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Heuristics for Choosing Features to Represent Stimuli

Matthew D. Zeigenfuse (mzeigenf@uci.edu)
Michael D. Lee (mdlee@uci.edu)

Department of Cognitive Sciences, University of California, Irvine
Irvine, CA 92697 USA

Abstract

In this paper, we compare three heuristic methods for choosing
which of a set of features to use to represent a domain of stim-
uli when we know the categories to which those stimuli belong.
Our methods are based on three measures of category differen-
tiation: cue validity, category validity, and their product, collo-
cation. In a comparison of their ability to predict human simi-
larity ratings in the Leuven Natural Concept Database, we find
collocation to have the best performance, suggesting people
use both cue and category validities in choosing which features
to represent.

Keywords: Feature representation; basic-level categorization;
similarity judgment.

Introduction
Of all the aspects of their world that could be represented,
which do people actually choose? Imagine you are standing
in front of a black dog named “Rover” with a small white
patch of hair under its left eye. Which of its features do you
choose to represent: its tail and four paws, its name, “Rover”,
and the spot under its eye? The last two of these may be useful
for a representation of this particular dog, but are probably
less useful to representing dogs as whole. Conversely, the first
two may be useful for representing dogs, but are probably less
useful for distinguishing Rover.

One method of learning about which aspects of a particular
set of concepts people represent is the feature generation task
(Rosch & Mervis, 1975). Often in this task people are asked
generate a fixed number of features for each exemplar in a
domain. In some cases, additional participants are asked to
rate whether an exemplar has a feature for each combination
of features and exemplars in a domain (Deyne et al., 2008).
This leads to a large number of features describing each ex-
emplar; however, not all of these features will be importantto
a person’s representation.

Zeigenfuse and Lee (2008, 2010) provide a computational-
level (Marr, 1982) approach to the problem. Similar to the
theory of second-order isomorphism in perception (e.g. Shep-
ard & Chipman, 1970), they argue that people represent those
features that determine the similarity between objects andde-
velop a model to infer which features are important using sim-
ilarity judgments. Unfortunately, their method does not of-
fer a psychological rationale for why one feature is important
vis-à-vis an unimportant one, since it is more of a statistical
solution than an account of feature importance.

This paper expands upon the computational approach of
Zeigenfuse and Lee (2008, 2010) by exploring psychologi-
cal theories of what makes a feature important. To this end,
we propose heuristic methods for choosing important features
based on how well a feature distinguishes categories from one

another. We use these heuristics to begin answering the ques-
tion of specifying what properties of a feature cause people
to represent it.

Representation and Basic-Level Categories
Our heuristics are based on measures of category differenti-
ation that have been proposed to explain basic-level catego-
rization. Basic-level phenomenology refers to people’s pref-
erence to categorize objects at a particular level in a cate-
gory hierarchy, known as the basic level. Key finds are ob-
jects are categorized into basic-level categories more quickly
than sub- or super-ordinate categories, basic level objects are
named faster, objects are described preferentially with ba-
sic level names, more features are listed at the basic level
than at the superordinate level, basic level names are learned
before names at other levels, and basic level names tend to
be shorter (Rosch, Mervis, Gray, Johnson, & Boyes-Braem,
1976). These results suggest an intimate relationship between
an object’s basic-level category and its mental representation.

Category-Based Measures
Category Differentiation Given a feature representation,
many theories of basic-level categorization score potential
categorizations of the concepts in a domain through the infor-
mation its categories give about the features of category mem-
bers and vice-versa. Examples include, cue validity (Rosch
et al., 1976), category validity, collocation (Jones, 1983), fea-
ture predictability (Corter & Gluck, 1992), category statis-
tical density (Kloos & Sloutsky, 2006), and strategy length
and internal practicability (SLIP: Gosselin & Schyns, 2001).
Inverting this logic, given a set of categories, we can score
features on their usefulness in providing information about
which of the set of categories a concept belongs to, the infor-
mation knowing a concepts category provides about whether
it has the feature, or a mixture of the two.

