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Abstract 

We propose a theory of how individuals diagnose faults, and 
we report two experiments that tested its application to the 
diagnosis of faults in simple Boolean systems. Participants 
were presented with simple network diagrams in which a signal 
was transmitted from a set of input nodes to an output node, via 
a set of connecting nodes. Their task was to detect and diagnose 
faults. Experiment 1 showed that individuals tend to diagnose 
events closest to an observed inconsistency as the cause of the 
fault. Experiment 2 replicated this proximal effect, but also 
demonstrated that participants tend to target the proximal node 
most often when it fails to transmit a signal. This phenomenon 
may occur because individuals construct models of those 
situations in which a node works, but leave implicit those 
situations in which it does not work.   The present results 
extend the mental model theory to diagnostic reasoning.  

 
How do individuals diagnose faults in simple systems? If 
something goes wrong, what guides their initial hypotheses 
about the cause of the fault? In this paper we propose a theory 
that explains the diagnosis of faults in simple Boolean 
networks, and we report experimental tests of the theory. The 
theory assumes that individuals diagnose faults by mentally 
simulating the network in a dynamic mental model (see 
Johnson-Laird, 1983). It postulates three main principles for 
diagnosis. First, individuals assume that causes of faults occur 
prior to the fault and as close to it as possible. Hence, they 
should locate faults as close as possible to the output of a 
network.  We refer to this sort of diagnosis as a “proximal” 
bias, i.e., the proximal cause is the event that occurs nearest to 
the effect. Second, individuals should be more likely to 
diagnose faults in the proximal node when it ought to transmit 
a signal than  when it ought not to. Third, individuals assume 
by default that complex components are more likely to go 
wrong than simple components. One index of complexity is 
the ease of understanding how a component works.  

Prior research has investigated fault finding in network 
tasks (see e.g., Morrison & Duncan, 1988; Rouse, 1978; 
Rouse & Rouse, 1979). Participants were presented with a 
matrix of nodes, connected in a variety of different ways. A 
set of input nodes was connected by intermediary nodes to a 
set of output nodes. Typically, the networks consisted of a 
matrix of about 49 nodes (7 by 7). The input nodes each 
transmitted a signal through the system, and in the basic form 
of the task, each connecting node acted as an AND operator, 

i.e., in order for it to transmit a signal, it had to receive 
activation from every one of its input nodes. Faults were 
failures in one or more output nodes to yield a signal. The 
participants’ task was to locate the cause of a fault by 
performing tests on single connections between pairs of 
nodes. They needed to find the single faulty node that 
accounted for all and only the observed output failures. 
 These studies showed that several factors increased the 
difficulty of the task, but they did not reveal much about the 
initial generation of hypotheses to explain the faults. In order 
to investigate this process, we adopted a modified version of 
the network task. Our networks were much simpler than those 
previously investigated: they had only six nodes (Experiment 
1) or seven nodes (Experiment 2), and only a single output 
node. We allowed that the connecting nodes could be one of 
three sorts of Boolean operator – AND, OR, and OR ELSE. 
And the participants were not required to determine the cause 
of the fault definitively, but only to formulate a preliminary 
hypothesis about what to investigate first in the network in 
order to find the fault.    

Experiment 1 
The purpose of the study was to examine the ability of naïve 
individuals to detect inconsistencies in the behavior of a 
simple network and the nature of their diagnoses. All the 
problems used the network shown in Figure 1.  
 
 
  
 
 
 
 
 
 
 
 

 
Figure 1: The network used in Experiment 1. 

