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Abstract

Dialogue State Tracking (DST), a key component of task-
oriented dialogue systems, tracks user intentions by predicting
the values of pre-defined slots in a dialogue. Existing works on
DST treat all slots indiscriminately and independently, which
ignores the relationships across slots and limits the learning of
hard slots (those slots are hard to be predicted correctly), even-
tually hurting overall performance. In this paper, we propose
an iterative learning framework, i.e. iteratively updates the dia-
logue state with confident slots, to alleviate the aforementioned
problem. Specifically, we first employ a scorer to estimate slot
confidence. Then, those slots with high confidence are utilized
to update the previous state, and the updated state will be fed
into the scorer again to recalculate the confidence. In the last
iteration, we apply an objective with the confidence penalty to
focus on the hard slots. The experiments show that our ap-
proach outperforms existing methods on popular datasets.

Keywords: dialogue state tracking; iterative learning; slot
confidence

Introduction
Task-oriented dialog systems help users to achieve specific
goals using natural languages, such as movie booking and
information support. Dialogue state tracking (DST) aims to
track the users’ requirements at each turn of the dialogue,
which consists of a set of slot-value pairs (Young, Gasic,
Thomson, & Williams, 2013; Wu et al., 2019). Accurate DST
can largely help the downstream tasks of dialogue systems,
such as response generation.

Early dialogue state tracking approaches extract value for
each slot in a single domain (Williams, Raux, & Henderson,
2016; Henderson, Thomson, & Williams, 2014). Recently,
motivated by commercial dialogue systems like Apple Siri
and Google Assistant, developing the multi-domain DST be-
comes an agent amend in real-world applications. Figure 1
shows a multi-domain conversation, involving hotel, restau-
rant, and taxi domains, and the DST module extracts the
slot-value pairs for each domain and each turn. In multi-
domain DST, some models have achieved outstanding per-
formances by taking the advantage of deep neural networks
and pre-trained language models (Lee, Lee, & Kim, 2019;
Sun, Bao, Wu, & He, 2022; Ye, Manotumruksa, Zhang, Li,
& Yilmaz, 2021). However, previous works generally treat
all slots equally in each turn, which ignores two issues : (1)
There exist different types of relationships across slots in

1Corresponding author.

Conversation

I need information about places to stay 
that have a 4 star rating 

Dialogue State

Hi, What can I do for you?

Ok, that's it! I also need to go eat. I'd 
like something cheap.

I recommend the golden house.

hotel-star=4

(hotel-star,4), 
(hotel-name,allenbell)
(restaurant-pricerange,cheap)

(hotel-star,4), 
(hotel-name,allenbell)
(restaurant-pricerange,cheap)
(restaurant-booktime, 19:30)
(restaurant-name, golden house)
(taxi-departure, allenbell)
(taxi-destination, golden house)

I recommend the Allenbell guest house.

Book table at 19:30. 
I want a taxi from hotel to the restaurant.

example

Figure 1: A conversation and its dialogue state for each turn
in MultiWOZ dataset (Budzianowski et al., 2018).

multi-domain dialogue, such as mutual exclusive and value
sharing. In Figure 1, the slot taxi-departure shares the same
value with hotel-name. But the destination of the taxi must
be different from its departure. Therefore, independently pre-
dicting each slot-value pair can’t consider the useful informa-
tion from other slots, which hinders the further development
of models. (2) These slots have different prediction difficul-
ties, which are mainly caused by the imbalanced distribution
of slots and values. Taking the MultiWOZ dataset as an il-
lustration, (restaurant-food, indian) occurs 2615 times while
(taxi-destination, acorn guest house) occurs 79 times. So,
previous works perform much differently on different slots.
For instance, the TripPy (Heck et al., 2020) achieves 93.03%
and 66.98% accuracy on restaurant-food and taxi-destination
respectively (see Figure 2). Previous works are unable to fo-
cus on hard slots (those slots are hard to predict correctly) and
limit the overall performance.