Usefulness Measures The heuristics described here for
choosing feature representations are based on three measures
of feature usefulness. Suppose we have a domain of cat-
egories{c1, . . . ,cM}. Let fff be an arbitrary feature. The
first heuristic ismaximum cue validity, which we define as
max1≤ j≤M p(c j| fff ). The quantityp(c j| fff ) is known in the lit-
erature as the cue validity of featurefff (implicitly, with re-
spect to categoryc j). Psychologically, it expresses how well
having a feature predicts whether a stimulus belongs to a par-
ticular category.

We also look atmaximum category validity, defined as
max1≤ j≤M p( fff |c j). Here p( fff |c j) is often referred to as the
category validityfff (again, implicitly, with respect to category
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c j). It expresses how well belonging to a category predicts
whether a stimulus has a particular feature.

Finally, we look at maximum collocation,
max1≤ j≤M p(c j| fff )p( fff |c j). The quantityp(c j| fff )p( fff |c j) is
known as the collocation of featurefff and categoryc j. This
measure has previously been applied by Jones (1983) in
his feature possession score account of category basicness.
Here it is applied as a measure that integrates both cue and
category validity.

Alternative Measures
We supplement the usefulness heuristics by two additional
heuristics, included as baselines. The first of these is based
around a measure we termfeature prevalence, defined to be
the proportion of exemplars in a domain which possess a
given feature. The purpose of this heuristic is to compare the
usefulness heuristics to a simple heuristic using only base-
rate information. The second is a “random” heuristic, which
simply selects subsets of features at random. This heuristic is
intended to illustrate how our usefulness heuristics compare
to an arbitrarily chosen heuristic for selecting features.

The remainder of the paper compares the five heuristics
using human similarity judgments. We procede as follows.
First, we describe the data on which the heuristics will be
compared, the Leuven Natural Concept Database (Deyne et
al., 2008), a collection of normative data for semantic con-
cepts. We then present the selection heuristics and how the
representations chosen are used to generate similarity judg-
ments. Next, we show the results of applying the heuristics
to the Leuven database. We close by discussing what these
results tell us about the features people choose to represent
stimuli and the difference between natural and artificial kinds.

The Leuven Natural Concept Database
The Leuven Natural Concept Database (Deyne et al., 2008)
contains normative data for semantic concepts falling intoone
of two domains, animals and artifacts. These data consist
of typicality ratings, goodness ratings, goodness rank orders,
generalization frequencies, exemplar associative strengths,
category associative strengths, estimated ages of acquisition,
word frequencies, familiarity ratings, imageability, andpair-
wise similarity ratings for concepts within a single category
as well as exemplar-by-feature matrices and pairwise simi-
larity ratings between a subset of the exemplars in a domain
spread across its categories.

In our comparisons we make use of the exemplar-
by-feature matrices and domain similarity ratings. The
exemplar-by-feature matrices describe the exemplars of a do-
main in terms of a number of participant-generated features.
For the animals domain, 129 exemplars, split among the cat-
egories birds, fish, insects, mammals, and reptiles, are de-
scribed in terms of 765 features. For the artifacts domain,
166 exemplars, split among the categories clothing, kitchen
utensils, musical instruments, tools, vehicles, and weapons,
are described in terms of 1295 features. These features in-
clude both high frequency features such as “is a bird” and “is

made of metal” and low frequency features such as “stands in
the crib at Christmas” and “stored in the cellar”.

Domain similarity judgments are pair-wise similarity judg-
ments collected between exemplars in a set of consisting five
exemplars from each of the categories in a domain. This re-
sults in sets of twenty-five exemplars for the animals domain
and sets of thirty exemplars for the artifacts domain. Two dis-
tinct sets of exemplars were chosen for each domain, resulting
four sets of domain similarity judgments.

