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Abstract
We present a new architecture for robot control rooted in
notions from Brooks' subsumption architecture and extended to
include an internal representation which matures as it
experiences the world. Our architecture is based on the
Copycat program of Mitchell and Hofstadter, a model of fluid
representation whose details we discuss.  We show how our
architecture develops a representation of its environment
through a continuing interaction with it. The architecture is
founded on a dynamical systems interpretation of
representation and demonstrates the importance of the use of
"embodiment". It reflects a constructivist epistemology, with
the robot designed to utilize its environment in its exploration.

Introduction

We present an architecture for robot control based on the
constructivist insight that representation occurs as a
product of the active interpretation of perception-based
experience.  This architecture supports the control program
for a robot whose task is to move about, explore, and map
its world. The robot generates a representation of its
environment by converting sequences of sensory data into
perceived "objects".  We believe that our approach will
allow the robot to behave more robustly than does the use
of the more traditional "preinterpreted" (McGonigle 1998)
representations of its world.

In this paper, we describe the details of the model and
then show its capacity to construct interactively a
representation of surfaces and gaps (discovering the
"objects") in its environment. The preliminary results
demonstrate the use of this emergent architecture to solve
simple robotics problems and to generate emergent
structures that represent persistent features of the
changing data from the environment.  We also discuss
work currently underway to allow the robot's behavior to be
improved by the emergent representations.

Our work builds on research from several disciplines.
These include: behavior-based robotics (Brooks and Stein
1994), the "dynamical nature" of representation and
intelligence (Steels 1995, 1996), and the philosophical
insights of Maturana and Varela (1980) and Clark (1997), on
the self-organizing nature of living systems and their
"coupling" with their environments. Further support for our
approach comes from Holland's (1986, 1998) ideas on
emergence in the context of classifier systems, and work on
"fluid representations" in software architectures, for
example Copycat, proposed by Mitchell and Hofstadter
(Mitchell 1993). We continue the focus on "situating"

cognitive behavior in its environment originating with
(Winograd and Flores 1986).

Traditional cognitive science and artificial intelligence
have focused on building the (supposedly static)
structures involved in representational processes. The
peculiar fluid quality of actual structures that support
complex problem solving in changing environments has
resisted elucidation. More recently a shift of focus,
generated in part from the study of complex adaptive
systems, has driven research to attempt to characterize the
dynamical processes underlying these representational
structures. Architectures whose representations are implicit
in behavior, supported by dynamical constraints and
triggers from the environment, have begun to validate the
constructivist claim that "refinement of an interpretive
framework is usually driven by the tension between the
pattern of interpretation and the demands of successful
interaction." (Luger 1994). These models also provide
suitable tests for the assertion that representations only
have meaning in the context of embedding experiences.

Our control architecture implicitly defines intelligence
with the four characteristics of evolving complex adaptive
systems proposed by Steels (1996).  The first of these
criteria is self-maintenance (we prefer the term autopoeisis
from Maturana and Varela (1980) who also describe a
"mutual maintenance" relationship among system
components). The remaining criteria for describing
intelligence are adaptivity, information preservation, and,
in response to the demands of a complex environment, a
spontaneous increase in complexity.

We also follow Steels (1996) suggestions that there are
two ways that intelligent systems can achieve these four
criteria. The first is through the use of a general purpose
dynamical architecture. The second is through the capture
of the emergent properties of interactive behavior, enabling
the formation of concepts about and representations of the
environment. We feel that the emergence of structures
evolved through "coupling with" an environment is a
defining feature of intelligence, and call this behaviorally
coupled representation. Furthermore, this "embodiment" is
so critical to the study of intelligence that at least at the
present state of our understanding, building and testing
robots is an insightful necessity.

A New Architecture for Robot Control

Most early approaches to robotics subscribe to an implicit
sense-model-plan-act framework (Brooks 1991b). In the



1980s, concern arose about the performance and complexity
entailed by this framework when applied to adaptive
autonomous agents functioning in actual environments.
This concern motivated a shift in thinking about the design
of robotic systems as well as conjectures about the
organization and use of intelligence itself.

The subsumption architecture (Brooks 1991a) marked the
beginning of behavior-based robotics. Behavior-based
robotics emphasizes the integration of semi-independent
layers that produce behaviors directly from input rather
than each contributing to a stage of the sense-model-plan-
act framework. The focus is on interaction with the
environment as a trigger for behavior rather than use of
explicit representation. The ability to react to dynamic
features of an unpredictable environment and to generate
robust behavior despite sensor uncertainty is a signature of
this behavior-based approach. Testing physically
constructed robots interacting with complex worlds bears
much weight in this new paradigm of robotics research. The
behavior-based approach is a useful framework for
organizing our understanding of intelligence (Brooks
1991b).