To tackle the mentioned challenges, we argue that a DST
model should be aware of slot confidence: (1) In the case of
slot correlation, easy slots (with high confidence) can sup-
port the predictions of the hard slots (with low confidence).
As shown in Figure 1, compared with slot hotel-name, taxi-
departure is a hard slot because its values have to be inferred
across utterances. Due to the “value sharing”, the value of
hotel-name can further help the prediction of taxi-departure.
(2) Based on estimated confidence, the DST model can give
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Figure 2: The predicted slot accuracy and slot frequency in
MultiWOZ 2.1 dataset. The ‘rest.’ is the abbreviation for
‘restaurant’ domain.

more attention to the slots with low confidence, further im-
proving the ability to handle hard slots.

Motivated by the above intuitions, we aim to design a
DST model with three principles, estimating slot confidence,
utilizing the easy slots to help the prediction of hard slots,
and paying more attention to hard slots. To achieve these
aims, we propose a confident slot iterative learning frame-
work with three steps: First, given a dialogue context, the
scorer module predicts the dialogue state, called the “inter-
mediate state”, and utilizes the probability of slot values to
estimate the confidence. And the slot whose confidence ex-
ceeds a certain threshold is treated as “confident slot” or “easy
slot”. After that, the updater module modifies the previous
state with those confident slots to obtain a new state. The
new state will be combined with dialogue context and sent
to the scorer again, aiming to re-calculate the confidence at
the next iteration. Through several iterations, the confident
slots are predicted more and more precisely and can support
more available information for hard slots as well. At the last
iteration, we apply a designed loss function with the confi-
dence penalty, adjusting the contribution proportion of differ-
ent slots to focus on those hard slots. Above all, the whole
iteration process happens in one conversation turn and the
framework is an end-to-end one that there is no misdelivery
from the slot confidence.

In summary, the contributions of our work are as follows:

• We introduce slot confidence for DST and propose a con-
fident slot iterative learning framework to solve the slots
with different difficulties.

• Experiments show that our approach achieves outstanding
performances on multi-domain datasets.

Related Works
The dialogue state can be thought of as the system’s belief
of the user’s goal given the conversation context (Young et
al., 2013; McLeay, 2022). All these methods on DST are
broadly divided into two categories: classification (Lee et al.,

2019; Zhang et al., 2020) and generation (Wu et al., 2019;
Q. Wang et al., 2022). The classification method requires
that all candidate values of each slot are provided in a pre-
defined ontology and the value with the highest probability is
the final prediction. Conversely, the generation way generates
slot values based on the sequence-to-sequence fashion. In this
paper, we focus on the classification method.

Recently, with the recent development of representation
learning, most works about DST focus on encoding dia-
logue context with deep neural networks (Le, Socher, & Hoi,
2020; Peng et al., 2022). SUMBT (Lee et al., 2019) uti-
lizes BERT to encode the dialogue and slot-value pairs and
scores each candidate slot-value pair. DST-Picklist (Zhang
et al., 2020) performs matchings between candidate values
and slot-context encoding by considering all slots as picklist-
based slots. DS-DST (Zhang et al., 2020) applies BERT-base
to make the contextual word embeddings and extracts the val-
ues from the input as a span. LUNA (Y. Wang et al., 2022)
explicitly aligns each slot with its most relevant utterance
and predicts the value based on this aligned utterance. How-
ever, the above methods ignore the correlation among slots
and predict each slot separately. SST (Chen et al., 2020) de-
signs the schema graphs which contain slot relations in edges
and fuse information from utterances. CSFN-DST (Zhu, Li,
Chen, & Yu, 2020) encodes the dialogue context and schema
graph by using internal and external attention mechanisms.
STAR (Ye et al., 2021) employs word-level attention to obtain
slot-specific features and a stacked slot self-attention to learn
the correlations among slots. Nevertheless, these state-of-the-
art neural belief trackers are overconfident in their decisions
and less robust (van Niekerk et al., 2021). In this paper, we
consider slot confidence in DST and utilize easy slots to help
hard ones through an iteration process.

