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Abstract 

Over the last few decades, Causal Model Theory (CMT) has become 

a dominant framework for human causal-based reasoning, including 

categorization and inference. CMT prescribes how people should 

reason about probabilistic events in terms of causal models. In 

typical causal-based categorization experiments, subjects are 

provided with verbal descriptions of causally linked features, 

generally including probabilistic information. Another line of 

research focuses on perceived or experienced causal events, rather 

than on verbal descriptions. In this work we asked whether effects 

which are consistent with CMT, and that have been obtained with 

verbal descriptions, generalize to visually perceived events. In two 

experiments, we presented subjects with videos of a 3D A→B 

causal event rather than verbal descriptions. In Exp. 1, we found that 

subjects who saw the causal event did not show the coherence effect 

in categorization (i.e., subjects tend to rate the null ¬A¬B event as a 

category member). However, subjects who did see the null event 

during training did show the effect. In Exp. 2, we ruled out the 

possibility that Exp. 1’s results were simply an effect of how 

frequently events were experienced during training. We conclude 

that a one-shot perceived causal event is not sufficient for people to 

show causal-based reasoning as CMT predicts. 

Keywords: Categorization; Bayesian reasoning; Launching 
effect; Conceptual coherence. 

Introduction 

The idea that conceptual representations encode causal 

relationships between features has gained in popularity in 

parallel with the emergence of CMT in cognitive psychology 

(Malt & Smith, 1984; Waldmann, Holyoak, & Fratianne, 

1995; Wisnieski, 1995; Hampton, Storms, Simmons, & 

Heussen, 2009; Rehder, 2017; Zhao, Lucas, & Bramley, 

2021). In causal categorization and inference experiments, 

people are typically presented with descriptions of novel 

concepts that include causally structured feature information. 

They are then asked to judge category membership of new 

cases based on their feature values, or to make inferences 

about their unobserved features from their observed ones. To 

illustrate with a simple example, consider the following 

description (adapted from Rehder, 2003a): “Kehoe ants have 

thick blood, which frequently causes them to become 

immobile during cold winters.” Subjects might then be 

presented with a description of an ant with thin blood that 

becomes immobile during cold winters, and asked to rate its 

membership in the Kehoe ant category (i.e., a categorization 

task). Alternatively, subjects may be asked to estimate the 

probability that a Kehoe ant with thin blood will become 

immobile during cold winters (i.e., an inference task). Using 

verbally described concepts, research has shown that people 

assess category membership in ways that are broadly 

consistent with CMT, exhibiting characteristic patterns such 

as coherence effects, explaining away, and a causal status 

bias over features (Kahneman & Tversky, 1982; Lombrozo, 

2010; Walsh & Sloman, 2011; Marchant & Chaigneau, 2020; 

Rehder, 2003a; 2003b). 

But causal inference extends far beyond verbal description. 

People often perceive causal relationships directly when 

observing physical interactions such as collisions (Michotte, 

1946/1963; Scholl & Tremoulet, 2000; Blakemore et al, 

2001; Wolff, 2008; Rips, 2011), even when the perceived 

causality is in fact illusory or coincidental (Bechlivanidis, 

Buehner, Tecwyn, Lagnado, Hoerl, & McCormack, 2021). In 

a typical perceptual causality experiment, subjects observe a 

clip in which an object A starts moving, connects with an 

object B, whereupon object B starts moving – a so called 

“launching event” (Gordon, Day, & Stecher, 1990), and 

subjects typically report seeing A cause B to move. This 

perception of physical causality seems to be strong enough to 

trump other types of information (e.g., Buehner, & 

Humphreys, 2010; Bechlivanidis, Schlottmann, & Lagnado, 

2019). In another causal learning paradigm, Blicket detector 

experiments also demonstrate that people readily draw on 

objects’ interactions and perceptual features to infer 

categories based on causality, and make inferences driven by 

causal categories (Gopnik & Sobel, 2000; Kemp, Goodman, 

& Tenenbaum 2010; Sim & Xu 2017). In Blicket 

experiments, subjects learn that certain objects can make a 

machine activate (i.e., light up and play a sound). Children as 

young as two use “blicketness” to categorize novel objects 

(Gopnik & Sobel, 2000), and adults have been shown to draw 

on perceptual features of objects as well as interaction 

evidence in complex ways to impute causal categories and 

functional forms that in turn guide causal predictions (Kemp, 

Goodman, & Tenenbaum, 2010). 

