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Abstract

To learn the meaning of a new word, children must solve two
distinct problems: identify the referent under ambiguity and
determine how to generalize that word’s meaning to new ob-
jects. Traditionally, these two problems have been addressed
separately in the literature, despite their tight relationship with
one another. We present a hierarchical Bayesian model that
jointly infers both the referent of a word in ambiguous con-
texts and the concept associated with a word. As a first step
in testing this model, we provide evidence that our model fits
human data in a simple cross-situational concept learning task.
Keywords: cross-situational word learning; Bayesian models

Introduction

Learning a new word requires drawing a link in your mental
lexicon between a word and a concept. But, children do not
observe associations between words and abstract concepts;
they observe associations between words and exemplars of
those concepts. Furthermore, the associations between words
and objects are ambiguous: a single word uttered in any par-
ticular context is consistent with an infinite number of possi-
ble interpretations (Quine, 1960). There are thus two prob-
lems a child must solve in order to learn the meaning of a
new word: Determine which object is referred to by a word
in context (the Mapping Problem) and determine the relevant
concept of the object (the Generalization Problem; see Figure
1).

To understand these two problems more clearly, suppose
you lived in an (impoverished) world with two words, “apple”
and “cherry,” and three objects, a green apple, a red apple, and
a cherry. You hear the word “apple” in the context of a single
red apple on the table. You somehow infer that “apple” refers
to the red object on the table, and thus correctly solve the
Mapping Problem. But you have not yet succeeded in solving
the Generalization Problem. To correctly solve the General-
ization Problem, you must decide whether “apple” also refers
to the green apple, which is similar in shape to your observed
apple exemplar, or whether it also refers to the cherry, which
is similar in color to your observed apple exemplar. Or, al-
ternatively, whether “apple” refers to neither of these other
objects (i.e. a proper name). Thus, to learn the word “apple”
in this world, you must infer both that “apple” refers to the red
object on the table, and that “apple” should be generalized to
other apple-shaped objects.

Separate learning mechanisms and constraints have been
proposed to account for each of these problems. In the case
of the Mapping Problem, one proposed constraint is cross-
situational statistics (Pinker, 1984; Smith & Yu, 2008; Yu &
Smith, 2007). Under this account, learners are hypothesized
to aggregate the statistics of associations between words and

Figure 1: Schema of the two problems associated with learn-
ing the meaning of a word. Learning a new word requires that
the child both identify which object the word refers to in the
referential context (the Mapping Problem) and how to gener-
alize that word to objects of the same kind (the Generalization
Problem).

objects across situations. When considered in an isolated sit-
uation, the referent of a word may be ambiguous, but when
situations are aggregated across, the learner is able to con-
strain the hypothesis space of likely meanings. There is evi-
dence that children as young as 12-months-old can learn word
meanings in this way (Smith & Yu, 2008).

A second class of constraints on the Mapping Problem are
accounts of the disambiguation effect. The disambiguation
effect refers to children’s tendency to select a novel, as op-
posed to familiar, object as a referent for a novel word. One
account of this phenomenon is the principle of mutual ex-
clusivity (Markman & Wachtel, 1988; Markman, Wasow, &
Hansen, 2003). Under this proposal, there is a constraint
on the types of lexicons considered when learning the mean-
ing of a new word. With this constraint, children are biased
to consider only those lexicons that have a one-to-one map-
ping between words and objects. Thus, when faced with an
ambiguous referential context, the child solves the mapping
problem by assuming that the novel word refers to the object
for which she does not yet have a word in her lexicon. This
is the inferred mapping because it is the only referent that al-
lows the learner to maintain a one-to-one structure between
words and concepts in the lexicon. Others have proposed that
general pragmatic assumptions can also account for this ef-
fect (Clark, 1987; Diesendruck & Markson, 2001).

There are also a range of proposals about how children
might solve the Generalization Problem. One proposal is that
children have a bias to generalize by shape (Smith, Jones,
Landau, Gershkoff-Stowe, & Samuelson, 2002). With this
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bias, a child who has learned that “apple” maps to apple, for
example, can generalize “apple” to all apple-shaped things.
This bias allows learners to rule out alternative, less probable
generalizations strategies, such as generalization along the di-
mension of color. A second proposal is that children have
a bias to generalize to another object of similar kind, rather
than to one that is thematically related (“Taxonomic Assump-
tion”; Markman, 1990). For example, upon hearing the word
“cherry,” a child with this bias would be more likely to gen-
eralize the word to another fruit, as opposed to ice cream,
despite the fact the ice cream and cherries often go together
(see Xu & Tenenbaum, 2007, for a probabilistic view).

