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Abstract 
We examined adult and child performance on two numerical, 
geometric estimation tasks. In both tasks adults demonstrated 
greater accuracy than children as well as more mature 
representations, in general.  Furthermore, evidence from 
mouse tracking data demonstrates that adult strategy includes 
the application of discrete landmark values while child 
strategy, generally, does not.  This evidence suggests that 
adults construct mental representations of landmark values 
and successfully integrate them into analog tasks.  
Implications for future intervention studies are discussed. 

Keywords: numerical estimation, embodied cognition, 
mathematical development, cognitive assessment  

Introduction 
Numerical estimation tasks provide researchers with a 
powerful means of assessing individuals’ mental 
representation for number.  Evidence from brain scans 
demonstrates that approximate numerical tasks, such as less- 
than/greater-than judgments, activate cortical regions 
associated with spatial processes, while activities that rely 
exclusively upon recall, such as single-digit multiplication, 
do not (Dehaene, Piazza, Pinel, & Cohen, 2003).  According 
to Dehaene (1997) our ability to map numerical values to 
spatial magnitudes is what is commonly referred to as 
“number sense,” and grounds all mathematical reasoning. 

Yet, the study of number sense extends beyond theoretical 
interest as recent evidence suggests a link between 
estimation and mathematical achievement.  Along these 
lines Halberda, Mazzocco, and Feigenson (2008) discovered 
that 14-year-old’s ability to discriminate between dot 
displays of varying cardinalities was highly correlated with 
achievement scores extending back to kindergarten.  
Likewise, Siegler and Booth (2004) found that individual 
differences on a number line estimation task are correlated 
with standardized test scores. 

In the case of number line estimation individual 
differences may embody large, qualitative shifts in 
representation (Siegler & Opfer, 2003).  Dehaene (1997) 
asserts that numerical symbols implicitly recruit a 
logarithmic representation that is more precise at smaller 
values.  Siegler and Opfer (2003) found that young children, 
especially with larger numerical ranges, tend to apply this 
kind of logarithmic representation while estimating the 
position of a given value on a number line.  Specifically, 
data of estimated magnitude over actual magnitude are best 
fit by a logarithmic function for these younger children.  On 
the other hand, older children’s data, in many cases, is best 
fit by a straight line.  

The emergence of a linear representation has several 
possible causes and implications.  In particular, Siegler and 
Opfer (2003) differentiate between two models of linear 
representation.  In the accumulator model, adopted from 
Gibbon and Church (1981), noise in the mental 
representation for a numerical value increases in proportion 
to the mean.  This representation implies increasing 
variability in the estimates as the magnitude increases.  In 
the linear-ruler model – which was found to be a better fit 
for the data – variability in estimates has a constant relation 
to magnitude.   

The authors suggest that the mature, linear representation 
is developed through cultural, particularly school-based, 
experience.  Furthermore, evidence of less variability near 
landmark values along the number line (e.g. quartiles) 
demonstrates a specific means for implementing the linear-
ruler model.  One may even speculate that at the lowest-
level number representation may be logarithmic or 
accumulator in nature, but at the level of conscious-level 
processing number concepts are modulated for specific 
tasks. 

If the appeal of number line estimation tasks is due, in 
part, to its high ecological validity, one might then find it 
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surprising that although number lines are a ubiquitous 
feature of elementary school classrooms, many students 
maintain immature, logarithmic representations.  Yet, recent 
evidence suggests that the development of mature 
representations may be promoted through simple, 
economical interventions, such as playing linear board 
games (Siegler & Ramani, 2008) or providing corrective 
feedback (Opfer & Siegler, 2007) on values that maximize 
the logarithmic-linear difference.   In the latter case many 
children demonstrated a logarithmic to linear shift within a 
few feedback trials. 

