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Modeling Implicit and Explicit Processes in Recursive Sequence Structure Learning 
 

Jamie D. Alexandre (jdalexan@ucsd.edu) 
Department of Cognitive Science, 9500 Gilman Drive 

La Jolla, CA 92093 USA 
 
 

Abstract 
Recursive structure is viewed as a central property of human 
language, yet the mechanisms that underlie the acquisition and 
processing of this structure are subject to intense debate.  The 
artificial grammar learning paradigm has shed light onto 
syntax acquisition, but has rarely been applied to the more 
complex, context-free grammars that are needed to represent 
recursive structure.  We adapt the artificial grammar serial 
reaction time task to study the online acquisition of recursion, 
and compare human performance to the predictions made by a 
number of computational language models, chosen to reflect 
multiple levels and types of syntactic complexity (n-grams, 
hidden markov models, simple recurrent networks, and 
Bayesian-induced probabilistic context-free grammars). 
Evidence is found for a dissociation between explicit and 
implicit mechanisms of sequence processing, with the SRN 
more highly correlated with implicit performance, and the 
PCFG more correlated with explicit awareness of the 
sequential structure. 

Keywords: artificial grammar learning; syntax; recursion; 
serial reaction time task; simple recurrent network; context-
free grammars; implicit/explicit processes. 

Introduction 
The nature of linguistic structure, and the computational 

mechanisms by which humans comprehend it, have long 
been subject to heated debate.  Recursion – the ability to 
hierarchically embed elements within instances of 
themselves – has been a central point of contention.  
Although the recursive structure of language was not a new 
idea at the time, Chomsky formalized the notion of syntactic 
recursion, touting it as the fundamental property that allows 
for human linguistic ability, a thesis he continues to 
popularize today (Chomsky, 1956; Hauser, Chomsky, & 
Fitch, 2002).  

In the Chomskyan tradition, the human syntactic system 
implements a set of rules that allow for theoretically 
unbounded levels of recursive embedding (“competence”), 
but this system is then subject to processing constraints, such 
as working memory limitations, that explain our limited 
ability to process recursive structures beyond a few levels of 
embedding (“performance”).  Other theorists, particularly 
from the connectionist camp, have attempted to explain the 
(limited) human ability to process recursive structure without 
hypothesizing unbounded competence, by modeling 
syntactic processing in systems that do not make use of rules 
or explicit representations (e.g. Elman, 1990;  Pollack, 1990; 
Christiansen & Chater, 1999). 

The artificial grammar learning paradigm (initiated by 
Reber, 1967) has been used to examine processes of 
syntactic acquisition, but this has been largely restricted to 

the class of regular grammars, which doesn’t shed light onto 
the acquisition or processing of context-free or recursive 
structure.  The goal of the present study is to obtain estimates 
of a subject’s online string continuation expectancies while 
responding to sequences generated by a context-free 
grammar (palindromes), so that these may be compared with 
the predictions made by a variety of language models trained 
on the same input history as the subject.  The traditional 
measures of successful acquisition in artificial grammar 
experiments – such as grammaticality judgments or recall 
error rates – are not able to provide the incremental (symbol-
by-symbol) expectancy data that we require. We adapt a 
paradigm first employed by Cleeremans & McClelland 
(1991), known as a serial reaction time task, in which 
subjects respond to a sequences of stimuli (with a button 
mapped onto each stimulus class) by pressing the 
corresponding button as quickly as possible after perceiving 
stimulus onset.  The resulting reaction times are then 
correlated with the probabilities generated by the competing 
computational models. 

Surprisal 
Surprisal, or self-information, is a notion from information 

theory that quantifies the amount of novel information that a 
particular event carries with it.  An event’s surprisal is 
defined as its negative log probability: 

 
–log( P(x | context) ) 

 
The concept of surprisal has been used in 

psycholinguistics as a potential measure of incremental 
processing difficulty, and is thus expected to correlate with 
behavioral measures such as reading times in eye-tracking 
studies, and response times in self-paced reading studies 
(Hale, 2001; Levy, 2008). 

