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Mental Arithmetic Efficiency: Interactivity and Ind ividual Differences 
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Abstract 
Thinking efficiency as a function of interactivity was 
examined in a mental arithmetic task. Participants 
carried out single-digit additions, involving either 7 or 
11 numbers, as fast and as accurately as possible. They 
completed the sums in blocks, five from the ‘easy’ set 
first, and five from the ‘hard’ set second. These sets 
were interpolated among a series of other tasks that 
measured numeracy, working memory capacity, visuo-
spatial processing speed and attention switching, in such 
a way as to permit the presentation of the sets twice, 
once with each of the sums presented on a piece of paper 
and participants placing their hands flat on the table and 
once with the sums presented as a set of manipulable 
tokens. Efficiency was measured as the ratio of 
performance over time invested. A significant 
interaction between condition and difficulty was 
observed: Efficiency was slightly better in the static 
condition for easy sums but declined substantially 
relative to the interactive condition for hard sums. 
Regression analyses revealed that in the static condition 
22% of the variance in efficiency for the harder sums 
was explained by numeracy and working memory 
capacity, but 45% by numeracy, working memory 
capacity and attention switching skills in the interactive 
condition. Verbal protocols revealed that paths to 
solution and arithmetic strategies were substantially 
transformed by the opportunity to manipulate tokens. 
 
Keywords: Mental arithmetic, interactivity, efficiency, 
individual differences, distributed cognition 

Introduction 
Mental arithmetic is clearly an important skill with many 
quotidian applications. It is the quintessential example of 
what Kahneman (2011) calls “slow thinking”: “(a) 
deliberate, effortful, and orderly” (p. 20) mental process 
that can be slowed down by a working memory busy 
holding information about interim steps and selecting 
strategies to proceed closer to the result. To be sure, for 
very simple arithmetic problems, answers are retrieved 
rather than computed; but as problem complexity 
increases, performance is constrained by limited internal 
resources.  

The role of working memory in mental arithmetic is 
clearly revealed with experiments employing a dual-task 
methodology: Performance is significantly impaired by 
concurrent tasks that tax different components of working 
memory (e.g., Logie, Gilhooly, & Wynn, 1994). There is 

a substantial body of evidence that implicates working 
memory deficits and poor maths performance in primary 
school children (e.g., McLean & Hitch, 1999). In adults, 
the impact of maths anxiety (Ashcraft & Kirk, 2001) and 
test pressure (DeCaro, Rotar, Kendra, & Beilock, 2010) is 
explained in terms of the rehearsal and retrieval of 
performance related thoughts and memories that limit the 
working memory resources that can be committed to 
solving the problem.  

Interacting with External Resources 
When confronted with internal resource limitations, 
reasoners naturally mine their surrounding physical space 
for additional resources. “Artifacts saturate everyday 
environments” (Kirsh, 2009a, p. 284) and they are 
routinely recruited to supplement and augment internal 
cognitive resources. Within such an extended cognitive 
system (Wilson & Clark, 2009) internal and external 
resources are coupled by actions, producing a dynamic 
distributed problem representation. As a result, 
performance may surpass a level of accuracy and 
efficiency achievable on the basis of resources internal to 
the reasoner alone.  

Recent experiments on insight and non-insight 
problem solving reveal how interactivity transforms 
performance. For example, release from mental set in 
Luchins’s well known volume measurement problems is 
significantly facilitated when participants interact with 
actual jars with water (Vallée-Tourangeau, Euden, & 
Hearn, 2011). Additionally, insight in matchstick algebra 
problems is substantially enhanced when participants 
solve these problems with actual matchstick-like objects 
that permit the physical re-arrangement of the problem 
representation (Weller, Villejoubert, & Vallée-
Tourangeau, 2011). Performance is facilitated by the 
affordances offered by a modifiable problem 
representation. In the case of mental set, the physically 
available resources are more easily perceived as offering 
simpler and less costly solutions (in terms of pouring and 
transposing) and help defuse mental set. As for 
matchstick algebra, the physical movement of a 
matchstick transforms the presentation of the problem 
which anchors new mental projections of potential 
solutions that in turn can be reified by additional physical 
modification. Insight is thus better driven by a concrete 
and explicit project-create-project cycle (Kirsh, 2009b). 
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Mental Arithmetic . As for mental arithmetic, recruiting 
artifacts, such as pen and paper, substantially augments 
performance largely because working memory content is 
nearly completely off-loaded onto the external 
environment. In this case, potential working memory 
limitations can be compensated by externalising the 
algorithmic process. While measures of working memory 
processing capacity may well be correlated with unaided 
mental arithmetic performance, these correlations would 
likely disappear when the process is completely 
externalised (or indeed delegated to a computational 
device). Thus, examining the role of interactivity in 
mental arithmetic may more fruitfully proceed in a 
cognitive system where reasoners cannot record subtotals 
and remainders in arriving at a solution, but still can 
interact and modify a physical problem representation 
(Neth & Payne, 2011). 