Yet, the ease with which some children transition from a 
logarithmic to linear representation begs the question of 
whether these children already maintain a linear 
representation of whole numbers and simply learn to recruit 
it for the given task.  From this perspective, “development” 
of a linear representation in these interventions may capture 
only the tail end of this learning process, only made possible 
through years of informal experience with numerical 
concepts (Ginsberg, 1983).  

At the cost of ecological validity, an alternative approach 
to cognitive developmental research might imply the 
adoption of a task utilizing a novel, unique spatial 
representation of number.  Within such a paradigm 
researchers would observe as children (or adults) struggle to 
construct meaning out of the task, although the task may be 
meaningless beyond the research setting.  This research 
model would afford psychological researchers with a level 
of control that is unobtainable with common concepts.   

As a compromise between ecological validity and control 
this study applies the numerical estimation paradigm to 
degree measure, which is an important element of 
mathematics, but is under-utilized in elementary school 
curriculum and therefore relatively unfamiliar to children 
(Clements & Battista, 1992).  Considering that degree 
measure does not become a major component of curriculum, 
generally, until high school, research with degree measure 
provides an opportunity to study numerical development of 
older children. 

Yet, degree measure is not a unitary concept, but is rather 
composed of two psychologically distinct spatial 
representations: degree as angle of intersection between 
lines and degree as rotation.  While some tasks, such as 
LOGO programming, may confound the two concepts 
(Clements, Battista, & Sarama, 2001), other activities 
clearly demonstrate that children perceive physical models 
of each concept distinctly (Mitchelmore, 1998). 

Given the unique spatial qualities of each representation, 
we should expect courses of development for rotation and 
angle concepts that may differ from whole number concepts.  
For example, Clements and Burns (2000) found that fourth 
grade students physically modeled angle values and 
curtailed the degree of embodiment with increasing 
expertise.  Furthermore, both students and instructors 
focused on the representation of “benchmark” (or landmark) 
magnitudes, such as 90°. Although one might perform a 
degree estimation task by applying the same linear 

representation developed for the number line, albeit in a 
circular form, the emphasis on standard landmarks for 
degree measure suggests that performance with number 
lines and degree measure is likely to be quite different.  
Specifically, the mental representation for degree measure 
might rely upon the integration of continuous models of 
numbers and discrete abstractions of landmark values. 

While the nature of a mental abstraction is a constant 
source of debate, the grounded or embodied cognition 
framework (Barsalou, 2008) asserts that all mental 
representations are composed of sensory-motor elements of 
experience.  Specifically, perceptual symbols develop from 
frequent encounters with a meaningful type of object.  In 
turn perceptual simulators develop to provide individuals a 
means of representing a concept in its perceptual absence 
(Barsalou, 1999). 

In the case of angle and rotation, perceptual symbols are 
likely to embody landmark values. Given the perceptual 
salience of perpendicular lines – which can be discriminated 
from non-perpendicular lines by Amazonian tribesman 
(Dehaene & Izard, 2006) – we should expect that 90° angles 
are represented in this form. However, the perceptual 
symbol encoding 90° angles may only account for a limited 
range of valid right angles, such as right angles with sides 
oriented horizontally and vertically from the ground.  Thus, 
perceptual symbols may develop in both robustness for 
particular symbols, and in number, overall.  

In the case of rotation, the spatial mapping of language 
may play an important role in the embodiment of this 
numerical concept (Lakoff & Nunez, 2000).  For example, 
the directives “turn around” or “turn to your right” may 
ground landmark values of 180° and 90°, respectively.  
Older students may develop other landmark values for 
common spatial transformations, such as a rotation of 45°. 

Yet, all numerical tasks involving degree measure do not, 
explicitly, require landmark values.  An angle measure of 
117°, for example, is unlikely to have its own unique 
representation.  However, individuals may shuttle between 
analog, continuous models and discrete, abstract models 
(Schwartz & Black, 1996).  In this case one is likely to 
apply this process to numerical estimation by searching for 
relevant landmarks (e.g. 90°) and then applying an analog 
procedure, in a form of divide-and-conquer.  As stated 
above, Siegler and Opfer (2003) suggest that this is the 
specific mechanism used by adults to implement a linear-
ruler representation on the number line.  However, since 
number lines may utilize an arbitrary range of values, linear 
representation may reflect the online development of 
landmarks, rather than the application of perceptual symbols 
from memory. 