The surprisal model requires that we adopt some measure 
of the probability of a word’s occurrence given the preceding 
sentential context. Hale (2001) uses a probabilistic Earley 
parsing algorithm to generate incremental word probabilities, 
using the resulting surprisal values to explain the garden path 
effect.  Levy (2008) uses a similar model to explain a wide-
range of effects found in the psycholinguistic literature, such 
as predictability (e.g. effect of Cloze probability), locality 
effects (e.g. preference for local dependencies), 
competition/dynamical models (e.g. greater ease in highly 
constrained contexts), the tuning hypothesis (e.g. effect of 
structural frequency), and connectionist models (e.g. 
predictions made by an SRN).  The case of the SRN is 
particularly interesting, because there are significant 
divergences between the predictions made by an SRN and a 
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PCFG-based surprisal model, particularly for constructions 
such as recursive center-embeddings, which PCFGs process 
flawlessly, and SRNs – much like humans – have difficulty 
processing beyond a few levels of embedding (Christiansen 
& Chater, 1999). 

Frank (2009) tested a surprisal model against human eye-
tracking data from the Dundee corpus, comparing PCFG- 
with SRN-generated probabilities, and found that the PCFG 
produced more accurate objective probabilities, but that the 
SRN produced probabilities that better matched the human 
data.  He concludes from this, firstly, that subjective 
probabilities diverge from the objective probabilities, and 
secondly, that the SRN may in fact be a better model of 
human performance.  Other surprisal studies have used n-
gram statistics, such as a trigram model with Kneser-Ney 
smoothing (Smith & Levy, 2008), and also shown close 
correspondences with human eye-tracking data.   

Language Models 
A probabilistic language model is a distribution over the 

strings (sentences) in a language.  The models considered in 
this paper also all support incremental prediction; that is, 
given a sentence prefix, they assign a distribution over the 
symbols that might come next.  

To allow for comparison with the human data, each of the 
models is trained on the precise input that a subject has been 
exposed to at every point in the experiment (rather than 
training on a larger corpus, or simply using the probabilities 
assigned by the model that generated the stimuli).  This 
allows us to observe how a subject’s predictions change over 
the course of learning, to gain insight into the rate at which a 
system is acquired, as well as possible shifts in strategy, 
rather than simply comparing fully trained systems. 

It is also important to note that none of the model 
parameters are fit to the human data; a model is trained to 
predict a sequence’s continuation based on the set of 
sequences it has seen up to that point in the experiment, 
making use of the algorithmic and representational resources 
at its disposal, but agnostic to human performance. 

The models were chosen from amongst those most 
commonly used within computational linguistics to model 
sequential structure, at various levels of complexity (some 
corresponding roughly to levels in the Chomsky hierarchy). 

N-grams (bigrams/trigrams) 
One of the simplest but most commonly used language 

models, n-grams calculate the probability of a symbol in 
terms of the frequency with which it occurs in its 
immediately preceding context.  Here, we will consider 
bigrams (which take into account the preceding symbol of 
context) and trigrams (which take into account the 2 
preceding symbols).  The predictions made by the n-grams at 
every step were based on training on all preceding sequences 
(excluding the sequences that had not yet been seen). 

 

Hidden Markov Model (HMM) 
 
Whereas n-gram transition probabilities are defined 

between sets of adjacent words, the transitions in a hidden 
markov model (HMM) are defined over a set of “hidden” 
states, and these states, in turn, generate the individual 
words.  The idea is that there is an underlying “hidden 
markov process” that we cannot access directly, and all we 
can observe is the final sequence of words that is produced 
by this underlying state sequence.  Computationally, HMMs 
roughly correspond to regular languages at the bottom of the 
Chomsky hierarchy. 

We use the standard Baum-Welch algorithm (Baum et al, 
1970) to estimate the HMM’s transition and emission 
matrices from the training corpus (the preceding sequences) 
for an HMM with 5 hidden states.  The trained HMM is then 
used to compute the incremental posterior probabilities of 
each symbol given its preceding context.  As always, the 
predictions only used the preceding sequences as a training 
corpus (so as to be comparable to the human data). 

Simple Recurrent Network (SRN) 
 
A simple recurrent network (SRN) is a standard three-

layer feed-forward network, with the addition of a context 
layer that maintains a copy of the hidden layer’s state from 
the previous timestep, and then allows the nodes in this 
context layer to feed back into the hidden layer during the 
next timestep, alongside the next input (Elman, 1990).  The 
context layer in an SRN effectively implements time-tapped 
feedback loops from every node in the hidden layer back to 
each of the nodes in the hidden layer (delayed by one 
timestep). The addition of recurrent hidden layer connections 
allows an SRN to learn to use its hidden layer representations 
to maintain task-relevant contextual information over 
theoretically unbounded (though in most cases, rapidly 
decaying) distances. 