 
The participants were told that inputs are fed into the three 
input units, and a signal is transmitted from left-to-right to the 
output node. It may or may not produce an output depending 
on the particular inputs and on the particular logical 
connectives (AND, OR, or OR ELSE) in the two nodes (A 
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and B). On a given trial, the participants were presented with 
the inputs, the logical connectives in each node, and the 
output, and they first judged whether the input-output 
configuration was correct or incorrect. If they judged it as 
incorrect, they next indicated which of the two nodes, A or B, 
they would prefer to investigate first in an attempt to diagnose 
the cause or causes of the fault. This question was designed to 
elucidate the principles underlying their diagnostic intuitions.  
 The theory predicts that they should focus on the node 
closest to the output. It further predicts that this bias should be 
strongest when that node ought to transmit a signal but in fact 
does not. This prediction stems from a known bias to 
represent only what is true in reasoning: individuals construct 
mental models of propositions in which each model 
represents a true possibility, and within each of these true 
possibilities, only those clauses that are true within that 
possibility are represented (see principle of truth, Johnson-
Laird & Savary, 1999). Extending the first component of this 
principle to the present domain, we predicted that individuals 
should be more likely to construct explicit models of the 
conditions under which each node transmits a signal rather 
than the conditions under which it does not transmit a signal. 
As participants try to diagnose a fault in a network, their 
attention should focus on nodes that ought to transmit a 
signal, but which in fact do not. There is a mismatch between 
the participants’ models of the node, which explicitly 
represent only the transmitting possibilities, and their models 
of the node’s actual functioning, which is not to transmit a 
signal (see the mismatch principle, Johnson-Laird, Girotto, & 
Legrenzi, 2004). Of course, there is also a mismatch in the 
case where a node ought not to transmit a signal, but in fact 
does transmit one, but the theory predicts an asymmetry in 
diagnoses because of the tendency to represent explicitly only 
the transmitting possibilities. Finally, the theory predicts that 
nodes that are the most difficult to process should be 
diagnosed as faulty most often. 

Method 

Participants. Thirty-nine participants (13 male, 26 female) 
from Princeton University were paid $10 or received course 
credit for their participation.  

 
Design and Materials. Participants acted as their own 
controls, and each performed 58 test problems. All problems 
used the network shown in Figure 1. The problems were 
divided into six different categories according to the logical 
connectives (AND, OR, or OR ELSE) in the two main nodes 
in the network. An AND node is one that transmits a signal if 
and if only if it receives a signal from all of its inputs. An OR 
node is one that transmits a signal if and only if it receives a 
signal from at least one of its inputs, or both. An OR ELSE 
node is one that transmits a signal if and only if it receives a 
signal from at least one, but not both, of its inputs. Given the 
three connectives and the two nodes, there are six sorts of 
problem given that we examined only those problems in 
which the connectives in the two nodes were different. Within 
each sort of problem, we selected a representative subset from 

the eight possible input patterns (there are eight possible 
patterns, given three inputs with two settings each). Each 
input pattern was presented twice – once when the network 
produced a correct output, and once when it produced an 
incorrect output. The full set of the 29 problems that had 
incorrect outputs is presented in Table 1. The six sorts of 
problem were presented in six separate blocks in a random 
order for each participant, as was the order of the problems in 
each block. There were six practice problems using the same 
connective in both nodes. 

 
Table 1: The full set of inconsistent problems used in 

Experiment 1, with the percentages of node choices alongside 
each node. 

 
No. Inputs:  1  

2  3 
Output Node A Node B 

1 0  0  0* 1 OR (16) AND (79) 
2 1  0  0 1 OR (45) AND (53) 
3 1  1  0 0 OR (29) AND (63) 
4 1  1  1 0 OR (26) AND (66) 
5 0  0  0 1 AND (24) OR (76) 
6 0  1  0 1 AND (82)  OR (16) 
7 0  1  1 0 AND (26) OR 71) 
8 1  1  1* 0 AND (0) OR (87) 
9 0  0  0* 1 XOR (21) AND (79) 
10 1  0  0 1 XOR (47) AND (53) 
11 1  1  0 0 XOR (32) AND (58) 
12 0  1  1* 1 XOR (34) AND (66) 
13 1  1  1 1 XOR (89) AND (8) 
14 0  0  0 1 AND (16) XOR (84) 
15 1  0  0 0 AND (11) XOR (89) 
16 0  1  0 1 AND (66)  XOR (24) 
17 1  1  0 0 AND (21) XOR (55) 
18 0  1  1 0 AND (24) XOR (68) 
19 1  1  1 1 AND (24) XOR (76) 
20 0  0  0 1 XOR (42) OR (55) 
21 0  1  0 0 XOR (45) OR (50) 
22 1  1  0* 0 XOR (16) OR (82) 
23 0  1  1 1 XOR (89) OR (8) 
24 0  0  0 1 OR (29) XOR (61) 
25 1  0  0 0 OR (13) XOR (79) 
26 0  1  0 0 OR (37) XOR (61) 
27 1  1  0 1 OR (34) XOR (63) 
28 0  1  1 0 OR (21) XOR (71) 
29 1  1  1 1 OR (26) XOR (74) 