Though theoretically distinct, and investigated separately,
these the two problems are intimately related. If a child has
solved the Generalization Problem for a particular category,
the Mapping Problem becomes much easier. For example,
suppose a child is faced with a never-before-seen apple and
a novel object, and hears the word “dax”. If the child has
solved the Generalization Problem, the child can identify the
apple as an exemplar of the APPLE1 concept, and determine
the correct referent by mutual exclusivity. Conversely, if a
learner can easily solve the Mapping Problem, the learner will
accumulate more correct exemplars of a category, and thus be
more likely to infer the correct concept. Thus, existing pro-
posals about how each of these problems is solved takes the
other problem for granted. But, importantly, a child acquiring
language begins with neither of these problems solved; both
must be solved in parallel. That is, a learner must determine
both what object a word refers to, and how to generalize that
meaning beyond the particular context. And, critically, she
must do both at the same time.

There is limited work exploring how children might solve
these two problems in parallel. A study by Akhtar and
Montague (1999) begins to address this question by asking
whether children might use cross-situational statistics to learn
the relevant features for generalization. In their task, 2-4 year
old children were presented with three novel objects that all
shared a common feature (e.g. color), but varied along two
other features (e.g. texture and shape). Children were able
to correctly infer that the novel word referred to the shared
feature. This result provides important evidence that children
can infer word concepts cross-situationally. However, it is
unclear whether this type of learning generalizes to the real
world because the actual learning environment is not struc-
tured in a way that perfectly disambiguates word meanings
cross-situationally.

Apart from word learning, the Generalization Problem has
been well-studied in adults (Laurence & Margolis, 1999;
Rosch & Mervis, 1975; Rosch, Mervis, Gray, Johnson, &
Boyes-Braem, 1976; Medin & Ortony, 1989). However, lim-
ited research has attempted to extend this body of literature to
work with children. One exception is work by Sloutsky and
colleagues which adopts models of similarity to explain how

1Small capital letters are used to distinguish concepts from ob-
jects.

Figure 2: The generative process for our model. Shading in-
dicates observed variables

children generalize novel words (e.g. Sloutsky, Lo, & Fisher,
2001).

We present a hierarchical Bayesian model that solves the
Mapping and Generalization Problems in parallel. In mod-
eling the Generalization Problem, we draw on the Boolean
concept learning framework in which objects are defined by
a set of features with a range of values (Shepard, Hovland, &
Jenkins, 1961). The goal for the word learner is conceptual-
ized as the task of mapping a word to a set of features that de-
fine the relevant concept. In modeling the Mapping Problem,
we focus on the role of cross-situational statistics. In partic-
ular, we build on the model developed by Frank, Goodman,
and Tenenbaum (2009) that takes into account the intentions
of the speaker in order to identify the referent in ambiguous
contexts.

The plan for the paper is as follows. We first describe the
design of this extended model, and then describe the results
of an experiment that explores adult performance in a cross-
situational Boolean concept learning task.

Design of the Model

The goal of our model is to understand how children arrive
at an understanding about the meanings of words, on the ba-
sis of limited evidence about the associations between words
and objects. That is, the goal is to infer a lexicon — a set
of word-concept mappings — on the basis of basis of obser-
vations of words and objects. To model this, we consider a
set of variables relevant to this learning problem, and assume
that they are related probabilistically. We assume an identical
dependency structure as the model developed by Frank et al.
(2009), with the addition of a concept layer to the generative
process (see Figure 2). This model is the same underlying
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model as presented in Lewis and Frank (2013) but with the
addition of a theory of Boolean concepts. For completeness,
we present the full model here, but details are identical except
where noted.

We model a word learner as performing Bayesian inference
to infer a lexicon l, which we represent as a (sparse) bipartite
graph connecting words W = w1...wn to concepts C = c1...cm.
Concepts are written as a vector of features with values 1, 2
or *. The ⇤ notation denotes a feature that is irrelevant to the
definition of a concept. For example, [1⇤⇤] represents a con-
cept that is defined only by the value of the first feature. This
hierarchical formulation of concepts is substantially similar
to the concept learning model proposed by Goodman, Tenen-
baum, Feldman, and Griffiths (2010). The full possible set of
lexicons is denoted as L.

The learner infers a distribution over lexicons, given a cor-
pus S of situations (each consisting of sets of words w̄s and
objects ōs). From Bayes’ rule, the posterior probability of a
lexicon is given by

P(l|S) =
P(S|l)P(l)

Âl02L P(S|l0)P(l0)
. (1)

The prior P(L) is assumed to be uniform over lexicons that
map a concept to at most one word (one word to many con-
cepts). We now define the likelihood term P(S|L).