The SRN used in this paper contained 9 input nodes (one 
for each symbol, plus a sequence boundary marker), 16 
hidden nodes, and 9 output nodes.  The network was trained 
using standard back-propagation, with a learning rate of 0.5 
and no momentum, on a single pass through the sequences.  
Output activations at every timestep were converted into 
probabilities through the Luce choice rule (in effect, 
normalizing the network’s output vector). 

Probabilistic Context-Free Grammar (PCFG) 
 
Context-free grammars (CFGs) have played a central role 

in linguistic theories of syntax ever since Chomsky (1956) 
proposed them as being necessary (and almost sufficient) to 
account for the types of recursive phrase structure observed 
in human language.  A probabilistic context-free grammar 
adds probabilities to the production rules in a context-free 
grammar, allowing us to calculate a distribution over strings 
in the language.  
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Once we know the parameters of the grammar (see below), 
incremental predictions can be computed as follows (adapted 
from Jelinek & Lafferty, 1991): 

1. The probability of a string is the sum of the 
probabilities of all its parse trees.   

2. The probability of a string prefix is a sum over the 
probabilities of all possible completions of the 
prefix. 

3. The probability that a particular symbol wi will 
appear following the string prefix w1..wi-1 can be 
computed by dividing the probability of the prefix 
with that symbol appended, P(w1..wi), by the 
probability of the prefix, P(w1..wi-1) 

 
Stolcke (1995) modified the Earley parsing algorithm to 

compute the above incremental probabilities efficiently, and 
we use an implementation by Levy (2008) in the present 
work. 

Learning the parameters of a PCFG from an unparsed 
corpus is not a trivial task, however.  Here, we use a 
Bayesian framework developed by Mark Johnson1 that uses 
Gibbs sampling to learn the probabilities for a set of 
production rules, given a corpus of training sequences.  All 
combinations of production rules with 8 states (in Chomsky 
Normal Form, e.g. A->BC) were included in set of candidate 
rules, and the sampler was given a prior of alpha=0.0001.  
The counts on the final sample grammar  were normalized 
into probabilities. As with all the other models, the 
predictions made for every symbol were based on re-training 
after every sequence, using only on the sequences that 
occurred prior to that point in the experiment, so that the 
models have precisely the same information available to 
them at each timestep as the human subjects.  This entire 
process was repeated 5 times, and the resulting sequences of 
probabilities were averaged together. 

Experiment 

Methods 
 

Interface Care was taken in designing and constructing an 
interface device for the task, due to concerns about 
measurement noise.  The button box (Figure 1) consists of 8 
finger-sized push buttons arranged in a 2x4 array, with each 
button containing its own separately controllable LED for 
use as a response cue.  The buttons and LEDs are interfaced 
to the PC via a USB-powered LabJack U3 DAQ device, 
which has very high sampling rates and low command-
response latencies, allowing for RTs to be measured to 
millisecond accuracy. 
 

 
 

Figure 1: Button box used in experiment. 
                                                           
1 http://www.cog.brown.edu/~mj/Software.htm 

Participants Eight subjects (mean age 20.5, all right-
handed), drawn from the UCSD undergraduate subject pool, 
received 2 hours of course credit for their participation. 

 
Stimuli Sequences were generated from the following 
grammar in Table 1. 
 

Table 1: Context-free grammar used to generate stimuli. 
 

Probability Production Rule 
0.193 S  T0 S T0 
0.146 S  T1 S T1 
0.112 S  T2 S T2 
0.128 S  T3 S T3 
0.077 S  T4 S T4 
0.082 S  T5 S T5 
0.159 S  T6 S T6 
0.103 S  T7 

 
This grammar generates palindromes, a particular type of 

“mirror recursion” in which the right-hand side of the 
sequence is a mirror image (flipped left-to-right) of the left-
hand side.  The 7th symbol serves as a consistent center 
marker, making the grammar deterministic.  An example 
sequence would be “0 4 1 3 7 3 1 4 0”. 

Palindomes are the canonical example of context-free 
structures, and possibly the simplest type of grammar that is 
context-free and thus cannot be fully captured by finite state 
models such as an HMM, or by n-gram statistics.  

An experimental session consisted of 16 blocks of 25 
sequences each, with sequences ranging in length from 5 to 
15.  Each of the 8 subjects were presented with the same set 
of sequences, but with a different mapping of symbols to 
buttons, shuffled in a Latin-square design such that every 
symbol was mapped onto each of the 8 buttons for exactly 
one subject (to balance out any effects of button location or 
between-button distances). 