The experiment reported here examined the impact of 
interactivity on mental arithmetic. Participants completed 
simple additions involving single-digit numbers. These 
additions were carried out for sets of 7 or 11 numbers. 
Thus one of the independent variables was problem 
difficulty. The second independent variable was 
interactivity. In one condition, participants completed the 
sums by looking at the set of numbers with hands down 
on the table in front of them. In a second condition, the 
sums were presented as a set of movable tokens: 
Participants were free to manipulate and re-arrange the 
tokens to arrive at a solution. Engineering an extended 
cognitive system such as the one created through 
interacting with number tokens may augment 
performance and enhance reasoning efficiency. The 
shaping and re-shaping of the physical representation of 
the problem may encourage and cue different paths to 
solution and different arithmetic strategies. Limited 
internal resources in the absence of interactivity may 
constrain the manner with which participants arrive at a 
solution.  

Measuring efficiency involves assessing the benefits 
accrued as a function of cost or resources invested. An 
index of efficiency was calculated as the ratio of 
performance accuracy –proportion of correct answers– 
over the proportion of time invested to solve the problem 
out of the maximum time the slowest participants 
required to solve the task (Hoffman & Schraw, 2010, 
refer to such a measure as a likelihood model). Efficiency 
might be improved in an interactive context because some 
aspect of executive control is governed, guided and 
constrained by the shifting physical representation of the 
problem, freeing internal resources to ensure arithmetic 
accuracy. In other words, fewer resources are devoted to 
rehearsing subtotals or identifying and re-identifying the 
numbers to be added with a dynamic configuration of the 
sum to complete, enabling participants to devise more 
creative and efficient ways to solve the problems.  

Finally, individual differences in terms of skills and 

working memory processing capacity were measured and 
correlated with performance in the different experimental 
conditions. Patterns of correlations can help understand 
more precisely how coupling of internal and external 
resources lead to better performance. Importantly, the 
experiment employed a repeated-measures design. Thus 
the same participants completed the easy and hard sets in 
both the static and interactive conditions: Between-
subjects variance could not explain differences in 
performance across the experimental conditions. 

Method 

Participants 
Forty two university undergraduates (35 females, overall 
mean age = 21.8, SD = 6.8) received course credit for their 
participation. Three additional participants (all females, 
mean age 23.0) were later recruited to provide verbal 
protocols while they performed the easy and hard sums in 
both conditions. 

Material and Measures 

Numeracy. Numeracy was measured using the subjective 
numeracy scale developed by Fagerlin, Zikmund-Fisher, 
Ubel, Jankovic, Derry, and Smith (2007) which consists of 
eight questions (such as “how good are you at calculating a 
15% tip”). Participants answer using a 7-point scale (1 = 
“not good at all” and 6 “extremely good”). An objective 
measure of arithmetic skill was designed by having 
participants complete as many simple problems (such as 11 
– 9 = ?) as they could in 60 seconds. 
 
Visuo-spatial information processing speed. The clerical 
checking subtest of the Beta III (Kellog & Norton, 1999) 
was used to measure visuo-spatial processing speed. In this 
test, participants must identify whether two symbols, 
figures or strings of digits are identical or not. The measure 
is the number of correct judgments out of a possible 55 in a 
2-min period. 
 
Executive function: Shifting. Attention switching skills 
were measured using the plus-minus task (Miyake, 
Friedman, Emerson, Witzki, & Howerter, 2000). Using 
three different series of 30 double-digit numbers, 
participants were instructed to add 3 to each in the first 
series, subtract 3 to each in the second series, and alternate 
between adding and subtracting 3 with the third series. The 
switching cost, measured in seconds, was the difference in 
completion time for the third series minus the average 
completion time for the first two.  
 