We are interested in the difference between verbal 

descriptions and perceptual experiences of causally 

structured concepts: In most categorization experimental 

settings, the verbal descriptions often contain probabilistic 

information, indicating that the events being described have 
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a certain probability of occurring in the presence and/or 

absence of their causes; perceptual experiences, on the other 

hand, are inherently single-shot, providing evidence about 

the potential alternative realizations of the system only 

indirectly. Therefore, we explore whether perceiving a 

sequence of physically realistic causal events yields some of 

the same types of categorical reasoning that verbal 

descriptions of causal structure afford. 

The coherence effect 

Under CMT, a new observation’s probability of category 

membership is driven by its likelihood under the category’s 

generative causal model (e.g., Rehder, 2003a; 2003b). 

Ceteris paribus, this is most likely when the feature values 

are coherent, in the sense of being a plausible manifestation 

of the generative model. In the coherence effect, people show 

sensitivity to this principle. For example, if the conceptual 

causal relationship A→B is understood to be strong and 

generative, people will take observations in which both A and 

B occur, and where neither A and B occur as more compatible 

with the concept – hence more likely to be produced by a 

category member – than observations in which A but not B 

occurs, or where B but not A occurs (Hampton, Storms, 

Simmons & Heussen, 2009; Malt & Smith 1984; Marchant & 

Chaigneau, 2020, 2021; Murphy & Wisniewski, 1989; 

Rehder, 2017; Rehder & Kim, 2006, 2010; Wisniewski, 

1995). If people further believe that the effect has a low base 

rate, they may find the case where only the effect is present 

to be particularly incompatible with the category. To 

illustrate with the Kehoe ant concept: the coherence effect 

occurs when people judge that an ant with thin blood that 

does not become immobile in cold winters (¬A¬B) is more 

likely to be a Kehoe ant than one that has thick blood and 

does not become immobile during cold winters (¬AB), or 

than an ant that has thin blood and becomes immobile during 

cold winters (A¬B). This reasoning pattern has been 

replicated reliably in the causal categorization literature and 

is taken to show people consider consistency between the 

causal structure of the concept and the evidence to be as or 

more important than the presence of characteristic features. 

Hypothesis 

As discussed above, the evidence of coherence effects in 

categorization comes from experiments using verbal 

descriptions of causal events. This often includes some 

probabilistic information, either in the form of specific 

parameters for the generative causal model (e.g., for P(A), 

P(B), P(B|A)), or using adverbs that confer degrees of 

reliability for the connections (e.g., “sometimes”, 

“frequently”, “often”, etc.). Recall that one manifestation of 

such a coherence effect is considering that the scenario where 

the causal event does not occur (¬A¬B) to be relatively 

consistent with an A→B causal model. If being led to think 

about this alternative event as part of a causal model is 

necessary for the coherence effect to obtain (Mayrhofer, & 

Rothe, 2012), then, experiencing a known category member 

producing the causal event will not automatically afford that 

type of reasoning because it is a one-shot event with no 

probabilistic information. Note that though there is evidence 

suggesting that people can take alternative or counterfactual 

events into account when analyzing perceived events 

(Gerstenberg, Goodman, Lagnado, & Tenenbaum, 2021), in 

that study subjects were explicitly asked about making 

inferences in alternative perceptual scenarios (e.g., would the 

same result occur if the cause were not present?). 

In the current work, we test whether and under what 

conditions observations of a causal perceptual event lead to 

coherence effects, taking this as evidence that people form 

mental categories according to the CMT. This issue is 

important for establishing the generality of CMT beyond 

verbal descriptions. Categorization is a central cognitive 

ability, critical for generalization (Zhao, Lucas, & Bramley, 

2021) and symbolic cognition in general (Piantadosi, 

Tenenbaum & Goodman, 2016). As such, any account of it 

must be able to interface with different modes of learning and 

inference (Ashby & Maddox, 2005; 2011). 