Although evidence for the application of landmark 
strategies is suggested by the pattern of variability in 
accuracy across numerical range, these accuracy measures 
reflect only the final judgment of the participant and may 
hide strategy-relevant features of the estimation process.  On 
the other hand continuous, online measures of performance 
afford researchers a view of the specific process undertaken 
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by a participant (Spivey, 2007). In this study we adapt a 
mouse-tracking paradigm in which mouse position and time 
is recorded at continuous, fine intervals. Specifically, as 
participants perform the estimation task the mouse’s 
rotational orientation about the center of the screen is 
recorded to facilitate the analysis of inflections near 
landmark values. 

In the following study we analyze estimation performance 
of relative experts (graduate students in education) to 
novices (middle-to-upper elementary school students).  
Given the adults likely experience with relevant geometric 
concepts, we expect that these participants are likely to use 
apply a process of shuttling between landmark and analog 
representations, which should result in a high proportion of 
mouse stops near landmark values and an overall linear 
representation.   

The children, on the other hand, are less likely to be 
familiar with landmark values and may struggle to integrate 
them into the estimation task.  Therefore we suspect that 
linear representations will be rare.  Although these students, 
mostly in fourth grade, should clearly maintain a linear 
representation on the number line, we expect that, given the 
novelty of this task, they are likely to adopt a logarithmic 
representation.  Furthermore, we expect there to be clear 
differences between adults and children in overall accuracy. 

Method 

Participants 
Sixteen adults (mean age = 28.9, SD = 8.7) were recruited 
from an introductory cognitive psychology course as part of 
a research requirement.  Sixteen children (mean age = 9.5, 
SD = .73) were recruited from an after-school program 
located in a low-SES neighborhood of a large city. The 
children consisted of two third-graders, one fifth-grader, and 
thirteen fourth graders. 

Tasks 
Both adults and children performed two distinct numerical 
estimation tasks on Apple MacBooks.  Both tasks were 
programmed with Adobe Air 1.1 in the Adobe Flash CS3 
development suite. The application covered the entire height 
of the screen (23 cms) and approximately 87% of the width 
(32.5 cms).  

Both tasks required a single click (and release) on a circle 
within the display to initiate each trial. Upon completing 
each trial participants were required to click-and-hold the 
mouse button for a half second to “lock-in” their answer to 
reduce the frequency of accidental clicking.  Although there 
was no time limit, if the participant made no motion with 
the mouse for more than ten seconds the trial was 
terminated. 

In angle construction (Figure 1) the participant 
maneuvers the mouse to rotate one leg (9.2 cms long) of an 
isosceles triangle clockwise about a fixed vertex, while the 
other leg remained motionless – opening and closing the 
triangle.  Participants were asked to manipulate a target 

angle, marked with a red arc, to reflect a target number of 
degrees.  At 0° and 180° the figure becomes a straight line. 
Motion beyond 180° maintained the appearance at 180° and 
was recorded as 180°. Participants could move directly from 
0° to 180° by moving the mouse counter-clockwise from the 
initial position. 

 

 

 
 

Figure 1: The top pane shows the initial display for an angle 
construction trial.  Participants clicked within the circle to 
begin the trial.  The lower pane shows a triangle that has 
been formed to match the target value.  The arced arrow is 
superimposed here to demonstrate the vector of motion of 
the non-stationary vertex from its original position. 

