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Two recent reviews (Beck et al. 2012, Keith et al. 

2012) have outlined potential directions for mac-

roecology to follow, with an expanded suite of 

questions, methods, and sources of data.  One 

specific recommendation made by Beck et al. 

(2012) was to expand the use of citizen science 

data—data collected by a network of volunteers—

in macroecological studies.  In this commentary 

we explore the potential for using citizen science 

data, and feature one specific data resource that 

we believe will be of interest to macroecologists.  

We note how such data can be useful for address-

ing a number of research avenues described in 

these two reviews, as well as describing some 

constraints on availability and challenges inherent 

in using volunteer-collected data.  Our own per-

spectives (and biases) have been shaped largely 

by our experience using citizen science data for 

autecological studies of birds.  Nevertheless, we 

see many connections between the process of 

using citizen science data in studies of individual 

species and the potential uses of these same data 

for the interspecific comparisons used in mac-

roecology. 

 While it is possible to create new citizen 

science projects to collect required data for an-

swering specific questions (Silvertown et al. 2011), 

this approach to collecting data for macroecology 

research suggested by Beck et al. (2012) would 

require considerable investment in time and re-

sources to implement.  For example, the Evolution 

MegaLab took 2.5 years from receipt of funding 

until the project was launched (Worthington et al. 

2011).  The most immediate sources of citizen sci-

ence data, especially across broad geographic ex-

tents, will be from existing projects.  While citizen 

science projects are being used to collect a wide 

array of types of data1, one of the most common 

forms of citizen science data in ecology is observa-

tions of species from which one can infer their 

distributions. These observations are typically col-

lected in the form of ‘checklists’ of the species 

seen during an observation period, and often also 

the numbers of individuals of each species that 

was observed.   

 A number of programs exist for the collec-

tion of checklist data from birds across large geo-

graphical regions, including eBird (Sullivan et al. 

2009) that collects data worldwide but concen-

trates on the western hemisphere, the North 

American Breeding Bird Survey (USGS Patuxent 

Wildlife Research Center 2012)2 and Christmas 

Bird Count (National Audubon Society 2002)3 in 

North America,  BirdTrack in the British Isles 

(Eddowes 2011), and the Ornitho family of 

schemes in Switzerland4 and other regions of 

Europe.  Here we focus on describing eBird and 

the uses of its data specifically, because of our 

familiarity with the data from this program.  Nev-

ertheless, we describe the data from eBird within 

a broader context because most or all of our ob-

servations will be applicable to similar citizen sci-

ence data from other sources.  Checklist data are 

likely to be easily combined across projects and 

the regions that they cover, because of the rela-

tively simple and similar protocols across such 

projects.  Hence, while individual programs may 

collect data from limited geographical regions, we 

believe that in the future the combination of data 

from a number of sources will create an invalu-

able resource with which to describe and under-

stand global distributions of organisms. 

1. http://www.birds.cornell.edu/citscitoolkit/projects/find/find accessed 19 November 2012 
2. http://www.pwrc.usgs.gov/bbs/  accessed 19 November 2012 
3. http://www.audubon.org/bird/cbc accessed 19 November 2012 
4. http://www.ornitho.ch/ accessed 19 November 2012 
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http://www.birds.cornell.edu/citscitoolkit/projects/find/find
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The eBird checklist program and its data 

eBird is a web-based system for collecting data on 

the occurrences and numbers of birds world-wide, 

although currently concentrating on gathering 

data from the western hemisphere.  Since its in-

ception in 2002, eBird has been gathering an ever-

increasing volume of data each year, with a 

monthly peak of over 110,000 checklists submit-

ted in 2012 (see Sullivan et al. 2009 for more back-

ground information on eBird and its operation).  

All checklists submitted to eBird are reviewed for 

unusual observations based on the location and 

date of observation (Kelling et al. in press).  The 

data from eBird are compiled annually into the 

eBird Reference Dataset, which contains not just 

the data collected on birds, but additionally for 

the lower 48 states of the United States associ-

ated data describing the habitat around the loca-

tions of all observations5. Data from eBird have 

been used for purposes as varied as motivating 

the development of novel analytical methods 

(Hochachka et al. 2012) and guiding conservation 

policy6. 

 

A source of data, where volunteers exist 

The requirement for a large number of volunteers 

to collect data, particularly at broad geographical 

scales, leads to unequal distributions of citizen 

science data across the globe.  Similarly, some 

taxonomic groups are more charismatic and have 

a greater number of people interested in making 

observations, leading to a greater availability of 

data for these taxa.  Birds have a large existing 

constituency of observers recording their pres-

ence, and tapping into the motivations of bird 

watchers has been key to the success of bird 

checklist programs (Sullivan et al. 2009).  How-

ever, even these datasets often exhibit biases aris-

ing from the uneven distribution of search effort.  

Without a geographically explicit protocol for data 

collection, volunteer search effort tends to follow 

patterns of human population density and roads.  