Experiment 1 

We conducted an experiment in which subjects learned 

about a simple physical causal mechanism involving two 

salient launching acts A and B. In one condition, subjects first 

watched a video clip of the mechanism in action in which 

both acts occurred (AB causal event and ¬A¬B null event, 

Phase 1). In a second condition subjects first watched a video 

clip in which only the causal event occurred (AB, causal 

only). Later, subjects in both conditions rated whether four 

events (AB, A¬B, ¬AB, ¬A¬B) depicted the same 

mechanism. To minimize the influence of specific 

background knowledge, we used a novel label for the 

artificial category. Concretely, it was referred to as a “Self-

retracting Mechanism”. If subjects showed a classic 

coherence effect, then they should rate the ¬A¬B null event 

at least as likely to depict a self-retracting mechanism than 

the events depicting A¬B and ¬AB. Alternatively if subjects’ 

judgements are purely based on featural similarity to the 

category, we would expect them to rate ¬A¬B null event as 

less probable category member than A¬B and ¬AB events. 

Method 

Participants: Forty-eight subjects (31 female) aged 18 to 44 

(mean = 25.44, SD = 6.0) were recruited online through 

Prolific Academic (https://www.prolific.co/) and received 

monetary compensation according to Prolific rules (at a rate 

of £7.56 per hour). The task took around 5 minutes. Two 

subjects were excluded from analysis because they answered 

the attention check question incorrectly, leading to a final 

sample of forty-six subjects.  

Design: We implemented a 2 conditions (causal-only, causal 

+ null event) x 4 event types (AB, A¬B, ¬AB, ¬A¬B) mixed 

design, with repeated measures in the event types factor. 

Materials and Procedure: We created clips of a 3D physical 

scene using Blender (Community, B. O., 2018). Each scene 
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depicts simple objects involving in a dynamic interaction, 

totaling four 8-second videos (see Fig. 1, and available at: 

https://osf.io/a5pwz/). In each scene, a blue elongated cuboid 

starts at rest, on a checkered surface. A red cube falls to the 

surface. In the AB event, the blue object starts moving and 

collides with the red square box (act A). At the moment of 

collision, the blue rectangle slows down, and the red cube 

begins to move along the same trajectory. The red cube then 

falls from the surface (act B). The other three videos were 

created to show the same objects, but with one or both acts 

absent.  For the A¬B event, the blue object starts moving and 

collides with the red object. However, after collision, the red 

object stops short of the surface’s edge and does not fall from 

the checkered surface. For the ¬AB causal event, the blue 

object does not move, while the red object starts moving 

independently and falls from the surface. For the ¬A¬B 

event, both objects remain at rest. 

The experiment had two phases: In Phase 1, subjects 

watched the example mechanism in action. Subjects in 

causal-only condition watched only the AB event (Figure 

1A). Subjects in causal + null event condition watched both 

AB and ¬A¬B events (Figure 1A). After this, they proceeded 

to Phase 2, where they were asked to classify four events AB, 

A¬B, ¬AB and ¬A¬B. In each task, subjects were asked “Is 

this video a Self-retracting Mechanism?” and responded 

using a scale ranging from 0 (Definitely is not a “Self-

retracting Mechanism”) to 100 (Definitely is a “Self-

retracting Mechanism”). The slider allowed increments in 

steps of size 5 and the thumb was initialized at the middle of 

the scale at the start of each trial. 

Subjects were instructed that they would see a video 

illustrating a “Self-retracting Mechanism” and then make 

judgments about whether several other events depict the same 

mechanism. Additionally, the instructions indicated that the 

experiment consisted of two phases. Subjects were randomly 

assigned to one of the two experimental conditions. During 

Phase 1, subjects had to watch the video(s) once and then 

pressed the “Next” button to continue to Phase 2.  

Immediately after Phase 1, subjects answered an attentional 

check question in which they had to choose the correct 

category name out of three possible alternatives. Subjects that 

incorrectly responded to this question continued to Phase 2 

but were removed from the analyses. 