Brooks was right to criticize AI for the use of
representational schemes with fixed and predetermined
interpretations. As a result of moving away from the use of
explicit representations, however, too little emphasis has
been placed on the "appropriate" role of representation in
intelligent problem solving. We want to pair Brooks'
insights with a flexible representation that evolves with its
interactions within an environment. A new dynamical model
of representation, focusing on the role of emergent
structure in behaviorally coupled systems, will accompany
our new framework for robotics. McGonigle, referring to the
polarity between representational stances, claims "we have
the concept of a co-evolving agent and environment
leading to a mutual specification…" (McGonigle 1998). To
explore this new notion of representation, we must develop
models that are both dynamical and embodied.  Then we
must seek mechanisms in those models for the emergence
of structures coupled through system behavior to the
environment.

Maturana identifies a hallmark of living systems which he
calls structural coupling (Maturana and Varela 1980).
Structural coupling means that the environment triggers
changes in the internal structures of a system; but the
nature of those changes is dictated by the dynamics of the
system rather than being specified by the environment. An
"embodied" model is one which participates in the
dynamics of its world and which undergoes changes in its
internal processes triggered by events in the environment.
Representation for a robot control system can be achieved
by providing a sufficiently rich dynamical system inside the
robot to enable structural coupling to take place between
the robot control architecture and the environment.

In spite of admonitions against representation, the use of
partial world models may actually increase the ability of
dynamical systems to meet the real-time demands of their
environments. Clark discusses this in connection with

Kawato's work on proprioception (Clark 1997). Partial
models devoted to the improvement of specific behavior are
called niche models (Clark 1997). Representations can be
partial because they derive their meaning from the context
of interactions within an environment.

"Fluid Representation" and Copycat

Copycat (Mitchell 1993) is one of the first computer
programs to attempt to capture the dynamical processes
from which symbolic or representation-based behavior can
emerge. Copycat solves analogy problems such as, if "abc"
becomes "abd" what does "ijk" become? Such seemingly
simple analogies involve evolving, context-dependent
processes of integration and differentiation that are at the
core of intelligent problem solving.

In addition to its novel mechanisms for parallelism and
flexible adaptation, one of Copycat's most important
components is the slipnet. The slipnet is a semantic
network organized with spreading activation and multiple
kinds of links among its nodes, some of which can change
in length. The processes which evolve representational
structure impact the topology of the slipnet, making the
program's own behavior part of the adaptive control. For
example, if several interacting processes have successfully
built structures about opposite relationships among the
input, the node for opposite in the slipnet becomes more
active. Furthermore, opposite links become shorter and
more likely to be traversed, and further processes to explore
opposite are generated. Figure 1 shows the lengths of links
between two nodes, successor and predecessor, as 85.
This value shrinks as the label node for those links, namely
opposite, gets an increase in activation (shown inside the
ovals), making substitutions of one for the other more
likely.  In addition to spreading activation, this is the
method by which slipnet evolves its meanings in response
to events in its environment.

Interacting with the slipnet in Copycat are the coderack
and the workspace.  The interactions of these three
components of Copycat are mediated by the system's
temperature, which measures the cohesion of the
workspace structures. The workspace is a global arena for
creating structures that the other components of the

Figure 1: The Evolving Slipnet 
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system can inspect. In this sense it is much like a
Blackboard (Luger and Stubblefield 1998) or the message
area in Holland's (1986) classifier system. Copycat's
coderack is a priority biased probabilistic queue containing
codelets. Codelets are small pieces of executable code
designed to interact with the objects in the workspace,
exploring different facets of the problem space and
attempting to further some small part of the evolving
solution. The codelets are very much like the individual
classifiers in Holland's (1986) original system.

Copycat is a unique hybrid between serial and parallel
execution, between goal-driven and data-driven search, and
in particular between the symbolic and connectionist
paradigms. The Copycat architecture models the fluid
representation of concepts and their adaptive application to
the active construction of features from perceived data.
  One limitation of the Copycat program is that it has only
one point of interaction with its environment (the initial
exposure to the letter-string analogy problem). There are no
means for continuing interaction with the external
environment, only an ongoing maturation of the internal
structures of the program guided by its own context-
sensitive semantic network.