Using the generative process in Figure 2, we can write the
likelihood of a particular situation in terms of the relationship
between the objects that were observed in the situation s, the
speaker’s referential intention is (a choice to speak about one
of the objects), the concept cs selected by the speaker to repre-
sent the intention, and the referring word ws. As in our prior
work, we assume that referential intentions are unobserved
and sum across all possible intentions uniformly:

P(s|l) = Â
is2ōs

p(ws,cs, is,os, |l) (2)

By the conditional independence of words and objects, we
use the chain rule to expand to:

P(s|l) = Â
is2ōs

P(ws|cs, l)P(cs|is)P(is|os) (3)

Finally, we aggregate across situations by taking the product
of each independent situation:

P(S|l) = ’
s2S

Â
i2ōs

P(ws|cs, l)P(cs|is)P(is|os) (4)

To find the key term in our concept model, p(cs | is), we
use a noisy Naive Bayes classifier:

P(cs | is) = ’
j=1... f

⇢
1�a if (c j

s = i j
s)_ (i j

s = ⇤)
a otherwise

(5)

This formulation quantifies the probability of a concept given
an intended object in terms of the match between the three
features.

Figure 3: Experimental stimuli. Each object is defined by a
binary value for each of three features: shape, appendage, and
color.

We assume that there is some level of noise in both the
choice of word given intention P(ws|is, l) and the choice of
intention given object P(cs|is), such that the speaker could
in principle have been mistaken about their referent or mis-
spoken. We implement this decision by assuming a constant
probability of random noise for each of these, which we no-
tate a; for simplicity, a is assumed to be the same for both de-
cisions. The particular choice of a values only serves to scale
the predictions, and does not influence the relative predictions
of the test item types. However, as in nearly all probabilistic
models, some level of uncertainty about the individual obser-
vations is necessary to be able to make graded predictions.

In the simulations reported here, we did inference by exact
inference via full combinatoric enumeration of the space of
possible lexicons.

Experiment

Our model jointly solves the two problems associated with
learning the meaning of a new word, the Mapping and Gen-
eralization Problems. As a first step in evaluating the model,
we compared human and model performance in a cross-
situational Boolean concept learning task. Participants were
given a situation in which a word is seen in the context of two
objects, but in a way that is ambiguous as to which of these
objects (either or both) the label refers to. The learner is then
presented with a second such situation. While each of these
situations is individually ambiguous, the learner could aggre-
gate information across situations to infer the concept associ-
ated with the word. As predicted by the model, we found that
participants generalized the meaning of the label in a graded
manner: the more features the training objects shared with
the test object, the more likely participants were to generalize
the label to the test object.

Method and Materials

Participants Two hundred and and sixty-six adults were re-
cruited from Amazon’s Mechanical Turk. Twenty-two were
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Figure 4: Bets on the probability of “dax bren nes” generalizing to each of the relevant test item types in each condition.
Error bars represent 95% confidence intervals as computed via non-parametric bootstrap. Example items seen in the training
situations are given in the top-right box of each plot. Given the particular training items shown here, an item in each of the
relevant test item types (defined by the number of features shared with the training items) is shown along the x-axis. Actual
training items (and thus test items) were counter-balanced across participants.

excluded for either not completing the task appropriately (e.g.
by responding with values greater than 100) or failing to pro-
vide responses for all 8 test objects. All reported that they
were native speakers of English.

Stimuli Each object in our stimulus set was constructed
to have three binary features. The features of interest were
shape, appendage and color. When fully permuted, this de-
fines a space of eight possible objects (see Figure 3).

Procedure Participants viewed a webpage that showed two
situations with two objects each. In the first situation, they
were instructed: “Suppose you saw these two objects and
heard ‘dax bren nes.’” A multi-word novel label was used to
avoid biases towards meanings consistent with the grammat-
ical class of the word. In other words, we wanted to avoid
participants inferring that because the word was an adjective,
it was more likely to refer to a property (e.g. color) than a
particular object (i.e. a proper noun), for example. Two more
objects were presented below and participants were asked to
“Now suppose you saw these two new objects and heard ‘dax
bren nes’ again.” They were then asked to “bet whether or not
you think each of the objects below could also be called ‘dax
bren nes.”’ Images of all eight objects (including the train-
ing items) were then presented, and participants were asked
to provide a bet 0–100 indicating their judgement.

Across participants, we manipulated the number of fea-
tures shared within and across situations.2 We tested an un-
ambiguous baseline condition in which the same object was
paired with a different object in each situation and 5 ambigu-
ous conditions in which the features of the objects were con-
founded either within or across situations. For the ambigu-
ous conditions, we tested cases in which 1 or 2 features were
shared within situations (“confounded within” conditions), 1
or 2 features shared across situations (“confounded across”
conditions), and a case in which 3 features were shared both
within and across situations (Figure 4).