Problem Formulation
A dialogue with T turns can be represented as D =
{(R1,U1),(R2,U2), . . . ,(RT ,UT )}, where Rt and Ut repre-
sent system response and user utterance of turn t, respec-
tively. At the turn t, we denote the dialogue context Ct =
{(R1,U1),(R2,U2), . . . ,(Rt ,Ut)} and the dialogue state as
Bt = {(s,v)|s ∈ S ,v ∈ Vs}, where s is a slot name from the
pre-defined slot set S and v is the slot value from candidates
Vs. Following the convention of existing works (Lee et al.,
2019; Kumar, Ku, Goyal, Metallinou, & Hakkani-Tür, 2020),
each slot is represented as a special token concatenated by
domain and slot, such as restaurant-food. Given the dialogue
context Ct , the DST is asked to extract the dialogue state Bt
at turn t, i.e. a set of slot-value pairs.

Approach
Overview
The architecture of the proposed model is illustrated in Figure
3. The confident slot iterative learning framework consists of
two modules, a confidence scorer which produces an inter-
mediate dialogue state and slot confidence, and an updater
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Confidence
Scorer

State 
Updater

Dataset

Slot Encoder Context Encoder

Slot-word AttentionValue Encoder

Slot-value 
Matching

Loss Function with 
Confidence Penalty

Confident Slot Iterative Learning framework

Intermediate State

Scoring Process Updating Process

updated state

sample

Previous State

Slot restaurant-area taxi-destination restaurant-name

Value none none none

Intermediate State

Slot restaurant-area taxi-destination restaurant-name

Value center allenbell allbenbell

conf. 0.53 0.18 0.87

Updated State

Slot restaurant-area taxi-destination restaurant-name

Value center none allbenbell

Previous State

Figure 3: The architecture of confident slot iterative learning framework (best viewed in color). “conf.” refers to the slot
confidence. Those confident slots (conf.> 0.5) are marked as red. Noted that the whole iteration happens in one dialogue turn.

module modifying the previous dialogue state with confident
slots. In the following part, we will describe the detailed ar-
chitecture and illustrate the process of training and inference.

Confidence Scorer
The scorer mainly contains four components, the context en-
coder, slot and value encoder, slot-word attention module,
and slot-value matching module. The encoders obtain seman-
tic vector representations of dialogue contexts, slots, and can-
didate values. The slot-value attention module is to retrieve
the relevant information corresponding to each slot and the
slot-value matching module computes the semantic distance
to predict the slot value and estimate the confidence.

Context Encoder Following Ye et al. (2021), we concate-
nate dialogue context Ct and previous dialogue state Bt−1 as
the input of context encoder:

Xt = [CLS]Ct [SEP]Mt−1[SEP] (1)

where Mt−1 =
⊕

(s,v)∈Bt−1,v̸=none s⊕ v and ⊕ is the operation
of sequence concatenation. That means that we only include
the slots with the value “non-none” in the previous turn di-
alogue state Bt−1. After that, a pre-trained BERT (Devlin,
Chang, Lee, & Toutanova, 2019) is applied as the context en-
coder to represent the input Xt :

Ht = BERT f inetune(Xt) (2)

where Ht are the representations of all tokens in Xt .

Slot and Value Encoder Previous works (Lee et al., 2019)
have shown that fixing the slot-value encoder’s weights dur-
ing training allows the model to maintain the encoded con-
textual vector of new domains and slot types. Therefore, we
leverage another fixed pre-trained BERT to encode slot and
candidate values.

qs = BERT[CLS]
f ixed([CLS]⊕ s⊕ [SEP])

qv = BERT[CLS]
f ixed([CLS]⊕ v⊕ [SEP])

(3)

where the vectors corresponding to token “[CLS]” are the fi-
nal representations.

Slot-word Attention Module The multi-head attention
(Vaswani et al., 2017) is applied to obtain slot-related infor-
mation in context. The query Q vector is slot vector qs and K
matrix and V matrix are the context representation Ht :

Os = MultiHeadAttn(qs,Ht ,Ht),

ys = LayerNorm(WoOs
t +bo)

(4)

where ys is the predicted value representation for slot s.