Note. Consistent with standard logical notation, OR ELSE in 
Table 1 is represented by XOR. Problems marked with an 
asterisk are ones where the error could  be  explained only by 
an error in Node B. Problems in bold produced aberrant 
results (see results and discussion). 
 
Procedure. The participants were tested individually with a 
computer running the Eprime program. Each problem 
appeared on the screen as a static diagram of the network 
(showing the inputs, the logical operator within each 
connecting node, and the output), with yellow input and 
output nodes indicating that they were “on”, and white nodes 
indicating that they were “off”. The participants judged 
whether the network was correct or incorrect by pressing “c” 

792



or “i”, on the keyboard. After each practice problem 
participants received feedback about whether they had or had 
not made a correct evaluation of the network. In order to 
proceed to the main stage of the experiment, participants were 
required to perform five out of six practice problems 
correctly. For these problems, participants judged whether the 
network was behaving correctly or incorrectly, but did not go 
on to make a diagnosis for the incorrect networks. They 
repeatedly cycled through the same set of practice problems 
(in a new random order each time) until this criterion was 
achieved. Participants required a mean of 1.79 cycles, and the 
modal number of cycles was 1.  

In the experiment proper, the participants judged whether 
or not a network was correct. But, when they judged that it 
was incorrect, they then made a preliminary diagnosis.  They 
typed “a” or “b” to select node, A or B, as the one that they 
would test first in a preliminary investigation into what was 
wrong with the network. This judgment was hypothetical, i.e., 
participants did not go on to conduct the test, nor were they 
presented feedback about which node was in fact responsible 
for the error. The network remained on the screen while the 
diagnosis was made.  

Results and discussion 
The data from one participant were removed as a result of a 
computing error. The participants were accurate in their 
judgments about whether or not the network was correct 
(95% correct). They were faster to make accurate judgments 
about correct circuits than about incorrect circuits (6.60s vs. 
7.43s, Wilcoxon test, z = 2.82, p < .01). Problems that 
included an OR ELSE node appeared to pose an extra 
difficulty. The participants took longer to make judgments of 
correctness for these circuits (7.25s) than for problems 
without an OR ELSE node (6.25s; Wilcoxon test, z = 2.4, p < 
.02). This effect occurred for judgments of both correct and 
incorrect networks (Wilcoxon tests, z = 2.76, p < .01; z = 2.08 
p < .05, respectively). Networks that included OR ELSE 
nodes therefore appeared somewhat more difficult to 
simulate. 

The percentage of node choices for each problem is 
displayed in Table 1 (the percentages do not always sum to 
100 owing to some participants’ failure to identify the 
network as inconsistent, or to their pressing the wrong 
button). There was a consensus about which node to  
investigate first for the circuits that were incorrect. As the 
theory predicts, the participants tended to select the node 
closest to the output. This proximal bias was greater than 20% 
for 21 out of the 29 incorrect circuits.  For problems where 
either A or B may have been in error (there were 24 such 
problems; and the five remaining problems were ones where 
only B could account for the error, see table 1), the difference 
between the percentages of A and B choices was 20% across 
all subjects (Wilcoxon test, z = 3.3, p < .01), and across all 
problems (Wilcoxon test, z = 2.06, p < .05). This proximal 
bias may occur because nodes earlier in the network are 
considered more reliable, or because individuals prefer to 
locate causes as close as possible to their effects. However, 

there are two potential confounds. First, the proximal node, B, 
was always at the top of network. Second, it was connected to 
both an input node and the output node, whereas the other 
node, A, was not directly connected to the output node.  