Feature Selection Measures
Starting with a set of features that we wish to select a feature
representation from (such as the 765 animal or 1295 artifact
features in the Leuven sets), each heuristic chooses a feature
representation using a two step process. First, the useful-
ness of each feature is computed under a particular useful-
ness measure. Then, we select those features whose useful-
ness is above a pre-defined threshold. For example, suppose
we wish to use the collocation heuristic to choose among the
seven features representing the exemplars of the three cate-
gories in Table 1. First, we would compute the maximum
collocation over categories for each of the features (shownin
the “Colloc.” column of Table 1). Then, we would select all
those features for which the maximum collocation over the
categories was above our threshold. In this example, were
the threshold one-half, we would select features 1, 2, and 3.
The same procedure can be used with the benchmark impor-
tance measure of Zeigenfuse and Lee (2008, 2010) to select a
representation.

The features selected by these heuristics to generate sim-
ilarities according to a common features model (Shepard
& Arabie, 1979). Suppose we have a set of features
{ fff 1, . . . , fff K} from which we have selected a set of useful
features indexed byU ⊆ {1, . . . ,K}. The common features
model says that similarity between conceptsi and j is

si j = c + ∑
k∈U

wk fki fk j, (1)

wherec is the universal similarity andwk is the salience of
featurefk.

The remainder of the section is devoted to discussing for
the benchmark and other heuristics in greater detail. In the
first subsection, we summarize the benchmark measure of
importance. In the second, we provide a rationales for each
of the three category-based usefulness measures. In the final
subsection, we provide rationales for the two baseline heuris-
tics.

Benchmark

The Zeigenfuse and Lee (2008, 2010) method for learning
which of a set of features people use to represent stimuli is
based upon latent variable selection. In this framework, those
features that are included in a concept’s representation are
termed “important” features. For each feature, they define a
variablezk indicating whether featurefff k is used in similarity
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Category 1 Category 2 Category 3 Cue Cat. Colloc.
Feature 1 • • • • • 1 1 1
Feature 2 • • • • • • 5/6 1 5/6
Feature 3 • • • • 1 4/5 4/5
Feature 4 • 1 1/5 1/5
Feature 5 • • • • • • • • • • • 5/11 1 5/11
Feature 6 • • • • • • • • • • • • 5/12 1 5/12
Feature 7 • • • 2/3 1/3 4/21

Table 1: Representative features illustrating behavior ofthe usefulness measures.

judgments. Then, the similarity between conceptsi and j is
then

si j = c +
K

∑
k=1

zkwk fki fk j. (2)

To learn which features are included in the representation,
Zeigenfuse and Lee (2008, 2010) develop a Bayesian model
and sample from the marginal posterior over thezk using
Markov Chain Monte Carlo (MCMC). In this framework, a
feature’s importance is the marginal posterior probability the
feature is represented. They found that a small number of
important features are able to fit similarity almost as well as
using all features.

Usefulness Measures

Different measures of usefulness correspond to different as-
sumptions about what aspects of the environment lead a per-
son to represent a particular feature. In the opening exam-
ple, the small white spot under the dog’s eye and its name,
“Rover”, may be useful for representing the family dog, but
are probably not useful for representing dogs generally. This
section outlines the psychological theories of feature impor-
tance embodied by each of the usefulness heuristics.

Maximum Cue Validity Maximum cue validity measures
how concentrated a feature is in a single category. Formally,
let rk be the total number of objects with a particular feature
fk and letn jk be the number of objects with the feature in cate-
goryc j. The cue validity offff k is thenp(c j| fff k) = n jk/rk and
the maximum cue validity is the maximum ofn jk/rk taken
over j.

As illustrated by example features Table 1, maximum cue
validity is large when most of the exemplars possessing a fea-
ture belong to the same category (Features 1 – 4), though
this need not be a large number of exemplars (Feature 4). To
see why, note that maximum cue validity is large if and only
if there exists a category for whichn jk is nearlyrk. Since
nlk ≤ rk −n jk for l 6= j, rk −n jk must be small and few exem-
plars with fk can belong tocl .

