (1n))/λ is
c̃(x ′) = −(mn + 1)i − nj = −i − ndm(x). (110)

For any two distinct cells x = (i, j) and y = (i ′, j ′), we have 0 < |i − i ′| < n. It
follows that the inequalities

0 < c̃(x ′) − c̃(y′) < mn + 1 (111)



COMBINATORIAL FORMULA FOR DIAGONAL COINVARIANTS 229

hold if and only if
0 ≤ dm(y) − dm(x) ≤ m, (112)

and also, i < i ′ if dm(y) − dm(x) = 0, and i > i ′ if dm(y) − dm(x) = m. Moreover,
since j = j ′ implies that mn + 1 divides c̃(y) − c̃(x), these conditions imply j 6= j ′.
Hence we have i < i ′ ⇔ j > j ′ and i > i ′ ⇔ j < j ′. In short, inequalities (111)
hold if and only if (i)′ or (ii)′ holds for the cells x , y.

This shows that if S ∈ SSYT(�) corresponds under the natural bijection to T ∈

SSYT(λ + (1n)/λ), then inv(S) = dinv′
m(T ). The desired result follows.

7. Open problems

Problem 1
Prove Conjecture 3.1.2 and, more generally, Conjecture 6.2.2.

Problem 2
Prove that 〈∇

men, en〉 = 〈D(m)
n (z; q, t), en〉 for m > 1, or, similarly, prove the com-

binatorial formulae (98) and (99) for C (m)
n (q, t). This problem might be amenable to

attack by methods similar to those used in [3] and [4] for the case m = 1.

Problem 3
Prove that Dn(z; q, t) = Dn(z; t, q), and similarly for D(m)

n (z; q, t). This would re-
main a relevant combinatorial problem even if the conjectures were proven. By way
of illustration, although the combinatorial formula (51) for Cn(q, t) has been proven,
no combinatorial interpretation of the symmetry Cn(q, t) = Cn(t, q) is known at
present.

Problem 4
Prove that D(m)

n (z; q, 1) = D(m)
n (z; 1, q). This specialization of Problem 3 should be

easier than the full q, t-symmetry. Combinatorial interpretations are known (see [2],
[21], [22], [23]) for the special cases corresponding to the identities

C (m)
n (q, 1) = C (m)

n (1, q),〈
Dn(z; q, 1), en−d hd

〉
=

〈
Dn(z; 1, q), en−d hd

〉
,

and 〈
D(m)

n (z; q, 1), en
1
〉
=

〈
D(m)

n (z; 1, q), en
1
〉
.
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Problem 5
Prove that

D(m)
n (z; q, q−1) = q−m(n

2)
en[Z [mn + 1]q ]

[mn + 1]q
. (113)

The right-hand side of (113) is equal to ∇
men(z)|t=q−1 by [5, Theorem 5.1]. The

Catalan specialization 〈
D(m)

n (z; q, q−1), en
〉
= C (m)

n (q, q−1) (114)

has been shown in [21] and [22].
We remark that by the Cauchy formula,

〈
en[Z [mn + 1]q ], hµ

〉
= qn(µ′)

∏
i

[
mn + 1

µi

]
q

=

∑
λ⊆((mn+1)n)

T ∈SSYT(λ+(1n)/λ, µ)

q |λ|. (115)

Then (113) asserts that this last expression is equal to

[mn + 1]q ·

∑
λ⊆mδn

T ∈SSYT(λ+(1n)/λ, µ)

q |λ|+dinvm(T ). (116)
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