We examined factors that may modify the proximal bias. 
As the theory predicted, the proximal node was chosen more 
frequently when it ought to have transmitted a signal but 
failed to do so, than when it ought not to have transmitted a 
signal, and yet did so (68% vs. 57%, Wilcoxon test, z = 3.13, 
p < .01). In other words, the proximal node was more liable to 
be diagnosed as faulty when it produced a “miss” rather than 
a “false positive”. This difference may arise from 
participants’ explicitly constructing a model of the conditions 
under which the node should transmit a signal rather than 
when it should not. 

 As the theory also predicts, the participants were more 
likely to locate the fault in the proximal node when it was an 
OR ELSE node (67%), than when it was an AND node (59%, 
Wilcoxon test, z = 2.53, p < .02) or an OR node (55%, 
Wilcoxon test, z = 3.2, p < .01). But, there was no difference 
between AND and OR nodes (Wilcoxon test, z = .41, p = 
.684). As the latency results above show, OR ELSE appears 
to be harder to understand than the other two connectives. 
Hence, it is a more complex connective for our participants, 
and so the participants should infer that a fault is more likely 
to occur in its nodes. It may be that mere fluency of 
processing exerts a direct effect on diagnosis (see Schwarz, 
2004). There were four problems in which node A was 
chosen more frequently than node B (nos. 6, 13, 16, 23, in 
bold). But, for each of these four networks, the proximal node 
transmitted output when it should not have. As we have 
already seen, the proximal bias was attenuated for such 
problems. In addition, node A was an OR ELSE node for 
problems 13 and 23, which made it more liable to be 
diagnosed as being in error.    

Experiment 1 established that individuals are proficient at 
judging the correctness of simple networks. They are faster to 
make accurate judgments about consistent networks than 
about inconsistent networks. Their preliminary diagnoses 
corroborated the theory in three ways.  First, they tended to 
locate faults in proximal nodes, i.e., those that were closest to 
the output revealing that a fault had occurred. Second, they 
were more likely to do so when the proximal node failed to 
produce output when it should have than when it produced 
output when it should not have. Third, they also tended to be 
biased towards locating the fault in the proximal node when it 
was an OR ELSE node. These nodes are harder to 
understand, and so that difficulty may indicate that the node is 
complicated, and hence more likely to go wrong. 

Experiment 2 
In order to eliminate the confounds in the previous 
experiment, we carried out a second experiment using a more 
complicated network of seven nodes (see Figure 2).  The 
theory yields three predictions. First, individuals should show 
the proximal bias, i.e., they should be biased to select node, 
D, as the cause of the fault. 
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Figure 2: The network used in Experiment 2.  
 

Second, the network again allowed us to investigate how 
the tendency to diagnose the proximal node is affected by 
mental models of its functioning.  As before, we predicted 
that the proximal node should be diagnosed as the faulty 
component more often when it ought to transmit a signal but  
does not do so, than when it ought not to transmit a signal but 
does so. This tendency should arise from a bias to  represent 
only the transmitting possibilities of the proximal node. 
Third, networks that include OR ELSE nodes should take 
longer to evaluate than those that do not, and hence an 
account based on processing fluency predicts that the 
proximal node will be identified as the cause of the fault more 
often when it is an OR ELSE node.   

Method 

Participants. Twenty-four participants (15 male, 9 female) 
from Princeton University participated for course credit. 
  
Design and Materials. Participants acted as their own 
controls, and each performed 27 test problems that all used 
the network in Figure 2 and  the same three connectives as in 
Experiment 1. Of the 27 problems, 23 were incorrect 
networks and four were correct networks.  

We suspected that the first and last nodes, A and D, would 
be most salient, and would be diagnosed as faulty more 
frequently than either B or C. B and C are likely to be less 
salient since they occupy symmetrical positions in the overall 
network structure, and it should therefore be harder to 
motivate a choice of one over the other as the cause of the 
fault. Hence, in order to test the proximal bias, the 
connectives in the first and last nodes were always identical, 
whereas the connectives in the middle nodes were always 
selected to be different from those in the end nodes. The 
problems were further divided into three main categories 
according to whether the first and last connectives were: OR, 
AND, or OR ELSE. Within each of those three categories, 
there were three further sub-types, depending on the 
connectives in the middle nodes. Problems were sampled 
from each of these nine categories. Different input patterns 
are also possible, and we selected these roughly at random, 

with the  constraint that the four possible types of input 
pattern (0 0; 0 1; 1 0; 1 1) were nearly equally represented 
across the whole experiment.   