2This manipulation was motivated by the observation that dif-
ferent types of ambiguity license different inferences. To illustrate
this, imagine a learner in a confounded across context. The learner
observes a situation with two apples and a situation with two or-
anges. In each situation, she hears “dax bren nes”. The referent
is clear in each individual situation — apple and orange, respec-
tively — and the learner might infer that this phrase corresponds to
a superordinate category, such as FRUIT. In the confounded within
context, the learner observes two situations, both containing an ap-
ple and an orange, and again hears “dax bren nes” in each. Unlike
in the across case, a learner in this context would have no informa-
tion about how to correctly map the meaning of this phrase, since
the context is consistent with both a subordinate and superordinate
interpretation. Different generalization patterns are thus predicted in
the confounded across and within conditions.
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Figure 5: Mean bets in each experiment condition, plotted by predictions for each of the models (model predictions are scaled
on the horizontal axis). Error bars represent 95% confidence intervals, as computed via non-parametric bootstrap. The line of
best fit is plotted in red.

Results and Model Fits

Participants showed a consistent gradient of generalization
such that greater number of distinct features resulted in lower
bets (weaker generalizations), consistent with previous exper-
iments (Figure 4).

Model fits are shown in Figure 5. Our model fits the data
with a correlation of r = .95. We compared this fit against
a null model in which we calculated the target’s total fea-
ture distance from objects in the situations. This was calcu-
lated by counting the number of features for which the target
differed from each situation object (e.g. the feature distance
[111] and [122] is 2) and summing across all four objects in
the situation. This standard exemplar style model fits the data
relatively well (r = .89). Nevertheless, our model provides
a substantial gain in fit. Using non-parametric bootstrap, the
cross-situational concept-learning model fits the data signifi-
cantly better than the feature distance model (p < .05).

General Discussion

In this cross-situational Boolean concept learning task, our
model performed competitively with a simple feature dis-
tance model. Critically, however, our model has the ma-
chinery to solve not only this simple concept-mapping prob-
lem under minimal ambiguity, but can also deal with more
complex worlds in which multiple words are present. Given
that no existing model is able to jointly account for both the
Mapping and Generalization Problems, this model provides a
fruitful theoretical tool for future work to explore how chil-
dren might solve these problems.

For example, this experiment could be straight-forwardly
extended to introduce a more complex Mapping Problem
component to the task. This could be done by adding ad-
ditional words to the cross-situational learning context. In a

minimal version of this experiment, the learner could observe
w1 with [11] and [12] and w2 with [22] and [12]. A learner
who assumes that the speaker refers to both objects within
each situation, might infer a mapping between w1 with [1⇤]
and a mapping between w2 with [⇤2], given this referential
context. Using situations such as these, this paradigm can be
extended to directly explore joint inference of both the Map-
ping and Generalization problems.

An important underlying assumption of this model is that
features are given a priori. This seems like an extreme po-
sition given that it is implausible that children acquiring lan-
guage have an innate “appendage” feature, for example. It is,
in a sense, the very goal of this model to explain how children
acquire such abstract concepts as APPENDAGE. That is, fea-
tures are themselves concepts that can be considered as prim-
itives in the construction of more complex concepts. This
problem, however, is not specific to the word learning prob-
lem, but rather is a challenge more generally to the Boolean
concept learning framework. Nonetheless, a complete theory
of how children acquire word concepts will need to provide
an account for the origin of features.

Given this theoretical point, our model should be under-
stood as a computational level description of the problem of
acquiring word-concepts, given some set of concepts (i.e. fea-
tures). Our model remains agnostic about the origins and na-
ture of these initial concepts but, given some primitive set
of concepts, our model describes how a learner might boot-
strap from these primitives to infer more and more complex
concepts. While it seems unlikely that children have an in-
nate APPENDAGE feature, there is evidence that children may
have certain perceptual categories, such as color, very early in
development (Bornstein, Kessen, & Weiskopf, 1976). Primi-
tive perceptual features like color categories may provide the
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initial building blocks for the construction of more complex
concepts, given experience with the environment.

In sum, our model provides a rich framework for studying
the word learning problem at the computational level. Previ-
ous research has explored how children might solve the two
subproblems associated with word learning — the General-
ization and Mapping Problems — separately. Our model con-
tributes to this area by providing a unifed account for both of
these problems. The experiment reported here suggests that
our model is able to account for participants’ behavior in solv-
ing one of these problems — the Generalization Problem —
in a simple cross-situational task. Importantly, our model’s
contribution to theories of the Generalization Problem is to
provide an account of the generalization inferences, given an
initial set of primitive concepts. This account, coupled with
the ability to explore the Mapping Problem, lays the ground-
work for a more cohesive understanding of how children learn
the meanings of words.
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