 
In triangle rotation (figure 2) the participants maneuvered 

the mouse to rotate an isosceles triangle about the center of 
the triangle.  Participants were asked to rotate the triangle, 
clockwise, a target number of degrees from the triangle’s 
initial orientation. A light gray triangle in the initial 
orientation of the triangle remained throughout the trial to 
provide a reference.  The shape of the triangle was varied 
between trials by randomizing the angle measure at 
intersection of the triangles legs from 10° to 170°, although 
the length of the legs was constant (9.2 cms). Varying the 
shape was necessary to avoid the use of strategies involving 
static relationships between the moving triangle and the 
gray reference triangle. Participants could maneuver the 
triangle between 0° and 180°.  Motion beyond 180° did not 
affect the appearance of the figure.  Like angle construction, 
in some cases participants moved directly from 0° to 180° 
by moving the mouse counter-clockwise. 
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Figure 2: The top pane shows the initial display for a 
triangle rotation trial.  Participants clicked within the circle 
at the vertex to begin.  The lower pane shows how the 
triangle has been rotated to match the target value. 

Procedure 
Both children and adults were split into two groups of eight, 
varying task order. The children received a block of 20 non-
feedback trials in both angle construction and triangle 
rotation.  The adults received 120 trials, organized into six 
blocks, for each task.  However, for the purpose of directly 
comparing adult and child performance, only the adults’ 
first block for each task were analyzed here.  The task was 
individually administered to adults in a private room.  
Children performed the task in a dedicated section of a 
classroom as their classmates completed homework. 

Prior to the first block of each task participants received 5 
practice trials.  Each practice trial required the participant be 
within 15° of the target and displayed written, verbal 
feedback suggesting an increase or decrease.  The practice 
values of 90°, 45°, 135°, 15°, and 180° were selected to 
represent a wide distribution of the range.  However, in 
angle estimation the 180° trial was replaced with a 165° trial 
to maintain a triangular appearance of the display.  

Each block was populated with target values in the range 
of 10° to 170°.  Target values were selected randomly from 
20 intervals of 8° over this range.  In the interest of directly 
comparing the two tasks, angles greater than 180° were not 
used as they cannot form internal angles of a triangle. 

Data Analysis 
Prior to all analyses outlier trials were removed to eliminate 
cases of accidental clicks, which prematurely terminated 

trials.  From observation of performance accidental clicks 
generally occurred near either extreme value (0° or 180°) or 
within a short time period (e.g. double-clicking).  Therefore 
trials in which the participant moved the mouse less than 5° 
from the initial position, ended the trial within a degree of 
the 180° endpoint, or completed the trial in less than one 
second were removed from analysis.  To reduce the 
likelihood that subjects intended degree measures in the 
outlier range we only used targets between 10° and 170°. 

During each trial the current value of the manipulated 
degree measure was sampled at approximately every 40 
msecs.  Degree over time data was fit to a function and 
smoothed using the ‘fda’ package within R (Ramsay, 
Wickham, Graves, & Hooker, 2009).  The first derivative of 
smoothed data, degree change over time, was then searched 
for values at or near zero for an extended period of time 
(500 msecs), indicating a stop point.   

Stop points within 10° of specific landmark values were 
tallied and are referred to as landmark stops.  Likewise stop 
points in 10° ranges just above and below the landmark 
ranges were tallied and are referred to as near-landmark 
stops.  For example, 90° landmark stops included all stops 
between 80° and 100°, while 90° near-landmark stops occur 
in the ranges 70° to 80° and 100° to 110°.  For 180° 
landmark stops were tallied between 170° and 180°, while 
near-landmark stops range between 160° and 170°.         

Although stops in a landmark or near-landmark range 
could represent random behavior, subjects consistently 
applying a landmark strategy are more likely to stop within 
landmark than near-landmark range, while subjects stopping 
at random should be equally likely to stop within either 
range. Therefore we suggest that a high proportion of 
landmark to near-landmark stops indicates the explicit use 
of a landmark strategy. This landmark-to-near-landmark 
proportion was calculated as a statistic ranging from -1 (all 
near-landmark) to 1 (all landmark) by subtracting the count 
of near-landmark stops from the count of landmark stops 
and dividing by their total.  For example, three landmark 
stops to one near landmark stop is a value of .50 [i.e. (3-
1)/(3+1)].  On the other hand, one landmark stop to two 
near-landmark stops is a value of  -.33 [i.e. (1-2)/(1+2)].  A 
value of zero indicates either an equal number of landmark 
and near-landmark stops or no stops. 