 
Procedure Subjects were told that the purpose of the 
experiment was to study the “effects of practice on reaction 
times”, and were told to “hit each button as quickly as 
possible when that button’s light goes on”.  No mention was 
made regarding the structured nature of the stimuli; as far as 
the subjects were concerned, the sequences were entirely 
random. 

Sequences were presented rapidly, with the next light in a 
sequence turning on 120ms after the previous button had 
been released.  After the end of an individual sequence there 
was a 2 second pause before the next sequence began. 

In between blocks, subjects were presented with a 
feedback screen indicating their performance on the block 
relative to their performance on earlier blocks (plotting their 
RT contour over time), and also relative to previous subjects, 
by means of a highscores list derived from earlier pilot 
testing.   Subjects were given a chance to take a short break 
in between blocks. 

After completing the experiment, subjects were 
interviewed about the strategies they had employed in the 
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task, the factors they thought affected their performance, and 
what sorts of patterns (if any) they had noticed in the 
sequences. 

Results and Analysis 
 

Reaction times longer than 1000ms (greater than ~4.2 std 
above mean) were excluded from analysis, to eliminate 
extreme outliers caused by events not related to the task 
(such as distractions, subject sneezing, etc).  Only 0.2% of 
the trials were excluded by this criterion.  In addition, the 
first trial of every sequence was excluded from correlation 
analyses, as earlier pilot testing using random sequences 
showed that mean reaction times for these sequence-initial 
trials were ~70ms slower than for the remainder of the 
sequence.  Reaction times for error trials (when the incorrect 
button was pressed) were measured from when the light went 
on to when the correct button was pressed, ignoring the 
intervening erroneous button press. Subjects made an 
average of 65 errors each (1.7% of the trials), and these trials 
were not excluded from the analysis, but doing so has no 
noticeable effect. 

The median reaction time for each trial is calculated across 
subjects, and then the resulting sequence of reaction times is 
correlated with the sequences of surprisal values (negative 
log probability) generated by each of the models.  The 
experiment is divided up into four parts to visualize how the 
correlations change over the course of training.  Standard 
correlation coefficients and 95% confidence intervals are 
plotted in Figure 2.  Note that each of the models is 
significantly correlated with the human reaction time data 
throughout the experiment, though with no model clearly 
dominating (except perhaps a slight preference for the SRN). 

1-4 5-8 9-12 13-16
0

0.1

0.2

0.3

0.4

0.5

0.6

Blocks (average of 233 trials per block)

C
or

re
la

tio
n 

(S
ur

pr
is

al
 v

s 
R

T)

 

 

 
 

Figure 2: Correlations between models and human 
reaction times over the course of the experiment. 

 
Several possible interpretations exist at this point.  Since 

the models themselves are quite strongly inter-correlated, it 
is possible that the correlations for each of the models could 
be explained by a common shared component.  In particular, 
each of the models is capable of representing n-gram 
statistics, so perhaps this could explain some portion of the 
correlation in the other models.  To investigate this 

possibility, partial correlations between the human reaction 
times and the models are computed after regressing out the 
bigram and trigram statistics.  The residual correlations are 
plotted in Figure 3. 
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Figure 3: Partial correlations between model probabilities 
and reactions times, regressing out n-gram probabilities. 
 
As is to be expected, the bigram and trigram correlations 

become insignificant.  The HMM correlations are also 
eliminated after the first couple of blocks (at which point 
none of the models have learned very much), suggesting that 
the HMM was not explaining anything significant about the 
human behavior beyond n-gram statistics.  Both the SRN and 
PCFG, however, maintain significant correlations 
throughout, suggesting that they are capturing more about 
the human reaction times than simply a sensitivity to n-gram 
statistics. 

We might then wonder whether a common component is 
responsible for both the SRN and PCFG correlations, or if 
they are each accounting for distinct aspects of the human 
behavior.  To test this, we regress out all models except for 
the model of interest, and see how much of the variance 
remains for that model to explain. 

Regressing out all the models besides the PCFG reduces 
its correlations very slightly, but they remain highly over the 
course of a session, as can be seen in Figure 4 below. 
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Figure 4: Partial correlations, regressing out all but PCFG. 
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Similarly, regressing out all models other than the SRN 
has very little effect on the SRN correlations, which remain 
strong throughout, despite declining somewhat towards the 
end (Figure 5). 
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Figure 5: Partial correlations, regressing out all but SRN. 
 

