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Abstract 

Development of analogical reasoning is often explained by 
general maturation of executive functions. A consequence of 
the involvement of executive functions would be that children 
and adults differ in the visual strategies they apply when 
solving analogical problems. Since visual strategies can be 
studied by means of eye-tracking, we compared the visual 
scanpaths of children and adults in three different analogical 
reasoning tasks. This comparison was done by means of a 
novel technique that combined a recently developed algorithm 
for computing  a “distance” between any pair of scanpaths 
(Jarodzka, Holmqvist, & Nyström, 2010), multidimensional 
scaling (MDS), and a neural network classifier. This analysis 
clearly showed a difference between adults' and children's 
visual strategies in solving analogy problems. We focus both 
on the demonstration that adults and children employ different 
visual search strategies to solve analogy problems and on the 
novel technique used to do this. This general technique 
complements other approaches to eye-movement analysis that 
rely on local properties of scanpaths, in particular, item-
fixation times. 
 

Keywords: Analogical reasoning; development; eye-tracking; 
strategies. 

Introduction  

Analogical reasoning is a ubiquitous process in thinking and 

reasoning (Gentner & Smith, 2012; Holyoak, 2012). It can 

be defined as a comparison of two domains (the source and 

the target domains) on the basis of their respective relational 

structure (Gentner, 1983). Studies of analogy making have 

explored two main explanations for its development, 

increase of structured knowledge (Gentner & Rattermann, 

1991; Goswami, 1992) and maturation of executive 

functions (Halford, 1993; Richland, Morrison, & Holyoak, 

2006; Thibaut, French, & Vezneva, 2010a, 2010b). One 

important prediction of the executive-function view is that 

children and adults use different strategies when solving 

analogy problems. The present study addressed this question 

by means of a combination of a recently developed 

algorithm (Jarodzka et al., 2010) for comparing visual 

scanpaths from an eye-tracker, multi-dimensional scaling 

(MDS), and a neural net classifier. This technique allowed 

us to give an affirmative answer to the central question of 

this paper — namely, whether or not children’s analogy 

strategies are quantifiably different than those of adults. 

Background 

Humans rely heavily on vision for virtually every task they 

do (e.g. categorization, spatial orientation, problem solving, 

etc.) and it remains a privileged way of acquiring 

information about the environment. In the case of problem 

solving, what information is sought and how this search is 

organized through time to come to a solution for the 

problem (i.e. visual strategies) may help researchers 

understand which solving strategies are used. Attention and 

gaze-fixation are highly correlated, especially for complex 

stimuli (Deubel & Schneider, 1996; He & Kowler, 1992) 

and the fixation time for a given object is correlated with its 

informativeness in a scene (Nodine, Carmody, & Kundel, 

1978). This argues in favor of studying eye-movements as 

indicators of the application of a specific strategy through 

control of attention. 

Eye-tracking data, especially if they involve scanpaths — 

i.e., the complete visual trajectory of a participant’s eye 

movements during the task — are often complex and hard to 

analyze. For this reason scanpath information is often 

reduced to static information about the participant’s gaze 

times at specified locations. This simplification, while 

certainly easier to analyze, generally fails to fully capture 

the temporal aspects of the data involved in visual 

strategies. Even when an attempt is made to take into 

account temporal aspects of the data, it is often difficult to 

compare two scanpaths because, in general, they differ in 

length and complexity. Jarodzka et al. (2010) have 

developed a method that is able to compare any two 

scanpaths. As the Jarodzka et al. algorithm plays a key role 

in the analysis that follows, we will describe our variant of 

this algorithm in some detail below. We combined this 

scanpath-comparison algorithm with multidimensional 

scaling and a neural-network classifier to demonstrate that 

children’s analogy-making strategies, as reflected in their 

visual search patterns across three different problems, are 

measurably different from those of adults. 

We are not the first to use eye-tracking technology to 

study analogy making, but this type of analysis is, 

nonetheless, still in its infancy. Eye-tracking techniques 

were first used by Bethell-Fox, Lohman, & Snow (1984) to 

study strategies when reasoning by analogy. They found 

strategic differences in adults with high or low fluid 
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intelligence when solving geometric A:B::C:? problems. 