Maximum Category Validity Category validity measures
how diffuse a feature is within a particular category. As with
maximum cue validity, letn jk be the number of exemplars
in categoryc j with feature fff k, and define a new quantityq j

to be the total number of exemplars belonging toc j. Then,

the category validity offff k with respect to categoryc j is
p( fff k|c j) = n jk/q j and the maximum category validity is the
maximum ofn jk/q j taken overj. Returning to Table 1, we
see that features whose category validity is high (Features1,
2, 5, and 6) are possessed by most of the exemplars in at least
one category.

Maximum Collocation Maximum collocation is a measure
of how simultaneous concentrated in and diffuse across a cat-
egory a feature is. Using the terminology of the previous sec-
tions, the collocation of a featurefff k with respect to category
c j is (n jk/rk)(n jk/q j). Maximum collocation is the maxi-
mum of this quantity taken overj.

Features with high collocation are possessed by most ex-
emplars within a category and few outside it, as illustratedby
the architypical Feature 1 in Table 1. Alternatively, Features 4
and 6 show why it is necessary for both of these to be true.
Those features possessed by only a small fraction of exem-
plars within a single category will have high cue validity but
low category validity (Feature 4). Those features possessed
by most exemplars in more than one category will have high
category validity but low cue validity (Feature 6).

Alternative Measures

The two baselines used here are intended to show both how
well our usefulness heuristics performed against heuristics
embodying contrasting assumptions. The first of these is
based on the base rate of a feature across stimuli, which we
refer to as feature prevalence. For featurefff k, the prevalence
is p( fff k) = rk/K, whererk is as defined in the previous sec-
tion. This shows that the ability of a feature to distinguish
among categories does not affect its importance.

The random heuristic provides a different sort of foil for
the usefulness heuristics. Many methods other than those in-
cluded here could be imagined for selecting a sets of features.
By selecting features at random, it allows us to compare the
predictions of our heuristics to those an arbitrary method of
choosing features.

Method Comparison
Here we describe a comparison of maximum cue validity,
maximum category validity, and maximum collocation to
each other as well as the benchmark and baselines using the
Leuven Natural Concept Database (Deyne et al., 2008). In
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the first section, we enumerate the procedure used to fit the
domain similarity data. In the second, we present the results
of this procedure for each of the heuristics.

Procedure
The fit procedures begins with the exemplar-by-feature ma-
trices. Before applying any of the heuristics we filter out all
features possessed by zero, one, or all of the 25 or 30 ex-
emplars included in the domain similarity comparisons. Fea-
tures possessed by one exemplar or fewer will not be used
in any similarity comparisons, sincefki fk j = 0 for all dis-
tinct stimuli i and j. Features possessed by all exemplars
will be used in every similarity comparison, so they can be
included in the constant termc in Equation (2). Addition-
ally, we find all groups of features possessed by exactly the
same set of exemplars, and combine these into a single fea-
ture. Supposefff k and fff l are features possessed by exactly
the same set of exemplars. Then,fki = fli for all i and
wk fki fk j + wl fli fl j = (wk + wl) fki fk j .

After pre-processing, for the benchmark and all of the
heuristics except the random heuristic, we compute its cor-
responding measure using all of the exemplars in the domain,
not just those included in the domain similarity judgments.
The features are then sorted in order of decreasing value on
these measures. Starting with only the top two features, we
fit the common features model to the domain similarity judg-
ments using non-negative least squares and compute the cor-
relation between the fitted similarities and the actual similari-
ties. We repeat this process with the top three features, thetop
four features, etc. To apply this procedure with the maximum
collocation heuristic to the features in Table 1, we first com-
pute the values in the collocation column. We then order the
features in order of decreasing collocation, which in this case
is 1, 2, 3, 5, 6, 4, 7. We first fit the model with features 1 and
2, then 1, 2, and 3, followed by 1, 2, 3, and 5, etc. Finally,
for the random heuristic, we generated 100 random feature
orders and apply this procedure to each of the orders.

Results
Figure 1 shows the correlation between observed and those
fitted using the firstx percent of features ordered by either
cue validity, category validity, collocation, prevalence, or the
benchmark. For example, on the collocation line (shown as a
solid line) the correlation at a percentile rank of 20 percent is
the correlation between the observed values and those fitted
using the first 20 percent of features ordered by collocation.
The smaller pane in the lower right-hand corner is a blowup
of the lines in rectangular region extending from 0− 20 in
percentile rank and from 0.6−1 in correlation.