Working memory capacity. Working memory capacity 
was assessed with a modified reading span test. Sentences 
in series ranging in number from 3 to 6 were presented on 
index cards to participants which they read aloud. At the 
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end of a series they were prompted to recall the last word 
of each sentence in that series. There were two different 
series for each sequence length for a total of 36 sentences. 
Working memory performance was measured as the total 
number of words recalled. 
 
Arithmetic Task . Participants carried out single-digit 
additions, involving either 7 or 11 numbers (see Fig. 1), as 
fast and as accurately as possible They completed the 
problems in blocks, five from the ‘easy’ set first, and five 
from the ‘hard’ set second. Performance was measured as 
the proportion of correct sums, the mean absolute deviation 
from the actual sums, the mean latency to announce a 
solution, and in terms of efficiency. Efficiency was 
measured as the ratio of addition accuracy (proportion 
correct sums) over time invested in the task. The latter was 
measured as the proportion of actual time to complete the 
sums divided by the maximum time needed to complete 
them in that condition; this maximum was determined by 
taking the average of the top quartile latencies. A ratio 
smaller than 1 meant that proportion accuracy was smaller 
than proportion time invested, indicating inefficient 
performance. 

Figure 1: Examples of single-digit additions from the ‘easy’ 
set (7-digit additions) and the ‘hard’ set (11-digit additions). 
Participants performed 5 additions from both sets for a total 
of 10.  

Procedure 

Participants first completed the 8-item subjective 
numeracy scale, followed by the objective arithmetic test, 
the clerical checking subtest from the Beta III, and the 
plus-minus task. They were then presented with the five 
additions from the ‘easy’ set. After a 2-min distractor task 
(a word search puzzle), participants were presented with 
the five additions from the ‘hard’ set. These two sets of 
sums were presented twice to the participants. For one 
presentation participants performed the additions with their 
hands on the table facing them (the static condition) and 
announced their answer out loud; for the second 
presentation, numbered tokens (2-cm in diameter) were 
used, and participants were encouraged to move the tokens 
about in helping them add the numbers (the interactive 
condition); as in the static condition, participants 
announced the solution for each problem out loud. While 
the hard set always followed the easy set, the order of 
condition (static, interactive) was counterbalanced across 
participants. With 10 different problems, involving 10 

unique configurations of digits, and 90 digits across the 
two sets, it was unlikely that participants remembered the 
solution to each problem when presented a second time. 
Still, to prevent a direct retrieval of solutions during the 
second presentation, the participants completed the reading 
span test which lasted approximately 10 minutes. After this 
test of working memory, participants were presented with 
the 10 sums again (either in the interactive or static 
condition depending on which they had experienced first). 
Thus set size (with two levels) and interactivity (with two 
levels) were independent variables that were manipulated 
within subjects in a 2x2 repeated measures design. The 
experimental session lasted approximately 45 minutes. 

Results 

The order of presentation of the interactivity conditions did 
not significantly influence performance on any of the 
dependent measures nor did set repetition: Performance on 
the first 10 sums was no different than performance on the 
second iteration of the same 10 problems within each 
experimental condition. Hence, order and repetition were 
not included in any of the analyses reported below. 

Percent Correct 
The mean percent correct solutions for the easy and hard 
sums are plotted in the top left quadrant of Figure 2. 
Interactivity did not influence performance for the easy 
sums, but substantially enhanced performance for the hard 
sums. In a 2x2 repeated measures analysis of variance 
(ANOVA), the main effect of condition was significant, 
F(1, 41) = 6.58, p = .014, as were the main effect of 
difficulty, F(1, 41) = 20.9, p < .001 and the interaction, 
F(1, 41) = 12.5, p = .001. 

Absolute Error  

Non-interactive mental addition did not lead to larger 
absolute deviations from the correct solution for the easy 
set, but did for the hard set (see top right quadrant of Fig. 
2). In a 2x2 repeated measures ANOVA, the main effect of 
interactivity was significant, F(1, 41) = 13.8, p = .001, as 
was the main effect of difficulty, F(1, 41) = 28.6, p < .001; 
the more important pattern was the significant interaction 
between condition and difficulty, F(1, 41) = 28.9, p < .001. 

Latency to Solution 
Set size had a large impact on solution latencies (see Fig 2. 
bottom left quadrant). Interactivity influenced latencies in 
an interesting manner: For the easy sums, interactivity 
slowed down participants (by nearly 2.5 s), but marginally 
reduced latencies (by .4 s) with the hard sums. In a 2x2 
repeated measures ANOVA, the main effect of 
interactivity was not significant, F(1, 41) = 1.45, p = .236, 
but the main effect of difficulty was significant, F(1, 41) = 
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182, p < .001, as was the interaction, F(1, 41) = 6.64, p = 
.014. 