The distribution of observers and their decisions 

of where to make observations are not necessarily 

motivated by a desire to collect representative 

data across a landscape (Sullivan et al. 2009, Tul-

loch and Szabo 2012).  Quite simply, data are 

more likely to be collected where more potential 

observers live, and in areas that are more easily 

accessible.   

 eBird is no exception to this generalization.  

Within the United States and Canada, densities of 

data collected in eBird approximate densities of 

human populations, with the northeastern United 

States and adjacent Canada having a very high 

density of available data, and with the lowest den-

sities of data in the Great Plains in the middle of 

the continent, and in northern Canada.  Into the 

Caribbean, and Central and South America, the 

density of available data is also lower not because 

of lower human densities per se, but because of a 

lower proportion of bird watchers within popula-

tions.  

 As with geographic biases, taxonomic biases 

in data collection are driven by observers.  Data 

from birds are more readily available than those 

from other taxa because eBird and similar bird 

checklist programs tap into existing groups of po-

tential volunteers that are present because bird 

watching is a well-established hobby.  Sometimes 

expanded interests of bird watchers creates ave-

nues for expanded taxonomic coverage, as is the 

case with the British BirdTrack system that now 

also collects observations on dragonflies7.   Never-

theless, data on birds predominate among data 

collected as checklists of organisms.  An illustra-

tion of biases in taxonomic coverage can be ob-

tained by browsing the numbers of observations 

collected in one all-taxa observation-reporting 

system, Observado.org8.   

 In summary, where appropriate data exist 

for a taxonomic group and geographic region, we 

suggest that opportunities to use these data 

should be explored more fully by macroecologists.  

5. http://www.avianknowledge.net/content/download accessed 19 November 2012 
6. http://www.stateofthebirds.org/State%20of%20the%20Birds%202011.pdf accessed 19 November 2012  
7. http://www.bto.org/volunteer-surveys/birdtrack/taking-part/recording-your-sightings/recording-dragonflies   
accessed 19 November 2012 
8. http://observado.org/statistiek.php accessed 19 November 2012 

http://www.avianknowledge.net/content/download
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http://observado.org/statistiek.php
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9. http://ebird.org/content/ebird/news/ebird-animated-occurrence-maps accessed 19 November 2012  

However, the existing geographic and taxonomic 

biases in studies in macroecology (see Figures 3–5 

in Beck et al. 2012) are unlikely to be erased 

through the use of citizen science data.  

 

Broad extent with fine resolution 

Within the constraints of available data, citizen 

science checklist projects can provide very useful 

data with which to address the issues of scale 

raised in the two reviews (Beck et al. 2012, Keith 

et al. 2012) by providing data that have both 

broad extent and small grain.  The same loose pro-

tocols that result in a sparsity of data from some 

areas also result in high densities of data in other 

areas. Using data from eBird, we have found that 

individual species can exhibit long-range variation 

in the local-scale associations between prevalence 

and landcover (Hochachka et al. 2012).  Further, 

when data density is sufficient, distributional pat-

terns can be examined at multiple, nested spatial 

resolutions and fine-scale patterns may be com-

pared across larger-scale regions.  Lovette & Ho-

chachka (2006) demonstrate the utility of this ap-

proach using data examined at two spatial ex-

tents, in order to define regional pools of species 

within which to examine constraints on local 

(location-specific) associations among species.  

 

Temporal information is available 

Because observations can be made at any time 

throughout the year, eBird data also contain tem-

poral information across a range of scales (e.g. 

time of day, day of year, and year of observation). 

These data open up the possibility for exploring 

new questions in macroecology that were not 

highlighted in either of the two recent reviews.  

For example, data from eBird contain sufficient 

information to describe seasonal variation in the 

distributions of a number of species across the 

breadth of North America9, addressing such ques-

tions as the flexibility with which the timing of 

bird migration can be adjusted to climatic condi-

tions (Hurlbert & Liang 2012).  The availability of 

data on within-year temporal variation contrasts 

markedly with some data sources such as basic 

species lists for geographical areas.  For sessile 

species such as plants, collapsing time in records 

may not be critical for many purposes, but for 

highly mobile taxa such as birds even basic infor-

mation on species’ probabilities of association 

with each other (in the same place at the very 

same time) depends on having data of fine tempo-

ral grain.  Further, the fine temporal grain of 

checklist data open up the possibility of investigat-

ing whether patterns in biodiversity are depend-

ent on not just spatial scale but temporal scale.  

 Additionally, associations of species with 

each other or an individual species with features 

of its environment may change throughout the 

year, even for species that are non-migratory.  To 

date, macroecology typically searches for patterns 

that are generalizable across space.  We see an 

intriguing potential for similar investigations of 

generalities across time. 