More recently, Gordon & Moser (2007) investigated adults’ 

strategies in scene analogy problems. Thibaut, French, 

Missault, Gérard, & Glady (2011) also used an eye-tracker 

to examine infants’ gaze locations and item-to-item 

transitions during an analogy task. However, all of these 

studies focused on what information was searched for by 

participants as they attempted to solve the analogy problem.  

None of this research compared participants’ global 

scanpaths. In other words, previous eye-tracking studies 

have focused on local aspects of participants’ scanpaths as a 

means of revealing part of the dynamics of visual search in 

doing analogy problems. By contrast, in the present study 

we will use participants’ global scanpaths in our attempt to 

respond to the question of whether children have different 

visual search strategies than adults when solving visual 

analogy problems. Woods et al. (2013) showed that the 

organization of search in visual-attention tasks becomes less 

variable over the course of development. Because the tasks 

we used rely on visual attention, we expected children to 

have more variable scanpaths than adults. 

Experiment 

Methods 

Participants 

Subjects were 20 adults (14 females, 6 males; mean 

age=20;5 years; SD=2.21; range: 17 to 27), students at the 

University of Burgundy and naïve to analogical reasoning 

tasks and 26 6-year-olds (16 females, 10 males; mean age= 

79.5 months; SD=3.6; range: 73 to 84). For children 

participating in this experiment, parents’ informed consent 

was required from their parents. 

Materials 

Three tasks, each composed of three training trials and four 

experimental trials, constituted the experiment (see Figure 

1). The first task was a scene analogy problem task, the 

second a standard A:B::C:? task and the third an A:B::C:? 

task with the items composing the problems put within a 

context. Each problem of each task was composed of 7 

black and white line drawings. 

In the scene analogy problems, the top scene was 

composed of two elements depicting a binary semantic 

relation (e.g. a cat chasing a mouse). One of these two 

elements had an arrow pointing to it. The bottom scene was 

composed of five drawings: the two elements depicting the 

same relation as in the top picture (e.g. a boy chasing a girl), 

a distractor item, and two elements that were consistent with 

the scene but that had no salient relation with the elements 

of the relation. These pictures (501x376 pxs) were based on 

Richland et al., (2006) except for the distractor that was 

chosen not to be perceptually, only semantically, related to 

one member of the relation in the bottom picture. 

In the standard A:B::C:? trials, the A, B, C drawings were 

presented in the top row along with a black empty square 

symbolizing the location of the solution. The four remaining 

pictures (the Target, a Related-to-C Distractor, and two 

Unrelated Distractors) were presented in a row at the bottom 

of the screen. The size of each picture was 200x195 pxs. 

The A:B::C:? task within context was constituted of two 

scenes (501x376 pxs). The top picture was composed of two 

black and white line drawings with a relation between them 

(e.g. a wolf and meat, with the wolf looking at the meat) 

with a contextual cue (e.g. a horizontal line for the horizon 

or the lines of the joining walls and floor for a room). The 

bottom picture was composed of the five remaining 

drawings: the C term, the Target, the Related-to-C 

Distractor and the two Unrelated Distractors. This task 

differed from the first task in that it was the C term that was 

 
 

Figure 1. Presentation of the three tasks used for this experiment: a) scene analogy task, b) standard A:B::C:? task, c) scene-

oriented A:B::C:? task 
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pointed at with an arrow, and not one of the elements 

constituting the source relation. It differed from the second 

task because of the different pictures constituting the 

problems being grouped in two scenes, but equivalent to the 

standard A:B::C:? task in other respects. 

The materials of the last two tasks were based on 

materials previously used by Thibaut et al. (2011). The four 

trials of each task were two trials with weak association 

strengths between A and B, C and T, and C and Dis, and 

two with strong association strengths in order to equilibrate 

this factor. 

The tasks were displayed on a Tobii T120 eye-tracker 

device with a 1024x768 screen resolution. 