Efficiency 
Participants were more efficient when solving the easy 
problems without the tokens (see bottom right quadrant of 
Fig. 2). Efficiency dropped marginally for the hard sums 
when participants could use the tokens, but dipped 
substantially without the tokens. In a 2x2 repeated 
measures ANOVA, the main effect of condition was not 
significant, F < 1, but the main effect of difficulty, F(1, 41) 
= 13.3, p = .001, as well as the condition by difficulty 
interaction, F(1, 41) = 10.6, p = .002, were significant. 
 

 
Figure 2: Mean percent correct additions in the static (light bars) 
and interactive (dark bars) condition (top left quadrant); mean 
absolute error per sum in the static (circles) and interactive 
(triangle) conditions (top right quadrant); mean latencies in the 
four conditions (bottom left quadrant); mean ratio of correct 
proportion over proportion of maximum time to complete 
problem (or efficiency ratio) in all four conditions (bottom right 
quadrant) as a function of set size. Error bars are standard error of 
the means. 
 
Predictors of efficiency. To better understand the relative 
contribution of different internal resources to performance 
in the hard set of additions, initial analyses determined the 
nature of the correlations between efficiency and 
individual differences (see Table 1). The strongest 
correlations were observed in the interactive condition with 
objective numeracy, r(40) = .43, p = .005, and attention 
switching, r(40) = -.39, p = .01; in the static condition, 
objective numeracy was significantly correlated with 
efficiency, r(40) = .32, p = .04. A stepwise regression 
analysis for the static condition produced a significant 
model, F(2, 41) = 5.40, p = .009, composed of objective 
numeracy (β = .400) and reading span (β = .350) that 

explained 22% of the variance in efficiency. In the 
interactive condition, the analysis identified a significant 
model, F(3, 41) = 10.2, p < .001, that explained 45% of the 
efficiency variance; the model included objective 
numeracy (β = .447), reading span (β = .426) and attention 
switching (β = -.398). 
 

Table 1: Correlation matrix involving individual differences 
in terms of subjective and objective numeracy, clerical 
checking, attention switching, reading span and the 
efficiency ratio in the static and interactive condition for the 
hard set (involving 11 single digit numbers); df = 40. 

Path to Solution and Strategies 
In order to obtain a window onto the paths to solution and 
the strategies employed to chart these paths in both 
conditions, three additional participants completed the 
mental arithmetic tasks while verbalising their progress – 
the sessions were also videotaped. Inferential statistics 
could not be performed on data from such a small sample, 
but very clear differences in strategies emerged in the two 
conditions.  

The simplest strategy, and in the static condition the one 
that taxes working memory the least, is to add the numbers 
in the order scanned, without seeking to group numbers to 
create more congenial sub-totals. Across the three 
participants, and over all problems, the sequential scan 
strategy was used exclusively 15 times in the static 
condition (or for 50% of the problems) and twice in the 
interactive condition. There were 26 instances of grouping 
numbers (mostly in pairs) on the path to solution in the 
static condition, but 75 instances of such groupings in the 
interactive condition. Congenial sub-totals (defined as Σ 
MOD 5 = 0) on the path to solution was observed 28 times 
in the static condition but 53 times in the interactive 
condition. Figure 3 below illustrates the paths to solution 
and strategies employed by participant 44 for problem A, a 
7-number addition. She clearly employed a sequential 
scanning strategy in the static condition, but was much 
more creative in the interactive condition, grouping 
numbers to produce convenient sub-totals to arrive at the 
solution.  
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Figure 3: Path to solution and strategy employed for 
problem A (a 7-number problem) by participant 44 in the 
static and interactive condition.  

Discussion 
This experiment examined mental arithmetic in conditions 
where participants only used their internal cognitive 
resources to complete easy and hard sums of single digit 
numbers or where they could couple their cognitive 
resources to modifiable external resources in completing 
the sums. The experiment employed a repeated measures 
design such that the same participants completed the 
arithmetic problems in both conditions, thus eliminating 
between condition variance due to between-subjects 
differences. This is a particularly important feature of this 
experiment because it ensured that whatever benefits were 
conveyed in the interactive condition, these could not be 
attributed to better or different internal resources brought 
to the task by a different group of participants.  

