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Learning Domain Structures

Charles Kemp, Amy Perfors & Joshua B. Tenenbaum
{ckemp, perfors, jbt}@mit.edu

Department of Brain and Cognitive Sciences
Massachusetts Institute of Technology

Abstract

How do people acquire and use knowledge about do-
main structures, such as the tree-structured taxonomy
of folk biology? These structures are typically seen ei-
ther as consequences of innate domain-speci�c knowl-
edge or as epiphenomena of domain-general associative
learning. We present an alternative: a framework for
statistical inference that discovers the structural princi-
ples that best account for di�erent domains of objects
and their properties. Our approach infers that a tree
structure is best for a biological dataset, and a linear
structure (“left”–“right”) is best for a dataset of peo-
ple and their political views. We compare our proposal
with unstructured associative learning and argue that
our structured approach gives the better account of in-
ductive generalization in the domain of folk biology.

Psychologists have argued that cognition in differ-
ent domains draws on qualitatively different mental
representations. Tree structures appear well-suited to
representing relationships between animal species [1,
2, 10], while a one-dimensional structure (the liberal-
conservative spectrum) seems better for representing
people’s political views. The possibility of different
structures raises a fundamental question: how do peo-
ple learn what kind of structure is appropriate in each
domain?

The standard approach to this question is to reject
one of its assumptions. Nativists deny that core struc-
tures are learned, at least for evolutionarily important
domains like folkbiology. Instead, infants come equipped
with innate knowledge about which structures are appro-
priate for which domains. Atran [1], for example, argues
that folkbiology is a core domain of human knowledge,
and that the tendency to group living kinds into hier-
archies reects an “innately determined cognitive struc-
ture.” More generally, Keil [8] has argued that ontologi-
cal knowledge obeys an innate “M-constraint”, requiring
the extensions of predicates to conform to rigidly tree-
structured hierarchies of objects.

Alternatively, empiricists generally deny that struc-
tured representations are present at all. Domain-specific
representations are merely emergent properties of un-
structured, domain-general associative learning architec-
tures. McClelland and Rogers [12], for example, have re-
cently suggested that the acquisition of semantic knowl-
edge in domains such as intuitive biology can be ex-
plained as learning in a generic connectionist network.
Their architecture never explicitly represents any tree

structure, although with repeated training, its hidden
unit representations may implicitly come to approximate
the taxonomic relations between biological species.

This paper proposes an alternative approach – struc-
ture learning – that combines important insights from
both of these traditions. Our key contribution is to
show how structured domain representations can be ac-
quired within a domain-general framework for Bayesian
inference. Like nativists, we suggest that different do-
mains are represented with qualitatively different struc-
tures, and we show how these structured representations
serve as critical constraints on inductive generalization.
Like empiricists, though, we emphasize the importance
of learning, and attempt to show how domain structures
can be acquired through domain-general statistical in-
ference. This is not only more parsimonious than the
nativist position, but allows us to explain the origin
of structured representations in novel domains, where
the prior existence of domain-specific innate structure is
highly implausible.

After describing our structure learning framework, we
present two empirical tests of its performance. First, we
show that it chooses the appropriate domain structure
for both synthetic and real-world data sets. It correctly
chooses a tree structure for a biological domain (animal
feature judgments), and a linear structure for a politi-
cal domain (US Supreme Court decisions). Second, we
model two classic data sets of inductive judgments in bi-
ology [13] and show that our framework performs better
than an unstructured connectionist approach.

Bayesian structure learning

Our proposal takes the form of a rational analysis. We
aim to demonstrate the computational plausibility and
explanatory value of Bayesian structure learning, but
leave for future work the question of how these com-
putations might be implemented or approximated by
cognitive processes. Assume the learner’s data consist
of a binary-valued object-feature matrix D specifying
the features of each object in a given domain. In bi-
ology, for instance, the rows of D might correspond to
species, and the columns to anatomical and behavioral
attributes. The entry in row i and column j would then
specify the value of feature j for species i. Structure-
learning includes computational problems at two levels.
First, which structure class is most appropriate for the
domain? Second, given a structure class, which structure
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in that class provides the best account of the data?
For instance, suppose that a learner exposed to bi-

ological data ends up organizing animal species into a
taxonomic tree. The first problem asks how she knew to
use a tree rather than some other kind of structure. The
second problem asks why she settled on one specific tree
instead of the many other trees she might have chosen.
Our focus here is on the first problem – the problem of
inferring the right structure class for a domain. A so-
lution to the second problem, however, falls out of our
probabilistic approach.