During Phase 2, subjects viewed all four events twice. And 

each and every time had to rate each one’s probability of 

category membership. In Phase 2, subjects always observed 

the AB causal event first, to promote the correct rating scale 

use. The other seven videos were shown in random order. 

Subjects were not allowed to go back to check previous 

responses, nor could they modify their responses once an 

answer was submitted. 

Results 

Because subjects watched each event video twice, we 

computed mean rating for each event (i.e., the average of each 

type of video’s first and second presentation). Fig. 2A shows 

the mean and standard errors of ratings for each event in both 

conditions. Mean ratings were submitted to a 2 (condition: 

causal-only; causal + null event) x 4 (event: AB, A¬B, ¬AB, 

¬A¬B) mixed ANOVA, with the last being the repeated 

measure factor. The analysis revealed a significant main 

effect of event F(3,132) = 34.28, MSe = 863.30, p <.001, ηp
2 

= .44, power > .99, a non-significant main effect of condition 

(F(1,44) = 0.04, p = .85), and a significant interaction 

(F(3,132) = 6.17, MSe = 863.30, p = .001, ηp
2 = .12, power = 

Figure 1: Freeze frames of events used in Experiments 1 and 2, captured towards the 

end of each event. 
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.96). Following interaction and as it is illustrated in Fig. 2A, 

subjects in the causal-only condition gave higher ratings to 

the AB event than subjects in causal + null event condition 

F(1,44) = 5.41, MSe = 616.66, p = .025, ηp
2 = .11, power = 

.62). However, the opposite effect was found for the ¬A¬B 

event, in which subjects in the causal-only condition 

provided ratings that were lower (F(1,44) = 12.42, MSe = 

837.33, p = .001, ηp
2 = .22, power = .93). For events A¬B and 

¬AB we did not find any significant difference between 

conditions. 

 To test for the presence of the coherence effect, we 

followed the significant two-way interaction with planned 

comparisons at each level of the condition factor. We filtered 

our data by condition and performed planned contrasts in the 

repeated measures factor. We found that subjects in the 

causal-only condition rated the ¬A¬B clip as the least 

probable category member, lower than both the A¬B clip 

(F(1,21) = 28.56 , MSe = 1246.37, p < .001 , ηp
2 = .58, power 

> .99) and the ¬AB clip (F(1,21) = 17.84 , MSe = 1311.59, p 

< .001 , ηp
2 = .46, power = .98). This pattern is not in line with 

the expected coherence effect. For the causal + null event 

condition, we found no evidence for a difference between 

¬A¬B and the A¬B clip (F(1,23) = .58, MSe = 2680.42, p = 

.46, ηp
2 = .02, power = .11), nor with the ¬AB clip (F(1,23) = 

1.11, MSe = 2778.79, p = .30, ηp
2 = .05, power = .17). Thus, 

in the causal + null event condition, subjects judged the null 

event (¬A¬B) as a similarly plausible category member as 

A¬B and ¬AB events, which is potentially consistent with the 

coherence effect. 

Interim discussion 

The coherence effect predicts that people see the null event 

depicting an absent cause and an absent effect as a plausible 

observation of a mechanism with an A→B relation. This did 

not seem to be the case when subjects had learned about the 

mechanism only from a positive exemplar: AB causal-only. 

However, when subjects learned about the causal relation by 

witnessing both the causal and the null event, their judgments 

were more in line with the classic coherence effect pattern. 

However, these results are not completely unambiguous. It 

is possible that subjects’ relatively higher ratings for ¬A¬B 

in the causal + null event condition than the causal-only 

condition was due to the fact that this event was shown as an 

exemplar of the mechanism during training. That is, subjects 

might have responded based on recognition of a behavior 

known to be producible by the mechanism. On this view it is 

more curious that ratings of ¬A¬B were lower than AB since 

both were presented once each during training.  Exp. 2 was 

designed to test this deflationary similarity-based judgment 

hypothesis. Another issue of concern is that our evidence for 

the coherence effect in the causal + null event condition 

comes from not obtaining significant differences when 

comparing the ¬A¬B event against the A¬B and ¬AB events. 