The gray shaded area shows 95% confidence intervals for
the correlation between the values fitted using firstx percent
of features chosen by the random heuristic and the observed
values. These orders give an estimate of how difficult the
similarity data are to fit with a heuristic choosingx percent of
the available features. A heuristic whose correlation is above
the upper limit of the area fits better 95 percent of heuristics at

that percentage of features. Alternatively, a heuristic whose
correlation is below the lower limit of the area fits worse than
95 percent of heuristics at that percentage of features.

Regardless of data set, the orders produced by the
Zeigenfuse and Lee (2008, 2010) measure is always able to
fit the similarities in the top 5 percent of ordering, justifying
its use a benchmark. The orders produced by feature preva-
lence nearly always perform worse than those generated by
the other measures, often in the worst 5 percent of all orders.
On the whole, cue validity, category validity, and collocation
perform middling to well, rarely performing worse than fea-
ture prevalence.

For the animals data sets, cue validity outperforms category
validity for small numbers of features (less than around 20
percent), category validity outperforms cue validity for larger
numbers of features, and collocation is always commensurate
to the best of these. For very small (less than around 10 per-
cent) numbers of features, cue validity performs better than
the benchmark; however, for larger numbers of features its
performance is at best mediocre. After a slow start, category
validity performs in the top 5 percent of orderings for larger
numbers of features. Collocation always performs near the
benchmark and is nearly always in the top 5 percent of order-
ings.

For the artifacts data sets, cue validity still performs bet-
ter than category validity for very small (less than 10 per-
cent) numbers of features, after which category validity per-
forms better than cue validity. As with animals, collocation
performs near or better than the best of these two measures.
Category validity and collocation nearly always perform be-
tween the 5th and 95th quantiles of heuristics; however, for
larger numbers of features (around 20 percent in the first set
and around 40 percent in the second), cue validity performs
in the bottom 5 percent of orderings.

Overall, these results suggest that both cue and category
validity contain information about a feature’s importance.
Collocation always performs about the same as the best of cue
and category validity, indicating that it tracks the best aspects
of the two measures. This suggests that early on collocation
is dominated by features with high cue validity, but later itis
dominated by category validity.

Discussion

Cue and Category Validity

The major result of the previous section is that both cue
and category validity seem to be important to choosing
which of a set of features makes a good representation.
Murphy (1982) suggests why this may be the case: cue
validity cannot pick out basic-level categories because it
can only increase for more inclusive categories. Consider
the hierarchy of categoriesanimal, bird, duck, in which
bird is the basic-level category, and suppose we wish to
compute the cue validity of the feature “has wings”. Let
rwings be the number of things with wings andnducks,wings,
nbirds,wings, andnanimals,wings be the number of ducks, birds,
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Figure 1: Model fit by the percent of features used for each of the four sets of domain similarities in the Leuven data set. The
benchmark, three category-based heuristics, and feature prevalence baseline are shown as lines. In the legend, “collocation”
corresponds to the maximum collocation heuristic, “benchmark” to the benchmark, “cue” to maximum cue validity, “category”
to maximum category validity, and “prevalence” to feature prevalence. The gray area shows a 95% confidence interval for the
fit of the random heuristic. The panels in the lower righthandcorner of each of the plots enlarges the rectangular region from
0−20 in percent of features and from 0.6−1 in correlation in the main plots.

and animals with wings. Since ducks are birds and
birds are animals,nducks,wings≤ nbirds,wings≤ nanimals,wings, so
nducks,wings/rwings ≤ nbirds,wings/rwings ≤ nanimals,wings/rwings.
But then·,wings/rwings is just the cue validity of “has wings”,
illustrating why, in settling on basic-level categories, people
must be sensitive to more information than just cue valid-
ity. Since similarity is assumed to reflect representation,this
should be reflected in measures used to select representations.