Interactivity substantially enhanced performance in 
terms of accuracy and efficiency with the harder sums 
involving 11 single-digit numbers: Participants were more 
accurate and the wrong answers were closer to the actual 
sums in the interactive condition than in the non-
interactive condition. Solution latencies offered a gauge of 
the effort invested to solve the additions. With the hard sets 
the mean latencies were nearly identical between 
conditions (35.9 s vs. 35.5 s in the static and interactive 
condition, respectively) but mean percent accuracy was 
20% higher in the interactive condition. Hence, reasoning 
efficiency was substantially enhanced by allowing 
participants to couple and regulate their cognitive efforts 
with a continuous reconfiguration of the tokens in a 
manner that best served their goal. With the easier sums 
participants performed marginally better without 
manipulating tokens, relying solely on their internal 
resources. The degree to which the design of an extended 
cognitive system can augment performance is clearly 
relative to the degree of task difficulty and the cognitive 
ability of the reasoner (Webb & Vallée-Tourangeau, 2009). 

Interactivity offered the opportunity to deploy more 
creative and efficient paths to solution, which was clearly 
beneficial for the harder sums. The improvement in 
performance and the greater efficiency in the interactive 

condition was not simply a matter of off-loading content 
from working memory onto the environment. Rather, a 
shifting environment suggests different arithmetic paths 
and permits the identification of congenial interim sums 
that simplify the task and enhance efficiency. Thus the 
opportunity to interact with the tokens substantially 
transformed the nature of strategies employed and the 
paths to solution. Some of these paths might have been 
discovered strategically or accidentally by moving the 
tokens. Still, a dynamic physical presentation of the 
problem shouldered some of the executive functions 
freeing resources to better plan how to achieve the goal 
efficiently. These data support the conjecture that 
reasoners are better able to deploy arithmetic skills, and 
may be more receptive to learning new ones, in an 
environment that augments storage and processing 
capacity through the coupling of internal and external 
resources. 

Individual Differences 
Profiling participants in terms of cognitive skills and 
capacities and then correlating these measures with indices 
of performance help identify the cognitive factors that 
drive mental arithmetic. This approach has been employed 
with some success to identify the skills and capacities 
implicated in insight and non-insight problem solving 
(Gilhooly & Fioratou, 2009). The resulting data inform the 
development of process models of performance in these 
problems. Such process models will likely differ for tasks 
that are purely reliant on internal cognitive resources in 
comparisons with tasks that afford a tighter reciprocal 
influence between cognition, perception and action.  

In the static condition, basic arithmetic skills and 
working memory capacity explained 22% of the variance 
in efficiency for the harder sums. In the interactive 
condition, nearly 50% of the variance in efficiency was 
explained by a model composed of arithmetic skill, 
working memory capacity and attention switching. These 
findings suggest that participants with better arithmetic 
skills, larger working memory capacity and swifter 
attention switching abilities were more likely to benefit 
from interacting with tokens in arriving at a solution. In 
other words, the coupling of internal and external resources 
was more effectively deployed by participants with better 
internal resources. This pattern of results was also 
observed in a recent experiment that contrasted non-
interactive and interactive version of Luchins’s volume 
measurement problems: Participants scoring higher in fluid 
intelligence performed better with the interactive version 
of the task (Vallée-Tourangeau et al., 2011). Designing an 
interactive version of an otherwise non-interactive static 
problem solving task does not benefit every reasoner in the 
same way. Future research should also determine whether 
non-intellectual factors such as anxiety or self-efficacy 
mediate the impact of interactivity on problem solving 
performance. 
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The measure of working memory capacity explained 
unique variance in performance efficiency in the non-
interactive context for the hard sums. Still, the correlation 
between performance and working memory capacity was 
modest. This finding suggests one of two things. The first 
is that the task may not have taxed working memory that 
much. Certainly the degree of absolute departure from the 
correct answers in the non-interactive condition suggests 
that participants rarely miscalculated sums by a substantial 
margin. Future research may thus more fruitfully contrast 
non-interactive and interactive conditions with a more 
challenging arithmetic task, either by using larger single-
digit sets (e.g., sums including 15 or more numbers) or by 
using double-digit numbers. A better window onto the role 
of interactivity in supplementing working memory 
capacity might be proffered by a task that is more reliant 
on working memory when it is completed without 
interaction. Second, the exact composition of the complex 
span measure of working memory should include 
arithmetic material and operations. There is evidence to 
suggest that span and outcome measures are better 
correlated when they share a domain (DeStefano & 
Lefevre, 2004).  