A second limitation of Copycat is the program's
restricted domain. The domain structure in Copycat, which
facilitates exploration of fluid concepts in high-level
perceptual processes, also restricts the interpretations
available to the program of its developing representation.
For example, the relationships possible between structures
in Copycat, like predecessor, successor, and opposite, are
derived from abstract ordering relationships in the alphabet.
We have extended the program to include richer semantic
relationships whose application can continue to evolve
throughout the program's interaction with its environment.
Related issues, for example, the ability to interactively
discern new rules and interpretations from observed
behavior, are addressed in the Metacat project (Marshall
1999).  By using the ideas from Copycat and Metacat in our
own embodied world of the robot, we have begun to
address these limitations.

The Madcat Architecture

The Madcat project explores how an architecture similar to
Copycat can be used to detect abstract features of sensory
data obtained from an ongoing dialog with the
environment. With its three mutually self-maintaining
components, the slipnet, workspace and the coderack, the
Copycat architecture is an autopoeitic system and a
starting point for a general model of embodied intelligence.
Copycat exhibits the characteristics of an evolving complex
adaptive system relying on a subsymbolic dynamical
system whose structural coupling supports its
representation of a domain. In Madcat the emergence of
representational structures is coupled to the environment
through system behavior.

The Madcat project extends the Copycat architecture to
the control system for a robot, producing a control

architecture capable of ongoing interaction with a dynamic
environment. The Madcat robot is a Nomad Super Scout II
capable of translational and rotational motion with 6 bump
sensors, 16 sonar sensors, and a color vision camera (not
incorporated into the current model; see Further Research).
This collaboration between Copycat and the Nomad robot
produced the project name Madcat. The ultimate goal of
our research is to construct a robot architecture that, from
its emergent exploratory behavior, can build a flexible
representation of its environment that improves its real-time
performance.

In our research we look for behaviors that can be made
more effective by niche models (Clark 1997). We build the
individual components of the architecture and their rules to
interact with data from the sensors and relationships among
that data. The resulting emergent structures are correlated
with the events in the environment, such as the passing of
a corner. The internal "representations" of these events
interact with the control system to produce behavior that is
based on that "representation".

For example, we overcome certain sensor limitations in
the robot using this emergent representation scheme.  The
maturation of the representation through interaction with
the environment is what makes this feasible for a robot
whose motion creates constant change in its sensory data.
This evolving representation in the behavior-based
framework is an important feature of this model.

Figure 2 shows the components of the architecture and
their relationships. Simple reflex-like behaviors, such as
obstacle-avoidance and wall-following, are achieved by
instantiations of four basic rules for a given set of readings
(called a snapshot).  These rules are expressed in codelets
with high priorities. The coderack is a stochastic priority
queue where the choice of the next codelet is made
probabilistically with a bias toward the higher urgency
codelets. This provides the flexibility to discover alternate
possibilities. For further discussion of the importance of
randomness in the coderack and elsewhere see (Mitchell

Figure 2: The Madcat Architecture
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1993). A codelet is just a C++ object containing only one
method that is executed when that codelet object is
selected from the coderack.  The method may initiate robot
movement as in reflex behavior, or it may take a new
snapshot and launch further codelets to build emergent
structures and generate behavior from them.

The workspace serves as the locus of structure-building
activity of the codelets from the coderack. Activity in the
workspace biases codelet choices in the coderack. The
slipnet contains nodes and links that dictate the data to
which the codelets respond and the kinds of structures
they build. The slipnet topology changes in response to
activity in the workspace but its nodes and links remain
fixed.  The entropy reflects how well emergent structures fit
into the data the robot encounters and affects the biases of
the system. A high entropy inclines the system toward
random behavior and perception of different patterns in the
data. With low entropy the system gravitates toward the
established structures.

The control functions for the robot are made available as
C functions that can be linked into developed software. The
Madcat architecture itself is implemented in C++. Besides
the C-based interface of the robot, the choice of C++ was
dictated by the need for real-time behavior. We are building
in Java an interface to the architecture that will be used as a
development and testing tool.

The Behavior of Madcat

The first goal of the Madcat architecture was to
demonstrate that certain basic competencies, roughly those
of Brooks (1991a), could be implemented using this
emergent architecture. The chosen behaviors are obstacle
avoidance, wandering, and wall-following.  Obstacle
avoidance is defined as the behavior of moving to avoid a
collision. Wandering is defined as the behavior of choosing
a random direction of motion when no other particular
movement is required. We define wall-following as the
behavior of moving approximately parallel to the nearest
surface, without necessarily moving nearer to that surface
to do so.