Slot-Value Matching Module The value with the smallest
distance between outputs ys

t and the representation of target
value qv

t is chosen as the prediction of slot s. The probability
of candidate value v at turn t is computed as follows:

p(v|Xt ,s) =
exp(−d(ys,qv))

∑v∈Vs exp(−d(ys,qv))
(5)

where d is the Euclidean distance.

Loss Function with Confidence Penalty Most existing
works on DST (Kim, Yang, Kim, & Lee, 2020; Ye et al.,
2021) usually apply common Cross Entropy Loss as the ob-
jective, ignoring the difference among slots. In this paper, we
introduce slot confidence and focus on low-confident slots by
improving their contribution proportions in the loss function:

L =−
|S |

∑(1− cs)γ log p(v|Xt ,s) (6)

where cs ∈ [0,1] is the confidence of slot s , and γ is a hyper-
parameter named confidence penalty factor. As a primary
attempt on the DST task, we treat the predicted probability
p(v|Xt ,s) as the slot confidence. The smaller the confidence
of the slot is, the harder it is to predict, resulting in a larger
proportion of the loss function.

Above all, the confidence scorer module produces an
intermediate state and denotes it as It = {((s,v),cs))|s ∈
S ,v ∈ Vs}, where v = argmaxv∈Vs

p(v|Ct ,s) and cs =
maxv∈Vs(p(v|Ct ,s)).

State Updater
The key idea of updating process is to utilize the confident
slots to update the previous state. In this paper, a confident
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Table 1: Joint goal accuracy (%) and slot accuracy (%) on MultiWOZ 2.0, 2.1, and 2.2 vs. various baselines.

Model
MultiWOZ 2.0 MultiWOZ 2.1 MultiWOZ 2.2

JGA (%) SA (%) JGA (%) SA (%) JGA (%) SA (%)

Generation Method
TRADE (Wu et al., 2019) 48.60 96.92 45.60 - 45.40 -
SOM-DST (Kim et al., 2020) 51.72 - 53.01 - 53.81 -
TripPy (Heck et al., 2020) 53.51 - 55.29 - 53.52 -
Classification Method
SUMBT (Lee et al., 2019) 42.40 96.44 52.57 97.51 - -
DST-Picklist (Zhang et al., 2020) 54.39 - 53.30 97.40 - -
DS-DST (Zhang et al., 2020) - - 51.21 97.35 51.70 -
CSFN-DST (Zhu et al., 2020) 51.57 - 52.88 - - -
SST (Chen et al., 2020) 51.17 - 55.23 - - -
STAR (Ye et al., 2021) 52.93 96.43 55.23 96.52 54.61 97.38
LUNA1 (Y. Wang et al., 2022) 54.31 97.15 55.29 96.30 54.93 97.42

Our Model 55.58 97.53 56.20 98.10 55.88 97.64

slot refers to the confidence of a slot that exceeds a certain
threshold. Specifically, we use those confident slots in It and
maintain old ones in previous state Bt−1 to construct the up-
dated state:

Updater(Bt−1,It) =

{
(s,v) ∈ It ,cs > α

(s,v) ∈ Bt−1,cs ≤ α
(7)

where the α is a hyper-parameter and refers to the confidence
threshold of the slot. At the next iteration, the updated state
will be concatenated with dialogue context Ct and fed into the
scorer module again to re-compute the slot confidence.

Training and Inference
The whole iteration learning process is illustrated in Algo-
rithm 1. In the training phase, the scorer samples dialogue
from the trainset and estimate the slot confidence (line 5).
Then, we update the previous dialogue state with confident
slots (line 6) to obtain a new state. After several iterations,
the ultimate predicted dialogue state is leveraged to train the
scorer (line 8,9). As all dialogue samples go through, we
then continue to train the scorer for extra epochs until con-
vergence. During inference, the state It , obtained at the last
iteration, is the final predicted dialogue state at turn t.