Procedure 

Appropriate controls were carried out to ensure that the 

participants knew what the items in each of the problems 

were and that they understood the instructions. In the first 

task, they were asked to point to the element in the bottom 

scene that played the same role as the one which had an 

arrow pointing to it in the top scene. The two others tasks 

were administered as in Thibaut et al. (2011). Eye-tracking 

data was gathered from moment of the initial presentation of 

the problem to the moment a choice of one of the answers 

was made.  The participant’s scanpath for a particular 

problem consisted of a record of his/her gaze-fixation points 

taken every 8ms. 

Data Analysis 

 
 

Figure 2. Simplification of a scanpath 

 

The goal of this analysis is to compare the sets of children’s 

and adults’ scanpaths and to show that there are quantifiable 

differences in the two. To do this we use a combination of (a 

variant of) Jarodzka et al.’s (2010) scanpath-comparison 

algorithm, multidimensional scaling and a neural-net 

classifier. As the latter two techniques are well known, we 

will not discuss them at length. However, the Jarodzka et al. 

algorithm is relatively recent and requires explanation.   

 

Jarodzka et al. (2010) scanpath-comparison algorithm 

 

The algorithm is designed to determine the similarity of any 

two scanpaths. It consists of two phases, a simplification 

phase and a comparison phase.  A scanpath is considered to 

be made up of a series of “saccade vectors,” i.e., a 

connected series of vectors whose endpoints correspond to 

coordinates of successive gaze points (Figure 2a). First, the 

scanpath is simplified by combining into a single vector two 

consecutive saccade vectors if: 

i) their combined length does not exceed 200 pixels in 

amplitude (i.e., each is very small) and 

ii) they are nearly in straight line (i.e., the angle between 

them is between 2.62 and 3.67rad).  

In other words if a saccade vector is very small or very 

linear with respect to its predecessor in the scanpath, the two 

vectors are combined (Figure 2b). 

Once each of the two scanpaths has been simplified, they 

can be compared. We begin by giving an intuitive 

explanation of how this is done. Assume, for example, there 

are two simplified scanpaths, S1 and S2 made up of 3 and 

saccade vectors, respectively. In other words, S1 = {u1, u2 , 

u3}  and  S2  =  {v1 , v2 , v3 , v4}.  Note  that  these  saccade  

 
 

Figure 3. Saccade-vector difference table (a): Each of the 

saccade vectors from each of the two scanpaths are 

compared based on the chosen metric. (b) The comparison 

of each pair of stretched scanpaths corresponds to a traverse 

of the table from the upper-left to the lower-right corner of 

the saccade-vector difference matrix (the only directions of 

movement permitted are down, right and diagonally down-

and-right). We find the path that produces the lowest total 

difference value and this value is the similarity measure 

assigned to S1 and S2 

 

vectors are ordered in time. For example, in S1, the saccade 

vector u1 is followed by u2, which is followed by u3. To 

compare S1 and S2, we need two scanpaths of the same 

length. To achieve this, we will "stretch" each scanpath by 

adding immediate repetitions of saccade vectors, so that 
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they both have the same length. Our goal is to find the two 

stretched scanpaths, SS1 and SS2 that are as similar as 

possible with respect to the chosen metric (orientation, 

length, etc.). This similarity will be the measure of the 

distance between S1 and S2. 

The easiest way to illustrate this stretching is by means of 

a saccade-vector difference table for the two scanpaths, S1 

and S2, defined above. 