We assume that learners come to a domain equipped
with a hypothesis space of structure classes, either
constructed from innate primitives or based on analo-
gies with previously learned domains. For simplicity,
this paper considers a hypothesis space of just three
canonical classes: taxonomic trees, one-dimensional (lin-
ear) spaces, and independent feature models. People
surely have access to other classes, including higher-
dimensional spaces, at (non-hierarchical) clusterings,
and causal networks. We leave it to future work to
characterize the full range of structure classes accessible
to human cognition. In particular, it is an open ques-
tion whether this space is small enough to be explicitly
enumerated as we do here, or is so large (perhaps infi-
nite or uncountable) that it can be specified only implic-
itly through some generating mechanism. Future work
should also consider the possibility that multiple struc-
tures may apply within a single domain.

Given a set of probabilistic models, Bayesian tech-
niques can be used to evaluate which of the models is
most likely to have generated some data [7]. Before these
techniques can be applied to inferring domain structures,
we need to associate each structure class in our hypoth-
esis space with a probabilistic generative model for the
features of objects. The next section defines these mod-
els, but here we show how Bayesian inference can be used
to choose between them.

Let D be an object-feature matrix generated from one
of several structure classes. The posterior probability
of each class Ci is proportional to the product of the
likelihood p(D|Ci) and the prior probability p(Ci). If we
assign equal prior probabilities to each class (as we do
throughout this paper), the best class is the class that
makes the data most likely.

Computing the likelihood p(D|Ci) requires integrating
over all structures S belonging to structure class Ci:

p(D|Ci) =

∫

p(D|S, Ci)p(S|Ci)dS, (1)

Intuitively, this means that a structure class Ci provides
a good account of object-feature data D if the data are
highly probable under a range of structures S in class
Ci, and if these structures themselves have high prior
probability within Ci. The following section explains
how the fit of each structure to the data, p(D|S, Ci), is
computed for several structure classes.

We estimate the integral in Equation 1 using stochas-
tic approximations. First we run a Markov chain Monte
Carlo simulation to draw a sample of m structures, {Sj},

from the distribution p(S|D,Ci). We then approximate
p(D|Ci) by the harmonic mean estimator [7]:

p(D|Ci) =





1

m

m
∑

j=1

1

p(D|Sj , Ci)





−1

. (2)

This estimator does not satisfy a central limit theorem,
and can be thrown off by a sample with very low like-
lihood. Despite its limitations, it is often sufficient to
identify a model that is very much better than its com-
petitors. In future work we plan to estimate these inte-
grals more accurately using path sampling [4].

From structures to probabilistic models

We will work with three probabilistic models, each ap-
propriate for a different structure class, and show how
to compute the likelihoods p(D|S, Ci) for structures in
each class. For simplicity we assume here that all fea-
tures are binary, but our framework extends naturally to
multi-valued or continuous features.

CT : Taxonomic trees

Class CT is the set of taxonomic trees — rooted trees
with the objects in D as their leaves. This is a natural
representation when the objects are the outcome of an
evolutionary process. We restrict ourselves to ultramet-
ric trees — trees where each leaf node is at the same
distance from the root.

Assume that each feature is generated by a mutation
process over the tree. We formalize the mutation process
using a simple biological model [11]. Suppose that a fea-
ture F is defined at every point along every branch, not
just at the leaf nodes where the data points lie. Imag-
ine F spreading out over the tree from root to leaves
— it starts out at the root with some value and could
switch values at any point along any branch. Whenever
a branch splits, both lower branches inherit the value of
F at the point immediately before the split. Figure 1(a)
shows one mutation history for a binary feature on a tree
with four objects.

A B C D

(a)

A B C D

(b)

Figure 1: (a) A tree with four objects (A, B, C and
D) and three internal nodes. A mutation history for a
single feature is shown. The feature is off at the root, but
switches on at two places in the tree. Shaded nodes have
value 1, clear nodes have value 0, and crosses indicate
mutations. (b) A line with four objects.