Algorithm 1: Confident Slot Iterative Learning
Input: The training dataset D; the Scorer module;

the Updater module; the number of training
epochs N; the number of iterations L

1 for i← 0 to N do
2 Take a sample ((Ct ,Bt−1),Bt) from dataset D;
3 for k← 1 to L do
4 It ← Scorer(Ct ,Bt−1);
5 Bt−1← Updater(Bt−1,It)

6 end
7 Compute loss using It and Bt as Eq. 6.;
8 Update the parameters of Scorer.
9 end

1For a fair comparison, we remove the auxiliary task in this
method and reproduce the results using the source codes.

Experiments
Datasets and Evaluation Metrics We make the compar-
ison on public popular dialogue datasets. The MultiWOZ
dataset (Budzianowski et al., 2018) is the largest publicly
available multi-domain task-oriented dialogue dataset, in-
cluding about 10,000 dialogues within 7 domains and 35
slots. Following previous works (Wu et al., 2019), only five
domains (restaurant, hotel, attraction, taxi, and train) are used
in the experiments. Previous works (Ye et al., 2021; Qian
et al., 2021) point that the MultiWOZ dataset owns obvi-
ous slot correlations and data imbalance, thus it is suitable
to verify our framework. The WOZ 2.0 (Rojas-Barahona
et al., 2017) and DSTC2 (Henderson et al., 2014) are stan-
dard single-domain benchmarks for task-oriented dialogue
systems, which both contain 3 slots in the restaurant domain.
Evaluations on single-domain datasets aim to prove the ro-
bustness of our model.

We follow Kim et al. (2020) to use the joint goal accuracy
(JGA) and slot accuracy (SA) as evaluation metrics. JGA
treats a prediction as correct only if for every turn all slots ex-
actly match the ground truth values. SA is defined as the frac-
tion of slots for which the model predicts the correct value.

Implementation Details We implement the framework in
Pytorch (Paszke et al., 2019). We employ bert-base-uncased
model as the encoders and only the parameters of the con-
text encoder are fine-tuned. The input sequence length in en-
coders is set to 512. We set the learning rate and warmup
proportion to 5e-5 and 0.1. We use a batch size of 8 and set
the dropout rate (Srivastava, Hinton, Krizhevsky, Sutskever,
& Salakhutdinov, 2014) to 0.1. The threshold of confidence α

is 0.6 and the penalty factor is 0.06 in the loss function. The
optimal number of iterations L is 2.

Main Results
The results of our model and baselines on MultiWOZ
datasets are shown in Table 1. As expected, our proposed
model achieves state-of-the-art performance on three version
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Table 2: Domain-special accuracy (%) on MultiWOZ 2.1.
The SOM-DST (Kim et al., 2020) and TripPy (Heck et al.,
2020) are both generation methods.

Domain CSFN-DST SOM-DST TripPy Our Model

Hotel 46.29 49.53 50.21 52.75
Train 69.79 70.36 72.51 76.22
Taxi 47.35 59.69 37.54 66.56
Restaurant 64.64 65.72 70.47 69.31
Attraction 64.78 69.83 73.37 70.43

Table 3: The joint goal accuracy results on WOZ 2.0 and
DSTC2 dataset.

Models WOZ 2.0 DSTC2
JGA(%) JGA(%)

BERT-DST (Chao & Lane, 2019) 87.7 69.3
StateNet (Ren, Xie, Chen, & Yu, 2018) 88.9 75.5
SUMBT (Lee et al., 2019) 90.9 85.6
STAR∗ (Ye et al., 2021) 87.3 83.7

Our Model 92.3⇑+1.4 86.3⇑+0.7

datasets with the joint goal accuracy of 55.58%, 56.20%,
and 55.88% respectively. Compared with the other baselines
(SST, CSFN-DST, and STAR) that have considered slot cor-
relation, our approach achieves 1.27%∼2.65% absolute per-
formance on MultiWOZ datasets. It’s because we obtain con-
fident predictions by the iteration framework, which can build
implicit dependency between easy slots and hard slots. Im-
portantly, different from those models which structure the
schema graph with prior knowledge (e.g. SST and CSFN-
DST), our model doesn’t rely on any extra information and is
a fully data-driven approach. In Table 2, we present the re-
sults for each domain in MultiWOZ 2.1 dataset. The domain-
special accuracy is calculated on a subset of the predicted di-
alogue state. As shown in Table 2, our approach achieves a
great improvement in the train and taxi domains. We analyze
that these two domains usually share same values with other
slots, such as hotel-name and attraction-name, which easily
benefit from the proposed iteration process.