Experiment 2 

To reduce concerns regarding whether responses in Exp. 1 

reflect similarity rather than a causal-model based coherence 

effect, we ran a second experiment in which subjects again 

viewed clips of the mechanism but where we systematically 

manipulated the frequencies of which the AB event and 

¬A¬B events were experienced during training so as to 

provide probabilistic evidence. Using an observational 

learning paradigm (similar to Lagnado & Sloman, 2004; Park 

& Sloman, 2013 Exp. 3), we tested whether the similarity-

based explanation might be correct. If this were the case, we 

would expect that ratings for the AB and ¬A¬B events should 

change as a function of the frequency in which both events 

were experienced during training. 

Figure 2: Mean ratings in both conditions for each event type on Exps. 1 and 2. Note: Error bars are 

∓ 1 SE of the mean. 
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Method 

Participants: Ninety-six subjects (60 female) aged 18 to 44 

(mean = 27.02, SD = 8.27) were recruited online through 

Prolific Academic and received monetary compensation (at a 

rate of £7.50 per hour). The task took 6 minutes. No subjects 

were removed before analyses. 

Design: We implemented a 2 (order) x 3 (condition: 8-2; 5-

5; 2-8) x 4 (event types: AB, A¬B, ¬AB, ¬A¬B) mixed 

design experiment with repeated measures in the last factor. 

Conditions are explained next. 

Material and procedures: We used similar materials and 

followed the same procedures as in Exp. 1. In Phase 1, 

subjects saw causal event scenarios of a “Self-retracting 

Mechanism” as shown in Fig. 1, and in Phase 2 they were 

asked to decide whether a possible event is a member of the 

“Self-retracting Mechanism” category using a rating scale. 

However, in Exp. 2, we implemented an observational 

learning paradigm during Phase 1. We used three conditions 

in which, (1) the AB event was experienced on 80% of the 

trials and the ¬A¬B event on 20% of the trials (the 8-2 

condition); (2) the AB event was experienced on 50% of the 

trials and the ¬A¬B event on 50% of the trials (the 5-5 

condition); (3) the AB event was experienced on 20% of the 

trials and the ¬A¬B clip on 80% of the trials (the 2-8 

condition). The three observational learning conditions 

consisted of passively viewing ten events. Because there were 

ten videos but only four types of events, we created two 

different shapes for each individual object. For act A (blue 

object moving), we introduced two shapes: an elongated 

cuboid and a pentagonal prism. For act B (red object falling 

off the surface), we also used two different shapes: a cube and 

a pyramid (Fig. 1B). Subjects received different shape/ event 

combinations; hence they would not watch the same video 

twice. To control for order effects during training, we created 

two different orders randomly (between subjects). After 

completing the observational learning phase, subjects 

received the attentional check question and then continued to 

Phase 2, where they had to rate all 16 possible event 

combinations (4 events x 4 shapes = 16 different events) 

using the same category membership rating scale used in 

Exp. 1. All sixteen different events were randomized with the 

exception of a single AB event (i.e., the rectangle that moves 

and collides with the cube causing it to fall off), which was 

always presented first to promote correct use of the rating 

scale. 

If the similarity-based explanation were correct, we should 

find that subjects are sensitive to frequencies during the 

observational learning phase. For example, subjects in 

condition 8-2 should rate the AB event as a better category 

member, followed by subjects in condition 5-5, and subjects 

in condition 2-8 should give the lower rating. The opposite 

pattern of responding should occur for the ¬A¬B null event. 

Results 

Similarly to Exp.1, we averaged the ratings for each event 

type (e.g., causal event AB consisted of 4 videos: rectangle-

cube; rectangle-pyramid; prism-cube; prism-pyramid). Fig. 

2B shows averages of each event type. Data were submitted 

to a mixed 2 (order) x 3 (condition) x 4 (event type) ANOVA. 