Procedure. The procedure was the same as in Experiment 1. 
The mean number of required cycles through the practice 
segment was 1.33, and the modal number was 1. When the 
participants made their diagnoses in the main part of the 
experiment, they indicated which node from A, B, C, or D, 
they would test first (by typing “a”, “b”, “c”, or “d”).  

Results and Discussion  
Overall accuracy in detecting inconsistencies was high, as in 
the first experiment. All problems were performed at greater 
than or equal to 75% accuracy. Participants correctly judged 
90% of the networks: 89% of the consistent networks and 
90% of the inconsistent networks (there was no reliable 
difference between these percentages).  

Table 2 illustrates the diagnoses made for the main classes 
of problems in the experiment (percentages do not sum to 100 
owing to participants’ errors). The proximal bias was again 
reliable. Across all problems, the percentages of selections of 
each node were as follows: 

A: 22% 
B: 11% 
C: 13% 
D: 43%  

The last node, D, was chosen more often than each of the 
other three nodes (all three pairwise Wilcoxon comparisons 
were significant, p < 0.01).  
 

Table 2: The percentages of node choices depending on the 
functioning of the proximal node, D, in Experiment 2. 

 
 

Type of problem Node 
A 

Node 
B 

Node 
C 

Node 
D 
 

 

Networks in which the proximal 
node should transmit output but 
fails to do so. 

13 10 9 54 

Networks in which the proximal 
node should not transmit output 
but does so in error. 
 

27 13 15 38 

 

Networks in which the proximal 
node was OR ELSE. 

15 8 12 53 

Networks in which the proximal 
node was not OR ELSE. 
 

29 13 13 39 

Note. The horizontal line separates the two main sets of 
comparisons. Numbers in bold indicate the key comparisons 
within each set.  
 

The predictions based on the mismatch principle were 
confirmed. The participants were more likely to diagnose the 
proximal node, D, when it should have transmitted a signal 
but in fact did not, than when it should not have transmitted 
but in fact did so (54% vs. 38%, Wilcoxon test, z = 2.3, p < 
.05). This again supports our theory that a mismatch between 
an explicit model of the situations in which a node will 
transmit a signal, and a model of the node’s actual non-

1 

2 

     Connecting  
     Nodes 

Input Nodes Output 
Node 

C 

B 

A   D 

Direction of signal 
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transmission, leaves the node particularly liable to be 
diagnosed as the cause of fault.  

As in Experiment 1, for inconsistent networks in which at 
least one input was on, those that included at least one OR 
ELSE node took longer to correctly evaluate than those that 
had no such nodes (17.4s vs. 14.4s., Wilcoxon test, z = 2.43, 
p < .01, one-tailed). The theory predicts that participants 
should choose OR ELSE nodes with a greater frequency than 
they choose either AND or OR nodes. And participants were 
more likely to diagnose the proximal node as faulty when it 
was an OR ELSE node (53%) than when it was an AND node 
(39%, Wilcoxon test, z = 2.59, p < .01), or an OR node (38%, 
Wilcoxon test, z = 3.18, p < .01). Participants again seemed to 
prefer diagnosing more complex nodes as the cause of error.  

General Discussion 
The model theory of diagnosis proposes that individuals 

base their intuitions on a mental simulation of a network. It 
postulates three main principles.  First, individuals focus on 
proximal causes when forming diagnoses.  Second, they tend 
to diagnose the fault in the proximal node more often when it 
ought to transmit a signal. And, third, they tend to diagnose 
faults in more complex nodes. We tested these principles in 
two experiments which investigated how individuals form 
intuitive diagnostic preferences when diagnosing a faulty 
network.  