 

Results 
To determine the nature of a participant’s representation of 
estimated magnitude vs. actual magnitude data was fit to a 
linear and logarithmic model.  Participants were classified to 
“linear” or “log” representation to indicate the model that 
accounted for a larger proportion of their variance.  In the 
case where neither model was a significant predictor of 
estimates participants were classified as “other.”  Also, the 
absolute deviations (residuals) from estimated to actual 
magnitudes of “linear” participants were fit to a linear 
model to determine the presence of scalar variability.  Those 
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participants with a positive slope, significantly different 
from zero (p < .05) were classified as “accumulator”, while 
those with no trend of increasing deviations were classified 
as “linear-ruler.” Table 1 indicates the distribution of 
models for adults and children in each task.  

 
Table 1: Model frequencies across task and age. 

 
Model: Linear-

ruler 
Linear 
accum. 

Log Other 

Adult–  
Angle 

11 5 0 0 

Child –    
Angle 

4 2 5 5 

Adult– 
Rotation 

10 
 

2 4 0 

Child– 
Rotation 

4 1 1 10 

 
A chi-square test of this distribution indicates that adults 

and children vary significantly in both angle construction 
and triangle rotation [χ2(3, N=32) = 14.55 and 14.7, 
respectively, ps < .01].  Model frequencies between tasks, 
within age groups, did not differ significantly, ps > .05.   

Furthermore, the means of all absolute deviation from 
estimated magnitude to target magnitude (error), indicating 
overall accuracy, showed a similar pattern (Table 2).  

 
Table 2: Mean and standard deviation of absolute 

deviations from estimated and actual magnitudes. 
 

 Mean  
Error 

SD 

Adult–  
Angle 

9.78° 2.69 

Child –    
Angle 

35.7° 16.7 

Adult– 
Rotation 

16.5° 
 

4.93 

Child– 
Rotation 

41.0° 13.9 

 
A two-way ANOVA with task-type as a within subjects 

factor and age as a between subjects factor reveals a strong 
main effect for age [F(1,31)=29.8, p<.000] and a weaker, 
yet significant, effect for task type [F(1,31)=4.6, p<.05], 
indicating better performance for angle construction. 
Interaction between task and age was non-significant. 

To analyze the use of landmarks each participant’s trials 
were divided into 4 quadrants with target values in the 
ranges 0°-45°, 46°-90°, 91°-135°, and 136°-180°.  For each 
participant the 180° landmark to near-landmark statistic was 
calculated for trials in quadrant four (136°-180°) and 90° in 
quadrant two and three (46°-135°).  We then applied t-tests 
to determine whether these values differed significantly 
from zero, suggesting explicit use of the landmark. The 
means and p-values are shown in Table 3 below. 

Table 3: Mean ratios of landmark to near-landmark stops 
and associated p-values. 
 

Angle 
Construction 

Mean
Ratio 

Triangle 
Rotation 

Mean
Ratio 

Adult – 90°  
Q2-Q3 

.37* Adult – 90°  
Q2-Q3 

.19 

Child – 90°  
Q2-Q3 

-.06 
 

Child – 90°  
Q2-Q3 

.25 

Adult – 180°  
Q4 

.25+ Adult – 180°  
Q4 

.48** 

Child – 180°  
Q4 

-.06 

 

Child – 180°  
Q4 

.25* 

+ p < .1      * p < .05     ** p < .01 
  
For the rotation task both children and adults applied the 

180° landmark strategy, while neither did so in the angle 
construction task.  In angle construction only adults utilized 
a 90° landmark strategy.  We applied two ANOVA models 
to compare age and task for each landmark within its 
associated region.  With 90° landmarks there was a 
significant main effect of age [F(1,31)=5.0, p < .05], but not 
task-type (p > .05).  With 180° landmarks there was a 
significant main effect for task-type [F(1,31)=4.9, p < .05], 
but not for age.   