The improvements on WOZ 2.0 and DSTC2 datasets are
shown in Table 3. From the results, our model achieves supe-
rior performance than the STAR. We analyze that the STAR
model leverages a self-attention layer to capture the correla-
tions among slots, which inevitably introduces unreliable in-
formation and hurts the prediction seriously. Besides, there
are many low-frequency slot values in WOZ 2.0 dataset. Our
model with designed loss alleviates the challenge of low-
frequency slots to some degree and doesn’t hurt the perfor-
mance even in single-domain.

Discussion
Ablation Study
Impact of Different Components Table 4 illustrates the
effectiveness of each part in the proposed framework. (1) We

Table 4: Impact of different components of the proposed
framework on MultiWOZ 2.1.

Model Joint Goal Accuracy (%)
Our Model 56.20
- Iteration Mechanism 55.04⇓-1.16

- Designed Loss 55.87⇓-0.33

- Above all 54.89 ⇓-1.31
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ber of the iteration.

remove the iteration mechanism (set L = 1) and only train
the scorer module with the designed loss as the DST model.
The joint goal accuracy is decreased by 1.16 (%), proving the
effectiveness of the available confident slots in the iteration.
(2) We train the framework with common CrossEntropy loss
(set γ = 0) to study the impact of the designed loss function.
One can observe that the performance deteriorates consider-
ably without the confidence penalty. It illustrates that treating
all slots indiscriminately will hurt the overall performance.
(3) We remove both the iteration framework and designed
loss and find that this severely damages the model perfor-
mance. Above all, the results indicate that the components
of our model are indispensable.
Impact of Threshold of Confidence The threshold value
of slot confidence in Equation 7 controls the trade-off be-
tween the quality and the number of confident slots. We
study the impact of the threshold of confidence and the re-
sults are shown in Figure 4. As shown, the threshold value
of 0.6 achieves the highest joint goal accuracy on MultiWOZ
2.1, while the accuracy drops by more than 1.0% when using
a small threshold (0.2). In fact, a high confidence threshold
increases the accuracy of easy slots but decreases the number
contributed to the next iteration. The experiment results sug-
gest that the quality of the intermediate dialogue state is more
important than the quantity for reaching a better performance.

Impact of the Number of Iteration To study the impact of
the number of iterations in the proposed framework, we try
the number from one to three to observe the change in the
model’s performance (see Figure 5). As shown, we find that
our model with 2 iterations achieves the best performance on
MultiWOZ 2.1 dataset. We explain that too many iterations
might produce the wrong prediction for easy slots while too
few iterations can’t utilize the results of easy slots, which both
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Operation Type Dialogue Context 1st Iteration 2nd Iteration

Adding

User: The area does not matter. Anywhere where I can get a table for 5
at 15:30 on Saturday .
System: Ok , I’ve booked at Yu Garden for 5 at 15:30 on Saturday .
User: Great!

(restaurant-name, none)
(restaurant-area, do not care)
(restaurant-bookpeople, 5)
(restaurant-booktime, 15:30)

(restaurant-name, Yu Garden)
(restaurant-area, dontcare)
(restaurant-bookpeople, 5)
(restaurant-booktime, 15:30)

Modification
System: Do you have any particular train stations in mind?
User: Yes , the Cambridge station. I would like to leave on Sunday
after 10:00 for the Stansted Airport .