These results seem to suggest that multiple simultaneous 
processes are playing a role in human behavior on the task; 
on the one hand, an associative, incremental component 
captured by the SRN, and on the other hand, a more rule-
based, recursive component exemplified by the PCFG.  As 
SRN models have frequently been used to model implicit 
learning (e.g. Cleeremans, 1993; Misyak et al, 2009), 
whereas PCFGs are more often associated with explicit rule-
based knowledge, we examined individual differences 
between subjects with regards to implicit and explicit 
learning, to see if this might help to explain this dissociation. 

In the post-testing questionnaire, 3 of the 8 subjects 
identified some type of structure within the sequences; some 
referred to it as a “circular” or “mirror” pattern, and one also 
gave explicit palindromic examples.  The 5 remaining 
subjects had not noticed any regularity to the sequences, 
even when probed further (2 of these “felt” like there might 
be some pattern, but could not articulate any details). We 
separated these two groups from one another and once again 
calculated partial correlations (regressing out n-grams and 
the hmm). 
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Figure 6: Subjects with no explicit awareness of structure; 
partial correlations, regressing out n-grams and hmm. 
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Figure 7: Subjects who were explicitly aware of structure; 
partial correlations, regressing out n-grams and hmm. 

 
The subjects who were able to report explicit knowledge 

of aspects of the palindromic structure, by the end of the 
experiment, showed the strongest correlation with the PCFG 
(Figure 7), whereas the SRN correlated more strongly with 
the group that gained no explicit awareness of the structure 
(Figure 6), indicating that the variance explained by the SRN 
may reflect a more automatic, implicit processing of the 
sequential structure (as suggested, for example, by 
Cleeremans, 1993), whereas the acquisition of recursive, 
rule-like structures may involve more explicit, conscious 
processing.  It was not possible to query subjects partway 
through the experiment about whether they had noticed any 
patterns without drawing their attention to the existence of 
structure, but the sudden divergence between the PCFG and 
SRN in Figure 7 lines up well with subjects’ comments 
during the post-test interview that they had begun to notice 
the pattern somewhere in the “middle of the experiment”. 

It is also instructive to examine the pattern of reaction 
times over the course of an average sequence.  As the 
sequences are of different lengths, position on the x-axis is 
represented as percentage of the way through a sequence 
(Figure 8). 

 

 
 

Figure 8: Comparison of RTs and model surprisal over the 
course of an average sequence (scaled by percentage). 
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There are several things to note in this reaction time data.  
Firstly, subjects seem to show a strong advantage in the 
second half of the sequence, which is consistent with the 
symbols in the second half being completely determined by 
the symbols in the first half (due to the palindromic nature of 
the sequences), and which is seen most strongly both in the 
PCFG and in the learners with explicit awareness of the 
structure.  Secondly, this advantage is greater immediately 
following the center symbol and reaction time and then 
increases slightly as the sequence continues.  This is 
consistent with the fact that later symbols in the second half 
involve longer-range dependencies, and thus may reflect 
working memory limitations.  The reason for the peak seen 
halfway through the sequences in both the implicit learners 
and the SRN is at first unclear, but it is tempting to interpret 
it as reflecting the cognitive load involved in needing to flip 
around the first half of the sequence in order to predict the 
second half, although we might expect this to appear in the 
explicit rather than the implicit subjects. 

Discussion 
We attempted to shed light on the mechanisms underlying 

human processing of recursive structure, by extending the 
artificial grammar serial reaction time paradigm in two ways; 
firstly, by training subjects on more complex grammars than 
are typically used (context-free grammars); and secondly, by 
comparing performance not only to transitional n-gram 
probabilities and connectionist models, but also to a 
Bayesian-induced PCFG model, trained on the exact same 
set of sequences as the subjects.  Evidence was found for a 
dissociation between implicit and explicit modes of 
processing, and these modes were seen to correlate most 
strongly with the predictions of the SRN and the PCFG, 
respectively. 

It may also be fruitful to examine the effects of making 
subjects explicitly aware of the structure prior to beginning 
the task, as the results of the present study would suggest this 
would lead to greater correlation with the predictions of the 
PCFG.  It would also be useful to provide a longer training 
period, to shed light on how these processes change over the 
course of more extensive exposure. 
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