In the behavior-based approach of Brooks (1991a) these
behaviors would be supported by individual interacting
layers, each capable of a particular behavior. In an emergent
architecture, such as Madcat, a few simple rules interacting
among all the data readings give rise to the appropriate
behavior. Instead of layers, an emergent architecture relies
on competition between peer behaviors to generate
coherent global behavior.

There are four basic rules for responding to the data
readings. These have been determined empirically by
considering immediate needs of particular elements, as is
done in cellular automata for instance. Genetic algorithms,
reinforcement learning, or other methods might also be
used. For readings that come from the sonar sensors above
either wheel the robot should move forward to follow the
surfaces which reflected the signals from those sensors.
For readings that come from sonar sensors clockwise from

either wheel but not beyond the forward or rear sensors the
robot should rotate clockwise to become parallel with the
surfaces that reflected the signals from those sensors. An
analogous rule holds for readings from sonar sensors
counterclockwise from the wheels. If the robot senses
contact from one of the six regions of the bump sensor,
then it should back up a small amount and turn away from
the region to avoid further contact. When each of these
rules is given a priority proportional to the proximity of the
readings, the desired three behaviors emerge as a result of
the moment by moment interactions of the rules, readings,
and features of the environment.

Wall-following can be seen in Figure 3 where the robot
moves counterclockwise, turning corners to remain on a
course parallel to the nearest wall. Obstacle-avoidance is
also demonstrated, as the robot turns in response to
surfaces detected in its path. Wandering is subordinate to
these first two behaviors and so only appears at the end of
the path in the upper left corner.

The second goal of the Madcat architecture is to
generate emergent structures correlated with environmental
features. These support more effective real-time behavior.
For example, the direction choice for wandering can be
made more useful if the system has a rough model of what it
has already encountered. Random directions can be chosen
from among those not yet explored.  As another example,
consider that the sonar sensors produce the same
measurement for all readings below 6 inches, preventing the
distinction of a corner from a continuation of a nearby wall.
If the system contains structures representing a wall
located directly ahead, it may use this information to turn
away from the wall with which it would otherwise collide.

At the top of Figure 4 the robot passes a convex corner.
Single Surface Element (SSE) structures, corresponding to
each of the sonar readings taken while traversing this path,
are built in the workspace. Bonds can be built between
these SSEs according to the relationships in the data. For
instance, Adjacent Equivalence Bonds (AEB) may be built
between SSEs from adjacent sonar sensors if their values
are within a certain percentage of each other. Candidate
Surface Bonds (CSB) tend to be built linking a sequence of
AEBs, which might possibly constitute a surface. Bonds
built from a single snapshot are only tentative.  As the data
from successive snapshots continue to bear certain

Figure 3: Obstacle Avoidance, Wandering,  
                      and Wall -Following 
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relationships, bonds based on those become strengthened.
The Maximum Difference Bond (MDB) identifies the apexes
in curved surfaces. These only occur after many snapshots
have produced well-established structures. Figure 4
illustrates this process.  There is no attempt to maintain a
direct spatiotemporal correlation between internal
structures and external features; rather the relative
importance of the structures dictates the ones to which the
robot's behavior responds.

Figure 5 shows the robot approaching a wall to which its
sensors are blind. The wall to its left is closer than six
inches, below which distance the sonar system is unable to
make any distinctions. This makes the approaching wall
look like a continuation of the wall to the left. However,
during the approach, structures will form which reflect the
sonar readings of the forward wall. If a CSB is built in time,
the robot will notice it when scanning its internal surfaces
for discrepancies with the environment. At that point it can
choose to turn and avoid the wall based on its internal
niche model of the world. This will demonstrate the use of
emergent representation to improve real-time behavior. We
expect many similar improvements to be possible based on
the emergent representation.

The role of the slipnet is to provide context-dependence
to the competing behaviors in Madcat.  For example,
consider the creation of an AEB, proposed by some
codelet.  The comparison of values between adjacent SSEs
uses information from the slipnet concerning relative

distances of objects in the current environment to discern
how precisely the comparison should be made.  When the
objects detected are at a greater distance from the robot
both trigonometric considerations and reliability of the
sensors dictate that a greater difference in readings may
still correspond to a single surface.  Alternatively, when the
robot is near its targets, a small difference between surfaces
by adjacent sensors more likely indicates distinct surfaces.
As another example, the SSEs between which the AEB will
be built are themselves chosen probabilistically with a bias
coming from the slipnet's indications of which objects have
greatest relevance at that moment. Indeed every time a
codelet must choose an object on which to perform an
operations (e.g. build a structure around it) the bias for the
probabilistic choice is made based on the activation level of
the nodes in the slipnet associated with the object and the
action of the codelet.