Discussion 
Clearly, there is a large difference between adult and child 
performance in both tasks.  This is certainly not surprising, 
given the difference in experience between the adults and 
children in the domain of geometry.  Yet, considering that 
10 of the 16 children’s data for the rotation task could not be 
fit by either a linear or logarithmic function, the extent of 
this difference was surprising.   

The graphs for individual subjects who were classified as 
“other” show either general randomness, crowding towards 
some arbitrary magnitude, or (in one case) a negative linear 
relationship.  For these students, the mapping between 
numerical value and the chosen spatial representation was 
either meaningless or completely misconceived.   

Another explanation is that these children simply refused 
to “play the game” correctly, and were simply applying their 
own, idiosyncratic rules.  Yet, considering that only half as 
many children were classified as “other” for angle 
construction, it is unlikely that this behavior emerged from 
general disinterest.  Rather, many students expressed their 
frustrations, especially during the rotation task, by telling 
test administrators that, “I don’t know how to do this.”   
Furthermore, in both tasks, several students were unsure as 
to which direction represented an increase in value.  

Adults and children also differed greatly in the application 
of landmarks.  While adults clearly used 90° landmarks for 
targets ranging from 45° to 135° in angle construction, 
children showed little evidence of this strategy.  In fact, the 
children were slightly more likely to stop at near-landmark 
values (albeit at non-significant level).  Both adults and 
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children used the 180° landmark in the rotation task, but this 
may be an effect of the particular environment as 180° 
represents a clear physical boundary.  

One may also reasonably claim that near-landmark stops 
were, in some cases, attempts at using specific landmarks. 
Yet, due to a general lack of precision, and difficulty with 
mouse control, children often stopped outside of the 
accepted landmark range suggesting that, with practice, 
landmark stops may replace near-landmark stops. 

While, this data demonstrates relative extremes in 
numerical representation it cannot inform us about the path 
of development from novice to expert.  Rather, we are left to 
ask whether adult performance result from a wealth of 
exposure to degree measures in particular or from a flexible 
understanding of the linear nature of numbers?  From the 
latter perspective one might imagine that adults are able to 
imagine a curved number line with endpoints at 0° and 180° 
– which would enable linear performance with relatively 
little experience with degrees, specifically.  Furthermore, 
given the important role that landmark values holds in adult 
performance, should child instruction focus on strategies 
incorporating landmark values or will mental 
representations for these landmarks emerge from exposure 
to the entire range of magnitudes? 

Such questions suggest the potential of intervention 
studies to elucidate paths of development.  Possible 
interventions to promote understanding of degree measure 
may include measuring angles, playing games aimed 
specifically at these numerical constructs, or situated 
activities such as LOGO programming.  In particular our 
research team is currently investigating the latter two means 
of developing numerical understanding. 

In a preliminary intervention study applying a LOGO-like 
environment and geometry curriculum with thirteen children 
(from this study), we have found a trend towards 
improvement in overall accuracy measure for angle 
construction [t(12)= 2.1, p = .059].  Furthermore, of these 
13 students the number of students demonstrating a linear 
representation increased from four to nine. 

Although the study of relatively novel numerical concepts 
is of theoretical interest, one might argue that if these 
concepts are so under-represented in curriculum then 
interventions at this level may be unnecessary or 
inappropriate.  However, the National Council of Teachers 
of Mathematics (2000) stresses the important of geometric 
and spatial reasoning for children of all ages.  We suspect 
that mastery of basic concepts, such as angle measure, 
serves as a grounding for higher-level conceptual skills, 
such as geometric constructions and proofs 
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