(train-departure,the Stansted Airport)
(train-destination, the Stansted Airport)

(train-departure,cambridge)
(train-destination,the Stansted Airport)

Deletion System: Hi, what can I do for you?
User: Please find a restaurant called stazione restaurant and coffee bar

(restaurant-name, stazione restaurant and coffee bar)
(hotel-name, el shaddia guest house)

(restaurant-name, stazione restaurant and coffee bar)
(hotel-name, none)

Table 5: Three operation types in the iterative process. The slots with low confidence (below the threshold) are marked in red.
The slots predicted correctly the second time are marked in blue.
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Figure 6: Analysis of confidence penalty factor in loss pro-
portion (left) and JGA (right).

hurt the model’s performance.

Analysis of Confidence Penalty
The penalty factor γ in Eq. 6 controls the contribution pro-
portion for each slot in the total loss. When γ is set to 0,
the loss function becomes the vanilla Cross-Entropy function.
When γ ̸= 0, the function actively adjusts the model to focus
on harder slots. We further analyze its influence on the loss
proportion and joint goal accuracy in Figure 6. In the left of
Figure 6, as the γ decreases, those slots with lower confidence
(blue dotted line) take a bigger proportion in the loss. Accord-
ingly, the model achieves a better performance with a smaller
γ (0.02∼0.1) in Figure 6 (right). Therefore, we suggest that
the appropriate attention to difficult slot learning, i.e. training
with a smaller confident penalty factor, can effectively help
the DST model to improve the overall performance.

Analysis of Iteration Mechanism
To analyze the working mechanism of the proposed frame-
work, we run an iterative model with two iterations and cate-
gorize its operation into three types (see Table 5): (1) Adding.
In the first example, the model ignores the restaurant-name
first but discovers its value at the second iteration. We an-
alyze that there exists slot co-occurrence in dialogues (e.g.
restaurant-book people and restaurant-name). Those pre-
dicted slots at first remind the model aware of the other slots
at the next prediction. (2) Modification. In the second dia-
logue example, the model first predicts the same values for
slot “train-departure” and “train-destination”, which breaks
the mutual exclusion principle. However, considering the
confident slot “train-destination” and its value “the Stansted
Airport”, our model corrects the departure of the train with
another value. (3) Deletion. In the third example, it might

that the semantics of the current context is close to the value
“el shaddia guest house”. Given the additional information,
the name of the restaurant, the semantic distance between the
context and the wrong value becomes larger. Above all, we
conclude that the iterative mechanism effectively enhances
the semantics of dialogue context by considering confident
slots, which further helps DST be aware of the implicit slot
relationships, such as co-occurrence and mutual exclusive.

Analysis of Errors
To check whether the proposed framework has space for im-
provement, we randomly sample 50 turns on MultiWOZ 2.1
dataset and conclude four types of errors. The first error is
the annotation error that the model predicts the right values
while the annotation is wrong in the dataset, similar to the
finding of Zhou and Small (2019). The second error type
comes from the implicit slot expression inside utterances. For
instance, the user shortly replies “no” when facing the ques-
tion “any preference for food?”. In this case, the food type
“do not care” implicitly expressed in the dialogue context,
which is hard to predict. The third error happens when the
system informs the value of actively. Another type of error
exists in value updating as the dialogue goes on. For exam-
ple, the user expects the arriving time to be 08:45 while the
real-time is 09:29 in the station timetable. In this case, our
model fails to update the slot train-arrive by timely. Except
for annotation errors, the other three error types are mainly
caused by lacking explicit modeling of information flow be-
tween speakers, which also leads to the research points in the
following works.

Conclusion
In this paper, we consider the confidence of slots and pro-
pose an iterative learning framework for multi-domain dia-
logue state tracking. Concretely, a scorer module first esti-
mates the confidence for each slot. After that, we leverage
the high confident slots to update the previous dialogue state
through several iterations. To focus on the hard slots better,
we utilize an objective with confidence penalty to improve
the loss proportion of hard slots. Experimental results show
that our proposed model outperforms other baselines on both
single-domain and multi-domain datasets. In the future, we
would like to develop other approaches to evaluate slot confi-
dence and incorporate it into DST effectively.
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