 

Ability to filter out the observation process 

Data per se do not represent biological truth.  Any 

ecological datum results from the combination of 

a biological process and an observation process, 

and assuming that the observation process does 

not exist can lead to erroneous biological infer-

ences.  Even observations of large sessile organ-

isms are imperfect because observers are fallible 

(Chen et al. 2009).  The likelihood of detecting an 

individual organism can vary for a number of rea-

sons, including the following:  

 Observer effort – the longer an observer takes 

to gather data in a checklist or the farther they 

travel, the greater the number of organisms 

they will observer.  Variation in observer effort 

needs to be accounted for in order to compare 

observations. 

 Time of observation – insects are more active 

and easily observed at warmer times of day 

away from the morning, whereas many bird 

species are best detected in the early morning 

particularly when displaying on their breeding 

grounds.  At the broader time scale of an an-

nual cycle, organisms will change in detectabil-

ity as well.  Thus temporal variation in detect-

http://ebird.org/content/ebird/news/ebird-animated-occurrence-maps


ability needs to be identified and controlled for 

in the use of checklist data. 

 Habitat – the environment in which a checklist 

is collected not only determines the species 

present, but can also affect the observers’ abili-

ties to detect the organisms that are present.  

Confounding species’ habitat preferences with 

their detectability in different habitats can lead 

to erroneous conclusions (Ruiz-Gutiérrez et al. 

2010).   

A carefully designed survey can control for obser-

vation effects, for example by keeping observers’ 

effort constant, or even collecting data in such a 

way that the biases introduced by the observation 

process can be eliminated during analyses (Royle 

and Dorazio 2008).  Typically, repeated observa-

tions at the same locations are used to estimate 

detection probabilities.  While many checklist data 

such as those in eBird are not formally collected in 

a repeated-visits format, analysts may be able to 

coerce these data into a form in which they can be 

used in statistical analyses that explicitly model 

the observation process (Kéry et al. 2010). Alter-

natively, it is also possible to account for detection 

probabilities even without repeated data from the 

same location (Sólymos et al. 2012), if the neces-

sary assumptions can be met by the data.  Less 

ideally, covariates that affect detection probability 

can be included in models such that estimated 

probabilities of occurrence are produced that are 

conditional on selected values of the covariates 

that affect detection (e.g., Fink et al. 2010).  A ba-

sic precondition for any of the above methods is 

that ‘presence–absence’ data—data for which 

both detections and non-detections are known—

are collected. 

 Without knowing which species were unde-

tected, or otherwise being able to correct for bi-

ases in reporting rates, biased biological infer-

ences likely will result.  Data from eBird and some 

other checklist programs are collected as com-

plete lists of species identified during an observa-

tion event, or at least the incomplete nature of 

some lists can be identified by data analysts.  In 

eBird, observers are explicitly asked whether their 

lists represent all of the species that were identi-

fied during an observation period; data cannot be 

submitted without this question being answered.  

Not all checklist programs collect this complete-

checklist information.  In contrast, museum speci-

mens or data compiled into a museum-like format 

such those available through GBIF10 are examples 

of data that lack the contextual information nec-

essary to assess and, subsequently, correct for 

non-detection.  In such data, each species, or even 

individual organism, is treated as an entirely sepa-

rate entity collected in an independent collection 

event, and stored as a separate record.  Statistical 

methods, notably Maxent (Phillips et al. 2009) 

have been designed to deal with data for which no 

information is available about non-observation 

events (‘presence-only’ data).  Such methods work 

by creating a set of ‘pseudo-absence’ data in lieu 

of having actual information on non-detections. 

 For studies across broad geographic or long 

temporal extents, detection rates may vary both 

temporally (e.g., Hochachka et al. 2009) and spa-

tially (e.g., Ruiz-Gutiérrez et al. 2010).  Thus, the 

lack of detection does not convey the same infor-

mation about true absence at every geographic 

location within the region of interest and at every 

time of data collection.  This is a challenge for the 

analysis of both presence–absence and presence-

only data.  Our feeling is that such variation in de-

tection probabilities is ubiquitous enough that any 

analysis and subsequent interpretation of results 

from broad-scale data should explicitly consider 

the likelihood that the statistical assumption of 

stationarity of the observation process is true, and 

the effects of this assumption being invalid. 

 

In conclusion, we would encourage biogeogra-

phers and macroecologists to investigate whether 

data are available from existing citizen science 

projects, most likely data collected as checklists of 

organisms, and consider whether these data are 

amenable to the investigators’ use.  We have de-

scribed the eBird checklist program in detail both 

to encourage the use of its data and as an exam-

ple of the types of data available from checklists 

Wesley M. Hochachka and Daniel Fink 
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of organisms and the considerations that need to 

go into the analyses of such data.  We believe that 

many existing data can potentially be used to ex-

plore temporal dynamics from a macroecological 

perspective and to explore the consequences of 

changing spatial and temporal scale—both grain 

and extent of data (Beck et al. 2012)—on the bio-

logical patterns that are observed. 
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