We formalize this model of mutation using a Poisson
arrival process. Under this process, the probability that
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F switches values between the beginning and end of any
branch b is

p(switch along branch b) =
1 � e−2λ|b|

2
, (3)

where |b| denotes the length of b, and λ is the mutation
rate. Note that the mutation process is symmetric: mu-
tations from 0 to 1 are just as likely as mutations in the
other direction. Asymmetric mutation processes may be
more appropriate in some contexts.

Assume that the features are conditionally indepen-
dent given the tree (i.e., their mutation histories are
independent). We can then compute p(D|T , CT ), the
probability of the data given tree T by multiplying prob-
abilities for each feature vector taken individually. The
necessary calculations can be organized efficiently using
a Bayes net with the same topology as T [9].

Computing the total likelihood p(D|CT ) requires inte-
grating over the space of all trees (including variations in
branch length and topology), as in Equation 1. We used
the MrBayes [6] program for Bayesian phylogenetic infer-
ence to draw a sample of trees {Ti} from the distribution
p(T |D,CT ). We then estimated the likelihood p(D|CT )
using the harmonic mean estimator (Equation 2).

CL: One-dimensional (linear) spaces

Although trees seem appropriate for representing bio-
logical species and their properties, other domains will
have other kinds of structures. Euclidean spaces figure
prominently in mathematical models of similarity com-
parison, judgment, and choice, and probably should ap-
pear in any canonical list of structure classes. Let class
CL indicate the set of one-dimensional linear structures.
Extensions to higher dimensions are easy in principle, if
computationally more demanding.

A line L ∈ CL is a one-dimensional structure where
every node corresponds to an object in the domain. A
line is a degenerate tree, but unlike the trees of the pre-
vious section, lines have no latent nodes. A four-object
line is shown in Figure 1(b).

Features are generated over a line according to the
mutation model of the previous section. Imagine that
Feature F starts at the leftmost node with some value
and spreads to the right with the possibility of switching
value at any point. Again, the probability that adjacent
nodes separated by a branch of length |b| have different

values of F is 1−e
−2λ|b|

2
.

As with CT , we estimate the likelihood p(D|CL) with
an approximate (MCMC) sum over all linear structures.

C0: Independent Features

Class C0 is similar to a null hypothesis. Unlike the pre-
vious models, it assumes no underlying relationships be-
tween objects in the domain. Each feature is distributed
over objects independently of all other features. The
pattern of overlap in feature extensions is thus com-
pletely unconstrained. More formally, C0 assumes that
feature vectors (columns of D) are generated by ipping
weighted coins. Unlike the previous two cases, the like-
lihood p(D|C0) can be computed analytically. Suppose

that θi is the weight of the coin for feature i, and our
prior on θi is θi ∼ Beta(�, �) (for each of our experi-
ments we use � = � = 1). If column i of matrix D
contains mi ones and ni zeros, it can be shown that
p(D|C0) =

∏

i
B(mi + �, ni + �)/B(�, �), where B(·, ·)

is the beta function.

Model complexity and Occam’s razor

The three models CT , CL, and C0 vary significantly in
their complexity. Both the tree model CT and the linear
model CL include the independent feature model C0 as
a special case: when each object in CT or CL is a long
way from its neighbors, feature values at adjacent object
nodes are generated in effect by tosses of a fair coin. CT

is also more complex than CL: in a domain with n ob-
jects, there are roughly 2n more distinct tree structures
than distinct linear structures, and the mutation process
operating over each tree involves roughly twice as many
potential mutation events.

A key feature of Bayesian model selection is that it au-
tomatically penalizes unnecessarily complex structures.
Some form of Occam’s razor is essential when comparing
candidate domain structures of different complexities,
where the more complex structure (e.g., trees) can more
easily mimic the simpler structure (e.g., linear orders)
than vice versa. A more naive approach to structure
learning, such as choosing the structure that accounts for
the most variance in the object-feature matrix D, would
be biased against choosing the simpler model class, even
when it really generated the observed data.