A saccade-vector difference matrix is first created (Figure 

3a). Each of the saccade-vectors making up one of the 

scanpaths S1 is compared to each of the saccade-vectors of 

the other scanpath S2, according to a metric, generally, 

vector magnitude or orientation (length in our study). Once 

this table is constructed, we consider all paths through the 

table that begin with the comparison of the first saccade 

vectors in both scanpaths (i.e., cell (1, 1) of the table, (u1, 

v1)) and end with a comparison of the final saccade vectors 

in each scanpath (i.e., cell (3, 4) of the table, (u3, v4)) and 

always move to the right, down, or diagonally down-and-

right. Three examples of paths through the matrix are 

illustrated in the right-hand panel of Figure 3. Each path 

through the table corresponds to the comparison of two 

specific stretched scanpaths. For example, the uppermost 

path shown corresponds to a comparison between SS1 = {u1, 

u1, u1, u2, u2, u3} and SS2 = {v1, v2, v3, v3, v4, v4}. This path 

corresponds to the sum of the values in the cells (1,1), (1,2), 

(1,3), (2,3), (2,4), (3,4) of the saccade-vector difference 

matrix. When all of these paths through the matrix are 

considered, the path which has the smallest value (i.e. the 

smallest cumulative sum of comparisons) is selected. This 

path corresponds to the two stretched scanpaths that are the 

most similar. This value, normalized by the number of 

comparisons done, is the similarity measure assigned to the 

comparison of scanpaths S1 and S2.   

Note that the algorithm as described here differs from 

Jarodzka et al. (2010) in that it does not rely on the more 

complex Dijkstra (1959) tree-search algorithm. Instead, we 

constructed a matrix, cell by cell, with the lowest 

cumulative sum of comparisons possible for each cell while 

taking into account the constraints put on the comparisons 

of the two scanpaths (navigate rightward, downward, or 

diagonally downward and to the right). In our example, the 

final distance value between S1 and S2 is the cumulative sum 

in C(3,4) normalized by the number of steps taken through 

the matrix. This algorithm was computationally less 

complex for identical results. 

 

The Jarodzka et al. (2010)/MDS/MLP algorithm applied to 

scanpaths of analogy problems 

 

We only compared the scanpaths from strictly identical 

problems, but not different trials from the same task. Thus, 

when we were comparing an adult scanpath and a child's 

scanpath, the disposition of the items in the problem they 

were solving was identical. 

In this way, for a given set of isomorphic problems (i.e., 

where all of the items were in identical places on the 

screen), we computed the differences between all pairs of 

scanpaths. In other words, if there were S1 to Sn scanpaths 

from children and A1 to Am scanpaths from adults on the 

same set of isomorphic problems, we computed the 

similarity of all pairwise comparisons of scanpaths Si versus 

Sj, Si versus Aj, and Ai versus Aj for all i and j. 

Once we had calculated the mean differences between 

scanpaths generated by each participant in each task, we 

used Multidimensional Scaling to obtain the coordinates on 

a 2D map that best preserved the distance between 

scanpaths. As can be seen in Figure 4, for each of the three 

tasks, the scanpaths clustered according to participant type 

(Adult or Children). We verified this clustering using a 3-

layered perceptron (MLP) with a bias node on the input and 

hidden layers (5 hidden units, learning rate = 0.05, 

momentum = 0.9) with the coordinates of each scanpath on 

the MDS map translated into bipolar values and 

concatenated on input. We used a Leave-One-Out cross-

validation technique to test the robustness of the 

classification. Leave-One-Out cross-validation is a standard 

technique in machine learning whereby the classifier (in this 

case a neural network) is trained on all items but one. Once 

training is complete, the classifier is tested on the item that 

had been left out to see whether or not it is classified 

correctly.  

Results 

Using the method of analysis described above, we did a 

pairwise comparison of all scanpaths generated by adults 

and children on isomorphic analogy problems. We then 

conducted a multi-dimensional scaling analysis of this data, 

which produced the location-map clusters shown in Figure 

4. These points are a 2D representation that best reflects the 

distances between the scanpaths. The crosses correspond to 

children's scanpaths; the circles correspond to adults' 

scanpaths. 

 

Classification of adults’ versus children’s scanpaths 

 

The Jarodzka et al. (2010) method along with 

Multidimensional Scaling led to a 2D location map that best 

represented the relative distances between the set of 

scanpaths, as calculated by the Jarodzka et al. algorithm 

(Figure 4). A three-layered feedforward backpropagation 

network (MLP) with a Leave-One-Out cross-validation 

method, was used to test the robustness of a classification of 

the points representing the two groups (i.e. children and 

adults). For the scene analogy and A:B::C:? tasks (Figure 1a 

and 1b), the network classified 74% of the participants 

correctly based on their scanpath (70% of the 20 adults and 

78% of the 23 children for both tasks). For the real-world 

A:B::C:? task, the network classified 72% of the subjects 

correctly (65% of the adults and 78% of the children). This 
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was significantly above chance (50%) for each task 

(binomial test: Z=14.89; p<.001 for the first and second; 

Z=14.30; p<.001 for the third). Intuitively, this result can be  

Figure 4. Location-map of an MDS analysis of the relative 

differences among participants for the scene analogy task 

(a), the standard A:B::C:? task (b), and the scene-oriented 

A:B::C:? task (c). 