The ANOVA test showed that order produced no main effect 

F(1,90) = 0.65, p = .94 and participated in none of the two-

way interactions (order x event type, F(3,270) = 0.14, p = .87; 

order x condition, F(1,90) = 0.73, p = .49, nor in the three-

way interaction F(3,270) = 0.31, p = .87. For this reason, we 

continued the analysis with the order factor collapsed. We 

found a significant main effect of event type F(3,279) = 

64.36, MSe = 1495.32, p < .001, ηp
2 = 0.41, power < .99, a 

non-significant interaction between condition and event type 

F(3,279) = 1.25, p = .28, and a non-significant main effect of 

condition F(1,93) = 0.06, p = .94. Because of a violation of 

sphericity (X2(5) = 83.74, p < .001), results are reported using 

the Greenhouse-Geisser correction. The non-significant 

interaction suggest that subjects were insensitive to event 

frequencies during observational learning. In the general 

discussion we return to this idea and provide some possible 

explanations on why this may occur. 

Because we did not find a significant two-way interaction, 

we collapsed our data by condition and performed planned 

contrast on event type. After collapsing our data, we found 

that subjects rated the AB event higher than the A¬B event 

(F(1,95) = 191.30, MSe = 842.09, p < .001 , ηp
2 = .67, power 

> .99), the ¬AB event (F(1,95) = 228.38, MSe = 1625.63, p < 

.001 , ηp
2 = .71, power > .99) and the ¬A¬B event (F(1,95) = 

65.17, MSe = 1722.14, p < .001 , ηp
2 = .41, power > .99). This 

shows that in each condition the AB causal event was rated 

as the most likely to depict a category member. Furthermore, 

the A¬B event was rated higher than the ¬AB event (F(1,95) 

= 31.13, MSe = 1389.14, p < .001 , ηp
2 = .25, power > .99), 

suggesting that the event where act A is present (i.e., the 

cause, the blue object moves and hits the red object) 

contributes more to category membership than the event 

where act B (i.e., the effect, the red object falling off the 

surface) is present. Importantly, we found that the null event 

¬A¬B was not statistically different from the A¬B event 

(F(1,95) = 1.43, MSe = 3079.63, p = .24, ηp
2 = .02, power = 

.22), but was taken as more likely to indicate category 

membership than the ¬AB event (F(1,95) = 22.60, MSe = 

3329.65, p < .001 , ηp
2 = .19, power > .99). This last result is 

consistent with the coherence effect prediction and replicates 

our findings from Exp. 1 but does not rely on a non-

significant result. 

Interim discussion 

Results did not support the similarity-based hypothesis 

which was offered as an alternative account for Exp. 1. If 

results in Exp. 1’s causal + null event condition are 

dependent on subjects judging that the ¬A¬B was a category 

member simply because they had seen a known category 

member exhibit it, then we would expect providing different 

amounts of experience of the mechanism producing the 
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¬A¬B event (frequencies = 2, 5 or 8) should have affected 

subjects’ ratings for this type of event at test. In fact, we found 

that subjects produced a similar level of coherence effect 

across different training frequency conditions. Interestingly, 

we found that subjects treated act A (the blue object colliding 

with the red object) as having a greater influence than act B 

(the red object falling off the table) on category membership 

ratings (the A¬B event received, on average, higher ratings 

than the ¬AB event), in line with the causal status effect 

(Ahn, 1998; Ahn, Kim, Lassaline, & Dennis, 2000; 

Mayrhofer & Rothe, 2012) such that causes are weighed 

more than their effects when judging category membership. 

General Discussion 

We investigated causal-based categorization using videos of 

3D objects, and found that, while observing an exemplar of a 

single launching mechanism failed to replicate the coherence 

effect as found in many experiments using verbal 

descriptions, introducing an observation in which neither act 

occurs (the null event) did lead to the expected pattern. We 

tested category membership judgments following a single-

shot observation (Exp. 1) and a set of observations indicating 

frequencies (Exp. 2) and found judgment patterns cannot be 

easily explained by similarity-based categorization. In other 

words, people indeed seem to integrate feature information 

causally to make categorization decisions in our experimental 

3D virtual world, but only when provided with the help of 

null events where both the cause and effect are absent. While 

previous research has established a coherence effect using 

verbal descriptions (Hampton, Storms, Simmons & Heussen, 

2009; Marchant & Chaigneau, 2020; Rehder, 2017; Rehder 

& Kim, 2006, 2010; Wisniewski, 1995), ours is the first 

experiment to explore how these previous findings in 

categorization generalized to visually perceived scenarios. 