Empirical tests of structure learning

Synthetic Data

We created three synthetic datasets (unconstrained,
tree-structured and linear) with 16 objects and 120 fea-
tures each. The unconstrained set was constructed using
model C0. The tree-structured set was built by running
the mutation process of CT over a balanced tree with 16
leaf nodes. The linear set was built similarly by running
the mutation process over a line with 16 nodes.

Table 1 shows log likelihoods computed for each
dataset and structure class. The first row shows that
the linear model CL is better than the tree model CT on
the unconstrained data, but that both are worse than
the independent features model C0. Similarly, the lin-
ear model is preferred for the synthetic linear data. The
results for the synthetic tree data are more interesting.
Even though the data were generated over a tree, the
structure class of choice is CL.

To see why a linear order is a good hypothesis when
a tree-structured domain is first encountered, imagine a
picture of the true tree, then remove all the branches
and internal nodes, leaving behind only the leaves in
some linear order. Now join each leaf node to its imme-
diate neighbors. This linear order is a better hypothesis
than the true tree at first. The linear model CL is sim-
pler than the tree model CT , and if the mutation rate is
small, most concepts generated over the tree will be con-
nected subsets of the linear order. Only as more features
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Data C0 CL CT

Synthetic Unconstrained 59 31 0
Synthetic Linear 0 544 300
Synthetic Tree 0 210 168
Biology 0 230 339
Political 0 1312 883

Table 1: Scaled log-likelihoods for three synthetic and
two real-world datasets. Each row has been scaled addi-
tively so that its smallest entry is zero.

accumulate should a rational learner conclude that the
extra complexity of a tree-structured model is necessary.

To confirm that the true domain structure will eventu-
ally win out, we generated a tree-structured set with 32
objects and 240 features and computed log likelihoods as
more and more features were observed. Figure 2 shows
that the linear structure is preferred while the number
of observed features is small, but that the correct tree
structure dominates in the end. This transition suggests
that our Bayesian model may offer some insight into the
dynamics of development. Piaget and others have ar-
gued that children move from simple to relatively com-
plex conceptual structures as they mature. Our model
shows an analogous shift in tree-structured domains.

30 60 120 240
−100

0

100

200

Number of Features

LL
(C

T
)−

LL
(C

L)

Figure 2: Differences be-
tween the log likelihoods
of trees (CT ) and lin-
ear structures (CL) on
synthetic tree-structured
data. Linear structures
are preferred at first but
the true structure be-
comes clear as more fea-
tures are seen.

Biological and Political Data
We used our framework to infer the structure of a bio-
logical data set (expected to be tree-structured), and a
political data set (expected to be linear). The biological
set was constructed from human feature judgments col-
lected by Osherson et al. (1991). Subjects were given 48
animals and 85 features (eg ‘lives in water’, ‘has a tail’)
and asked to rate the “relative strength of association”
between each animal and feature. Subjects gave ratings
on a scale that started at zero and had no upper bound.
Ratings were linearly transformed to values between 0
and 100, then averaged. We created a binary dataset by
thresholding all values at the global mean.

The political dataset was taken from the Supreme
Court database collected by Harold Spaeth (1998). We
looked at the Burger court which served from 1981 to
1985. Spaeth records 8 possible types of voting behavior:
we considered only the cases where every judge either
joined the majority, dissented, or cast a regular concur-
rence (which we treated the same as a majority vote).
This left a binary dataset containing votes for 9 judges
on 637 cases.

Of the three classes in our hypothesis space, Table 1
confirms that trees provide the best account of the bi-
ological data and linear structures are best for the vot-
ing data. Note that a more naive approach to structure
learning fails here. An additive tree model accounts
for more of the variance of the Supreme Court data
than a one-dimensional metric scaling solution. Choos-
ing the model that accounts for the greatest proportion
of the variance incorrectly favors trees, since it ignores
the greater complexity of the tree model.

Once the structure class is known, we can identify the
member of that class that makes the data most likely.
For the animal data, we took our MCMC sample from
the posterior over tree structures, and identified the most
representative tree using the consense program in the
PHYLIP package [3]. The resulting tree is shown in
Figure 3(a). Similarly, the best linear structure for the
Supreme Court data is shown in Figure 3(b).