Occasionally, the parallel nature of the architecture will
give rise to the proposed construction of an object that
conflicts in some way with an existing object (e.g.,
duplication, overlap, and opposition).  As in the Copycat
architecture, the choice of whether to veto the construction
or destroy the conflicting object and continue is made
probabilistically with a bias that comes from information in
the slipnet about which kinds of objects are currently more
useful to build.  This information comes from the context to
which the slipnet has been exposed in the preceding
moments of the robot's behavior.  Indeed at times the
priorities implicit in the current arrangement of the slipnet
will bias the probabilistic codelet executions so that the
system explores otherwise unnoticeable options.

The entropy measure, like the temperature in Copycat, is
used as a feedback mechanism for the entire architecture.
When entropy of the workspace is calculated, values are
obtained from the workspace objects that indicate their
relative importance and degree of incorporation into larger
structures.  The calculation of these values includes the
level of activation of the node in the slipnet corresponding
to that type of object.  So an object whose node in the
slipnet has high activation is likely to have greater
importance and higher expectation for structure-inclusion.
Thus, even the self-organizing feedback in the system is
mediated by the context-driven relevance of the concepts in
the system. Information in the slipnet about relative
priorities of certain kinds of structures and actions can be
used to select or restrict entire classes of behavior.

The slipnet captures this context information through its
interactions with the workspace and the codelets.  When a
codelet successfully builds a structure in the workspace,
the slipnet node which originated that codelet gets a boost
of activation.  That activation spreads to neighboring
nodes in the slipnet as a function of the length of the link
between them.  Thus, related nodes also get some
additional activation.  As the activation of a node goes up,
so does its chances of emitting codelets designed to
explore the possibility of building structures in the
workspace based on the concept represented by that node.
Activation decays in the slipnet so that over time, if no new
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    Figure 5: Emergent Structures Aid in Navigation 
 

Robot approaches  
undetectable wall  
 
Two traces show path 
with and without 
internal model 
 
 
 

Robot scans internal 
structures 
 
CSB indicates turn 
 is necessary 
 
Robot avoids 
collision 
   
 
 

Collision without  
model 

Avoids  internal 
model  of  wall  



objects of a given type are being built, then codelets stop
being produced to look for them.  Of course there is a
certain low probability for generating any type of codelet
so the system never stops discovering new possibilities.
The mechanisms of the slipnet capture the priorities
indicated from the context of recent interaction of the
environment and drive the decisions in the entire system.

Further Research

There are two specific areas of further development. The
first is to use the internal models of environmental features
to augment visual decomposition algorithms used with the
color vision camera. The worm algorithm (McGonigle 1998)
is commonly used, but it is easily misled. The presence of
sonar edges in the internal model can help to corroborate
edges found by a variant of the worm algorithm. This kind
of synthesis is important in the intelligence of living
organisms. We would like to build models with this
capacity.

The second extension to our research is related to the
idea that events in the environment enable certain behavior
sets and disable others. We would like to model the sudden
shift of priorities and behaviors in a system in response to
events in the environment. Certain colors detected by the
camrea act as triggers for the system. When these occur,
changes in the links in the slipnet and the priorities of
codelets occur which override the bias to explore and
complete internal models in favor of seeking out a resource
or avoiding danger.

Conclusion

We offer both a definition and an instantiation of intelligent
problem solving in robotics based in evolving complex
adaptive systems. We refine the behavior-based approach
to robotics by requiring that representation, redefined as
the emergence of structures coupled to the environment
through behavior, be given greater focus. We believe that
the four issues of embodiment, emergence, symbolic
behavior, and representation will be very important in the
challenging task of understanding intelligent activity in
changing problem domains.

We have demonstrated the feasibility of an emergent
architecture in solving simple robotics problems.  We have
demonstrated that emergent structures in an embodied
architecture can be behaviorally correlated to features of
the environment, producing niche models useful for
generating adaptive behavior. Work is underway using this
architecture for improved visual decomposition algorithms
and environmentally triggered behavior shifts.
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