One difference between verbal descriptions and visual 

evidence lies in their ability to communicate probabilistic 

information, which is critical for predicting the coherence 

effect (Rehder & Kim, 2006; 2010). In verbal descriptions, 

probabilistic information can be communicated directly using 

frequency words, while direct observation provides extra 

mechanistic richness but only indirect evidence about long-

run probabilities. We hypothesized that a single causal launch 

event would not produce a coherence effect in causal 

categorization because subjects cannot directly judge the 

base rates and conditional probabilities involved, and that, in 

contrast, if we provided subjects experience with the null 

¬A¬B event, they would then show the coherence effect. 

Results from Exp. 1 supported our hypothesis. In Exp. 2 we 

tested an alternative explanation such that subjects showed a 

coherence effect because of similarity-based categorization 

(i.e., direct match of exemplars to generalization cases). To 

test this alternative hypothesis, we trained subjects on an 

observational learning paradigm with the AB and ¬A¬B 

events with different frequencies, and found that subjects 

were practically insensitive to frequency information, 

showing a similar level of coherence effect regardless how 

often they had seen these at training. It seems that having seen 

the null ¬A¬B event, regardless of its frequency, sufficed to 

change subjects’ response patterns. These results provide 

evidence that the mere perception of a one-shot causal event 

does not allow an effect that has been typically shown by 

using verbal descriptions. Therefore, our results suggest that 

there may not be a seamless continuity from one type of 

causal understanding to the other, and that a perceived cause 

may not automatically allow full-fledged causal-Bayesian 

reasoning about events. These results may be relevant for 

theories of development of causal cognition (e.g., Kuhn, 

2012), and for theories of comparative cognition (e.g., 

Blaisdell, Sawa, Leising, & Waldmann, 2006), where the 

issue of continuity of causal processing across development 

and across species is important. 

Though our results are suggestive, there are at least three 

limitations that we wish to discuss before closing. The first 

one, is that it is possible that ¬AB case was rated lower than 

A¬B because it is a physically surprising event. It has been 

shown that an object that starts moving without being 

influenced by another violates our intuitive understanding of 

physics. Future experiments should address this concern by 

testing events that are not physically implausible. The second 

limitation comes from the question regarding why subjects in 

Exp. 2 were not influenced by frequency information. Other 

studies have found that subjects are able to learn causal 

structures and probabilities through observational learning 

(e.g., Meder, Hagmayer, & Waldmann, 2008; Park & 

Sloman, 2013). However, in those studies subjects learned by 

observing frequencies of highly abstracted information (e.g., 

geometrical symbols co-occurring, sliders indicating the state 

of variables). It might be that this parsing of events and event 

structure made the task easier, or perhaps turned it into a 

reasoning rather than a perceptual task. A third limitation is 

that naming the category “Self-retracting mechanism” may 

have given verbal hints about the causal structure of the 

concept that could have influenced judgements. Future 

experiments should address this concern by using neutral 

names for novel causal categories. 

In future research, we could consider integrating our 

paradigm with feedback learning rather than observational 

learning, as feedback encourages subjects to learn 

probabilistic information from direct experience (Knowlton, 

Squire, & Gluck, 1994; Packard & Knowlton, 2002). Another 

direction is to develop computational models that incorporate 

counterfactual and contextual information for inference 

(Gertenberg, Goodman, Lagnado, & Tenenbaum, 2021), and 

extend its usage to categorization. Recent work also proposed 

computational modeling framework for object-based causal 

generalization by constructing causal categories built on 

perceptual features (Zhao, Lucas, & Bramley, 2021). Such an 

approach can be adapted to categorization tasks like those 

reported here, with the right probabilistic information at 

hand. In sum, our experiments provide a rich testbed for 

various computational methods to allow us exploring further 

into causal categorization in the direct visual perceptual 

domain. 
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