The ultimate reason why trees are appropriate for bi-
ological data is that evolution is a branching process.
It is harder to say a priori why the voting data should
be one-dimensional, but the political spectrum (“left”–
“right”) is an extremely common notion, and others have
analyzed Supreme Court data and found that the first
dimension of a multidimensional linear model explains
almost all of the variance [15]. Our results may explain
in part why people represent these domains as they do,
but the analysis is mute with respect to the precise mech-
anisms that give rise to these cognitive structures. Multi-
ple learning mechanisms probably operate in both these
domains. Likely mechanisms include inferences drawn
from feature observations, as modeled explicitly by our
Bayesian learning algorithm, as well as cultural trans-
mission of knowledge, which surely occurs for structures
like the “left”–“right” metaphor.

Structure learning versus empiricism

The conventional empiricist critique of structured do-
main representations has three lines of attack, well ar-
ticulated recently by McClelland and Rogers [12]: (1)
structured representations such as taxonomic trees are
too rigid to deal naturally with exceptions or gradients
of typicality; (2) it is not clear how structured repre-
sentations can be induced from raw data; (3) unstruc-
tured associative learning architectures can match all of
the supposed advantages that structured representations
claim. Our work challenges all of these critiques. Pre-
viously [10], we showed that robustness to exceptions
and sensitivity to typicality fall out naturally from defin-
ing a probabilistic generative model of object features in
terms of a mutation process over a taxonomic tree (or
other domain structure). Point (2) was addressed in the
previous section, and now we turn to point (3). We
show that learning explicitly structured domain repre-
sentations provides a powerful source of inductive bias
for reasoning about novel properties, and that this power
is not easily matched by a generic connectionist architec-
ture.

We compared our tree-structured model for the
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Figure 3: Structures (found via Bayesian structure learning) that best characterize two domains: (a) Mammal species
and their properties, and (b) Supreme Court Judges and their decisions.

animal-feature data described above1 with a connection-
ist model inspired by the work of McClelland and Rogers
[12]. The network includes one input unit for each an-
imal species and one output unit for each feature. We
explored a wide range of network parameters in an at-
tempt to achieve the best possible performance (see be-
low). Following McClelland and Rogers, we trained each
network on the full matrix D of object-feature associa-
tions, then tested how well the hidden-unit representa-
tions supported inductive projections for novel features.

In the inductive projection task, a new feature is in-
troduced, and one or more examples of species with that
feature are provided to the learner. The learner’s task
is to infer which other species have this novel property.
Like Rogers and McClelland, we modeled this task by in-
troducing a new output unit for the novel feature, freez-
ing all weights except those connected to the new unit,
and training the new unit’s weights until it reliably pro-
duced the correct feature values for the given examples.
We then tested the new unit’s output when other species
were presented as inputs.

We modeled this same induction task using our tree-
based Bayesian framework, as described in [10]. Given a
tree T inferred for the domain, the mutation process in
model CT induces a prior distribution over all possible
labellings of the species (i.e., the leaves of T ). Given one
or more examples of a novel property, this prior together
with the machinery of Bayesian concept learning allows
us to infer the most likely value of that property for all
other species in the tree [10]. We used the tree shown
in Figure 3(a), and set the mutation rate for the novel
property to the value that best fit the 85 features in the
biological data set. The resulting tree-based model has
no free parameters.

The inductive projections of each model were com-
pared with human argument ratings collected by Osh-
erson et al. [13]. Osherson used a ten-animal domain:
horse, cow, chimp, gorilla, mouse, squirrel, dolphin, seal
and rhino. The specific set contains 36 two-example ar-

1In order to model the behavioral judgments described
below, we supplemented these data with feature ratings for
two additional species, cow and dolphin, to give a total of 50
species.

guments, and the conclusion species is always “horse”.
The general set contains 45 three-example arguments,
and the conclusion category is “all mammals.” Unfa-
miliar (blank) predicates – e.g., “have biotinic acid in
their blood” – were used for all these arguments. The
tree-based Bayesian model rates the strength of general
arguments by computing the probability that all ten ani-
mals in the domain have the property. The connectionist
model rates general arguments by computing projections
to each animal separately and adding these ten scores.