Acknowledgments 
I would like to thank Ellie McCourty, Angie Makri, 
Svetlana Stefanova, and Joakim Westh Wiencken for 
recruiting and running the participants; as well as Ken 
Gilhooly, David Gilmore, David Kirsh and Gaëlle 
Villejoubert for helpful comments on an earlier version of 
this manuscript. Financial support from the Kingston 
University Faculty of Arts and Social Sciences Research 
Capability Fund is gratefully acknowledged. 

References 
Ashcraft, M. H., & Kirk, E. P. (2001). The relationships 

among working memory, math anxiety, and 
performance. Journal of Experimental Psychology: 
General, 130, 224-237. 

DeCaro, M. S., Rotar, K. E., Kendra, M. S., & Beilock, S. 
L. (2010). Diagnosing and alleviating the impact of 
performance pressure on mathematical problem 
solving. Quarterly Journal of Experimental 
Psychology, 63, 1619-1630. 

DeStefano, D., LeFevre, J.-A. (2004). The role of working 
memory in mental arithmetic. European Journal of 
Cognitive Psychology, 16, 353-386. 

Fagerlin, A., Zikmund-Fisher, B. J., Ubel, P. A., Jankovic, 
A., Derry, H. A., & Smith, D. M. (2007). Measuring 
numeracy without a math test: Development of the 
Subjective Numeracy Scale. Medical Decision Making, 
27, 672-680. 

Gilhooly, K. J., & Fioratou, E. (2009). Executive functions 
in insight versus non-insight problem solving: An 

individual differences approach. Thinking and 
Reasoning, 15, 355-376. 

Hoffman, B., & Schraw, G. (2010). Conceptions of 
efficiency: Applications in learning and problem-
solving. Educational Psychologist, 45, 1-14. 

Kahneman, D. (2011). Thinking, fast and slow. London: 
Allen Lane. 

Kellog, C. E., & Morton, N. W. (1999). Beta III Manual. 
The Psychological Corporation. A Hartcourt 
Assessment Company. 

Kirsh, D. (2009a). Problem solving in situated cognition. 
In P. Robbins & M. Aydede (Eds.), The Cambridge 
handbook of situated cognition (pp. 264-306). 
Cambridge: Cambridge University Press. 

Kirsh, D. (2009b). Projection, problem space and 
anchoring. In N. A. Taatgen & H. van Rijn (Eds.), 
Proceedings of the 31st Annual Conference of the 
Cognitive Science Society (pp. 2310-2315). Austin, TX: 
Cognitive Science Society. 

Logie, R. H., Gilhooly, K. J., & Wynn, V. (1994). 
Counting on working memory in arithmetic problem 
solving. Memory & Cognition, 22, 395-410. 

McLean, J. F., & Hitch, G. J. (1999). Working memory 
impairments in children with specific arithmetic 
learning difficulties. Journal of Experimental Child 
Psychology, 74, 240-260. 

Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. 
H., & Howerter, A. (2000). The unity and diversity of 
executive functions and their contributions to complex 
frontal lobe tasks: A latent variable analysis. Cognitive 
Psychology, 41, 49-100. 

Neth, H., & Payne, S. J. (2011). Interactive coin addition: 
How hands can help us think. Proceedings of the 
Thirty-Third Annual Conference of the Cognitive 
Science Society (pp. 279-284). Austin, TX: Cognitive 
Science Society. 

Vallée-Tourangeau, F., Euden, G., & Hearn, V. (2011). 
Einstellung defused: Interactivity and mental set. 
Quarterly Journal of Experimental Psychology, 64, 
1889-1895. 

Webb, S., & Vallée-Tourangeau (2009). Interactive word 
production in dyslexic children. In N. Taatgen, H. van 
Rijn, J. Nerbonne & L. Schomaker (Eds.), Proceedings 
of the 31st Annual Conference of the Cognitive Science 
Society (1436–1441). Austin, TX: Cognitive Science 
Society. 

Weller, A., Villejoubert, G., Vallée-Tourangeau, F. (2011). 
Interactive insight problem solving. Thinking & 
Reasoning, 17, 429-439. 

Wilson, R. A., & Clark, A. (2009). How to situate 
cognition: Letting nature take its course. In P. Robbins 
& M. Aydede (Eds.), The Cambridge handbook of 
situated cognition (pp. 55-77). Cambridge: Cambridge 
University Press

 

1065