Along these lines, Tenenbaum and Griffiths (2001) offer
a fuller explanation for why both cue and category validities
should be important to choosing good representations. They
argue that people generalize properties to novel instances
only in the smallest set of instances consistent with known
examples, a theory known as the “size principle”, and further
that similarity is the degree to which the consequences of be-
ing one object generalize to another. By this logic, choosing
features on the basis of cue validity will lead to categories
which are overly restrictive and choosing features on the basis
of category validity will lead to categories which are overly
broad. Appropriate generalization, then, requires takingboth
types of information into account. Thus, we would expect a
heuristic that does this, like collocation, to choose better rep-
resentations than heuristics that do not.

Natural Versus Artificial Kinds
A final point worth mentioning is the difference in perfor-
mance of the heuristics on data sets containing natural kinds
versus those containing artificial kinds. Numerous authors
have suggested that natural and artificial kinds are represented
in fundamentally different ways (e.g. Keil, 1989). Resultsof
Zeigenfuse and Lee (2010) support this theory, finding the ra-
tio between the probability two stimuli within the same cate-
gory have a feature and the probability two arbitrarily chosen
stimuli have a feature is larger for natural kinds than artificial
ones.

Here we find a similar result: for animals data sets colloca-
tion nearly always performs in the top 5 percent of heuristics,
whereas for artifacts data sets, collocation performs about as
well as an arbitrary heuristic. In theory this difference could
come from either differences in the types of features repre-
sented or the ability of the common features model to fit sim-
ilarity judgments among exemplars of that domain. The latter
seems unlikely, however, given that the benchmark performs
well for all four data sets it seems a common features similar-
ity model is able to fit the data well.

This, then, suggests that the difference in fits comes from
differences in the types of features people choose to repre-
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sent. Among animals, people prefer features that are closely
tied to a particular basic category. Among artifacts, they seem
to prefer a different strategy, representing features for multi-
ple levels in a category hierarchy or selecting features using
different criteria.

Extensions

A detailed explanation of this difference may requires exten-
sions addressing one of both of these sources. The first of
these begins from the recognition that the source of the appar-
ent distinction between natural and artificial kinds may stem
not from an actual difference but from an incorrect choice of
selection heuristic. Thus, it makes sense to look at heuris-
tics based on additional measures of category differentiation.
The second supposes choosing just those features associated
with basic-level category structure is not sufficient for select-
ing good feature representations.

Additional Heuristics In order to explore the first of these
extensions, we could develop heuristics based on different
measures, both those that have been proposed in the basic-
level literature and outside it. Such measures could include
the category likelihood ratio (Zeigenfuse & Lee, 2010), the
mutual information between a category and a feature SLIP
(Gosselin & Schyns, 2001). These last of these differs from
the first two in that, in the first, each feature affects the quality
of a categorization independent of all other included, whereas
in the second two the effect of adding a new feature depends
upon the features already included.

Category Hierarchies The second extension allows the
method to deal with category hierarchies. The importance
of structured representation in understanding human judg-
ments of similarity has been illustrated by many authors (e.g.
Markman & Gentner, 1993). Understanding how such struc-
tured representations influence those features represented is
a crucial step towards bringing these models into contact
with feature-based models such as Tversky’s contrast model
(Tversky, 1977). One potential method for acheiving this
would be to compute the collocation, or other measure, at
each level in a category hierarchy and to use a weighted com-
bination of the collocations as the selection criterion.

Conclusion

In this paper, we have presented three heuristic methods for
choosing a feature representation based on measures of cat-
egory differentiation. We find these heuristics to fit human
data better than heuristics that do not take this information
into accounts, acheiving very good fits for natural kinds and
above average fits for artificial kinds. Moreover, our results
suggest both how concentrated in a particular category a fea-
ture is and how diffuse it is across exemplars in that category
are important factors in whether a feature is represented as
well as supporting a distinction between natural and artifi-
cial kinds. Though much still needs to be done, this work
suggests people choose features in a systematic way and that

these regularities can be uncovered by investigating the rela-
tionship between categories and features.
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