Experiment 1 showed that individuals tended to diagnose 
the fault in the node that was as close as possible to its 
occurrence. This result could have been explained by other 
factors, but it held up in Experiment 2, in which such 
alternative explanations were not available. This 
demonstration of a proximal effect parallels work showing 
that more recent events are more likely to be “undone” in 
counterfactual thinking (see Byrne, Segura, Culhane, Tasso, 
& Berrocal, 2000; Miller & Gunesegarm, 1990; Teigen, 
Evensen, & Samoilow, 1999; Walsh & Byrne, 2004, for the 
temporal order effect). And it also parallels work on belief 
revision, which has shown that information that is presented 
earlier in a sequence tends to be regarded as less corrigible 
(although the opposite effect has also been demonstrated in 
some studies; see Hogarth & Einhorn, 1992, for a review). 
Our findings extend this previous work by demonstrating a 
proximal effect in a Boolean domain, where information is 
presented simultaneously rather than sequentially, but a 
mental model must reconstruct the temporal sequence of 
events.  

One interpretation of the proximal effect is that the parts of 
the network that are mentally simulated first tend to be 
regarded as the least revisable. This account attributes the 
result to memory processes – initial information may be the 
most salient (see e.g., Anderson, 1981; Hogarth & Einhorn, 
1992; Schlottmann & Anderson, 1995). We have offered an 
alternative interpretation: individuals tend to mentally undo 
the event closest in causal proximity to an observed 
inconsistency. These two interpretations are different, but our 
present data are not able to distinguish between them. Yet, the 
second interpretation seems more plausible. The effect 

probably relies less on the temporal order of a mental 
simulation, and more on the greater cognitive effort required 
to  change  an earlier (as opposed to a later) component of a 
network. An earlier change may call for a later change, 
whereas a later change need have no effect on what happened 
earlier in the network. There may thus be a rational element 
to this tendency.  

 There is less room for a rational interpretation of the  
tendency to diagnose faults in the proximal node when it 
produced a “miss” rather than a “false positive”.  A failure to 
transmit a signal is just as much an error than as the mistaken 
transmission of an  signal, and there is no logical reason why 
the proximal node is implicated to a greater extent in the first 
sort of error. The bias, however, was predicted from an 
extension of the model theory’s principle of truth and its 
mismatch principle. According to this extension, participants 
are influenced by the match between their model of how the 
proximal node ought to be operating, and their model of its 
actual operation.  The model of how the proximal node ought 
to be operating represents explicitly only the possibilities in 
which the node transmits a signal, leaving implicit the 
possibilities in which it does not transmit a signal. Hence, 
while both misses and false positives produce mismatches, 
only misses give rise to a mismatch with an explicit model of 
the node’s functioning, and thus lead to an increased 
proclivity to attribute error.  The tendency occurred only for 
the proximal node, and not for the other nodes. However, this 
difference makes sense, because the participant knows for 
certain only the output of the proximal node.  Mismatches for 
the other nodes are a matter of inference. If, as we claim, the 
mismatch bias is responsible for the phenomenon, its 
operation must be largely unconscious, because in post-
experimental questioning, no participant ever put it into 
words. 

 We found support for the theory’s third principle: complex 
nodes should tend to be diagnosed as the cause of faults. Both 
experiments showed that OR ELSE gates were most liable to 
be diagnosed as the source of error, and that they also took 
the longest time to process. To our knowledge, this 
demonstration is the first to show an effect of processing 
fluency in diagnostic reasoning (see Schwarz, 2004).  

A skeptic might argue that the diagnostic choices we 
observed, and particularly the effects of mismatch, result 
from posing a question to the participants that did not have a 
correct answer. Such effects are arguably likely to be fleeting 
and unimportant. We agree that the effects may not have a 
persistent impact when individuals have to discover a single 
and unambiguous cause of a fault  (as in Rouse and his 
collaborators’ experiments). But, such tasks are unlikely to 
match the diagnosis of faults in the real world.  Evidence for 
them is rarely clear and unambiguous (see e.g., Dörner, 1996, 
on the Chernobyl incident). Ambiguous evidence is liable to 
be assimilated to match prior hypotheses and to be processed 
in a distorted way (e.g., Darley & Gross, 1983; Lord, Ross, & 
Lepper, 1979). In such situations, the phenomena that we 
observed may prevent people from using new evidence to 
reach a correct diagnosis.   
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