Table 2 shows correlations between model predictions
and human judgments of argument strength. The first
column summarizes the performance of two separate
neural networks, reecting the best performance we ever
observed on each data set over a thorough two-stage ex-
ploration of the space of possible networks2. In the first
stage, we tested many different network topologies and
varied the learning rate, the number of training and test-
ing epochs, and the presence or absence of momentum
and bias. We then took the best-performing networks
from the first stage and ran every possible combination
of the two best architectures, three best learning rates,
two best numbers of testing epochs, and three best num-
bers of training epochs. The best networks were trained
for 20,000 epochs, tested after 250 epochs of training
on each testing example, and had no momentum and a
bias of -2. They had two hidden layers, typically with
10-30 units each, and a learning rate between 0.005 and
0.01. Even allowing different neural networks for the
two datasets, we were unable to match the performance
of the tree-based Bayesian model.

Our model differs from these connectionist models
along at least two important dimensions, either or both
of which could account for its superior performance.
First, it uses explicit taxonomic structure and second,
it uses Bayesian statistical inference. To isolate the ef-

2The majority of these tests were conducted with the orig-
inal 48-animal feature ratings (substituting ox for cow and
blue whale for dolphin), before we collected feature ratings
for cow and dolphin. Qualitatively similar results were ob-
served with the 50-animal dataset. The results reported in
Table 2 reect the best performance observed across either
dataset.
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NN NN Bayes Tree- Sim
(T) (U) Bayes Cov.

Specific 0.62 0.86 0.16 0.95 0.75
General 0.41 0.68 0.38 0.91 0.77

Table 2: Correlations between human judgments and
five models for the specific (row 1) and general (row 2)
inductive projection tasks described in the text.

fect of structure we implemented models that incorpo-
rate only one of these factors. NN(T) is a neural net-
work that uses an explicitly taxonomic representation
but not Bayesian inference. The network has 19 input
units and a single output unit for the novel property. In-
put features are derived from the ten-animal tree — the
subtree of Figure 3 that includes the ten animals used
in this task. Each input node corresponds to a node in
the tree, and a species is represented by switching on
an input unit for each of its parent nodes in the tree
(including a distinctive feature for itself). Species that
appear nearby in the tree will share a relatively large
number of ancestors and will therefore have similar rep-
resentations. Bayes(U) is a model that uses Bayesian
inference but without any explicit structural represen-
tation constraining hypotheses. The model is inspired
by Heit’s (1998) suggestion that priors for Bayesian in-
duction could be derived from familiar features stored in
memory [5]. Each of the 85 observed feature vectors is
identified with a candidate hypothesis for generalization,
e.g., the feature “nocturnal” gives rise to the hypothesis
that the new property is true of all and only the noc-
turnal species. We assigned a prior probability of 1

86
to

each of these hypotheses and reserved a further 1

86
for

the hypothesis including all mammals.
Table 2 shows that NN(T) performed better than

all of the networks explored previously. The tree-
based Bayesian model performed better than Bayes(U)
or a feature-based version of Osherson et al.’s (1990)
similarity-coverage model (which also assumes no do-
main structure). These results suggest that generic ap-
proaches to biological induction may be improved by
adding explicit representations of taxonomic structure.
The tree-based Bayesian approach also performed bet-
ter than the tree-based neural network, suggesting that
both rational statistical inference and structured domain
representations play important roles in guiding people’s
generalizations.

Conclusion

Our results are preliminary, with a focus on the domain
of biology and just the taxonomic aspect of knowledge
in that domain. No strong general claims can be made
until we push this inquiry more deeply in the domain
of biology, and more broadly into other domains. Even
so, our work suggests a viable alternative to traditional
nativist and empiricist accounts of domain knowledge.
Contrary to a strong nativist view, the organizing struc-
tural principles of a domain may be learned. Contrary
to a strong empiricist view, explicit representations of

domain structure may be valuable for guiding inductive
projections from sparse data. Structured domain repre-
sentations and domain-general statistical learning thus
need not exclude each other, and indeed are comple-
mentary. Statistical learning suggests how novel domain
structures can be acquired, and these structures provide
a powerful inductive bias for future statistical learning.
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