 

seen in Figure 3. The adult group tends to be more 

homogenous than the children as the crosses (children’s 

scanpaths) are more scattered than the circles (adults’ 

scanpaths), and this is reflected in the high degree of 

accurate classification of the MLP. 

General discussion 

The present study addressed the following question in a 

novel manner: Do children and adults have different visual 

strategies in analogical reasoning tasks? To answer this, we 

used an eye-tracking methodology whose data were 

analyzed by a combination of the Jarodzka et al. (2010) 

scanpath-comparison algorithm, the transformation of this 

data into a 2D location map using multidimensional scaling, 

and, finally, a quantitative adult/child classification by 

means of a feedforward backpropagation network. The 

neural-net classification was done by training the network 

on the scanpath data for all but one participant. Once the 

network was trained, it was tested on the one scanpath that 

was left out of the training set. This was done for each 

participant’s scanpath data and the result was scored 

according to whether the network classified the test 

scanpath correctly or not. The results obtained with this 

method agree with previous results from Thibaut et al. 2011 

who also showed, by analyzing item gaze times and the 

number of transitions between items that adults and children 

differed in their search strategies in the standard A:B::C:? 

analogy task. The present work, using an approach based on 

individuals’ entire scanpaths, also extends this previous 

work to scene analogy problems and scene-oriented 

A:B::C:? problems. This scanpath analysis showed, among 

other things, that children’s scanpaths were more variable 

than those of adults in the three tasks. These differences 

support the hypothesis of the key role of executive functions 

in analogy making because the lower variability of adults’ 

scanpaths is indicative of them applying, through control of 

attention, a previously adopted plan for solving analogy 

problems (Woods et al., 2013) 

The scanpath analysis presented in this paper provides a 

means of studying various search strategies in analogy 

making. The technique presented in this paper overcomes 

thorny problem of comparison of scanpaths of different 

lengths and allows to take into account the dynamic features 

of search, which are largely missed in other, more static 

eye-tracking approaches based on item fixation times. It 

could also be used, for example, to confirm differences in 

analogy-making strategies observed in adults in Bethell-Fox 

et al. (1984) and to classify participants based on their 

scanpath data (i.e., “elimination strategies” for participants 

with low fluid intelligence and “constructive matching 

strategies” for participants with high fluid intelligence). This 

method is, of course, not limited to studies of analogy-

making, and could be used with any other type of problems 

whose crucial information for its solution could be 

presented on a screen. 
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Conclusion 

The method of scanpath analysis presented in this paper 

provides a new tool to analyze the dynamic aspects of 

search strategies in a wide variety of experimental contexts. 

As shown by the results, this method is sensitive to global 

differences between scanpaths and is useful to discriminate 

clusters of strategies. In this paper it has been used to show 

that children’s and adults’ differ in their variability while 

solving analogical reasoning problems, suggesting the 

involvement of executive functions in such tasks. However, 

to fully understand the causes of these differences, it is 

inevitable to use local information. Thus, it should be used 

in combination of other existing methods, in particular, 

Area-of-Interest (AOI) methods that provide information on 

what information is sought and how long it is watched 

(informativeness of stimuli), since this information is not 

captured by the Jarodzka et al. method. On the other hand, 

AOI methods give limited information about the dynamic 

progression of search, something which is captured when 

full scanpath information is used. In short, the Jarodzka et 

al. (2010), combined with an MDS analysis and a classifier 

(backpropagation networks, Support Vector Machines, etc.), 

provides a potentially far-reaching tool for analyzing 

participants’ dynamic strategies in various problem-solving 

contexts. 
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