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Abstract 
Reinforcement learning (RL) models of decision-making 
cannot account for human decisions in the absence of prior 
reward or punishment. We propose a mechanism for choosing 
among available options based on goal-option association 
strengths, where association strengths between objects 
represent object proximity. The proposed mechanism, Goal-
Proximity Decision-making (GPD), is implemented within the 
ACT-R cognitive framework. A one-choice navigation 
experiment is presented. GPD captures human performance in 
the early trials of the experiment, where RL cannot. 

Keywords: RL, GPD, reinforcement learning, associative 
learning, latent learning, ACT-R, information scent, decision-
making, seeking behavior, navigation, model-tracing. 

Introduction 
How does a cognitive agent choose a path of actions from 
an infinitely large decision-space? Reinforcement learning 
(RL) models, which are models of human trial-and-error 
behavior, explain how an agent may reduce its decision-
space over time by attending to the reward structure of the 
task-environment. However, as goals change, so does the 
reward structure of the agent’s world. Relearning the reward 
structure for every possible goal may take an extremely long 
time. For greater efficiency, a cognitive agent should be able 
to learn more about its environment than just the reward 
structure, and to exploit this knowledge for achieving new 
goals in the absence of prior reward/punishment. For 
example, a person may see a hardware store on their way to 
the mall, and incidentally learn its location. Some time later, 
if they need to go to a hardware store, the person can find 
their way to that store, because they know its location. 
There had been no reward or punishment for the actions 
leading to this hardware store, and so the ability to find its 
location cannot be explained solely through the principles of 
reinforcement learning. 

We propose a mechanism for making decisions in the 
absence of prior reward or punishment, and provide initial 
tests of its fidelity and efficiency as compared to RL. Given 
multiple possible paths of action, the proposed mechanism 
chooses the path most strongly associated with the current 
goal, regardless of prior reward. Strength of association 
between any two items, in turn, depends on experienced 
temporal proximity of those items. From here forth we refer 
to the proposed mechanism as GPD (goal-proximity 
decision-making). 

The rest of this paper describes a key theoretical problem 
for RL models of decision-making (the 2-goal problem), 
briefly summarizes classic evidence in psychological 
literature for reward-independent decision-making in 
humans and animals, and presents two computational 
models that exemplify non-RL-based decision-making. We 
then outline the implementation of the GPD mechanism 
within the ACT-R cognitive framework. Finally, we 
describe a single-choice navigation experiment, and provide 
fits of GPD and RL decision mechanisms to human data. 
We conclude that GPD can account for human performance 
where RL cannot – prior to any reward or punishment. 

What this paper is not about 
Because everything in cognition is so closely knit, the GPD 
theory may evoke topics that are outside of the scope of 
current work. The following topics are important to 
cognitive science but tangential to the focus of this paper.  

First, GPD is not meant to replace RL, but rather to 
complement it. How GPD and RL may interact is a topic for 
further research.  

Second, GPD does not address planning. GPD is a theory 
of immediate behavior; how this behavior may be used in 
complex planning procedures is a tangential topic. 

Third, GPD partially addresses episodic memory and 
associative learning. However, associative learning is not 
the focus of this paper. Rather, the focus here is on the goal-
oriented decision-making that can emerge from a simple 
associative learning mechanism. The topic of associative 
learning should comprise other lines of research (e.g. 
sequence recall, free association, priming) in addition to this 
one, and is too extensive to address here. 

Fourth, GPD describes how an agent may choose which 
option to approach given multiple possible paths. Although 
avoidance behavior is just as important as approach 
behavior, and should eventually become part of the GPD 
theory, it is assumed here to be a separate topic. 

The 2-goal Problem 
Consider a scenario where an agent has to achieve goal A, 
then goal B, in the same environment. To increase 
efficiency humans and animals would learn the environment 
during task A, and perform faster on task B (the Experiment 
below provides evidence for this phenomenon). That is, we 
do not just learn the positive utility for the actions that 
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helped us reach the goal, or the negative utility for the 
actions that failed to reach the goal; we also pick up on 
other regularities in the environment that may help us with 
possible future goals. RL-based architectures will have a 
problem matching human performance on this 2-goal 
problem.  

To make this example more concrete, imagine how an 
RL-based agent may perform on a specific 2-goal problem. 
In this example, the first goal, A, can be accomplished by 
executing actions 1, 2, and 3. After trying the following 
sequences of actions, 1-2-4, 1-5-7, 1-4-3, finally the 
sequence 1-2-3 is attempted. Upon reaching the desired goal 
A, actions 1, 2, and 3 will be positively reinforced. The 
utility value of actions 1, 2, and 3 will increase every time 
that A is reached via this route, and soon these actions will 
fire without fail, greatly improving the agent’s time to reach 
the goal.  

Now imagine the task switches so that the agent has to 
find B in the same task environment. The shortest path to B 
would be to fire actions 1, 5, and then 7. Although the agent 
had previously reached state B, actions leading to this state 
were not positively reinforced because B was not the goal at 
the time. Thus, when presented with this new goal, RL 
performance will be at chance level. 

RL, by definition, learns only the reward structure of the 
world, ignoring the rest of the environmental contingencies 
(with the exception discussed in the Model-based RL 
section below). In those cases where this ignored 
information may help in achieving new goals, it would be 
useful to have an additional mechanism for collecting and 
using this information (especially in the case of humans, 
where memory is relatively cheap as compared to additional 
trials). The mechanism proposed in this paper, GPD, should 
serve as such a complement for RL-based architectures. 

Background 
Stevenson (1954) provided evidence that children are 
capable of resolving the 2-goal problem. In this study 
children were placed at the apex of a V-shaped maze, and 
the goal items were located at the ends of the arms of the V. 
Children were asked to find some goal-item A (a bird, 
flower, or animal sticker), and later asked to find a new goal 
B (a purse or a box). Although children were never 
rewarded for finding B, and did not know that they would 
be asked to look for it at any point, once presented with this 
goal, they proceeded to the correct arm of the maze more 
than 50% of the time.  

This paradigm, called latent learning, does not just 
provide evidence that learning occurs in the absence of 
reward/punishment, but also that, given a goal, the learned 
information is reflected in decision-making, and ultimately 
in performance. Tolman provided evidence for latent 
learning in rats in the context of maze running (Tolman, 
1948; Tolman & Honzik, 1930), and Quartermain & Scott 
(1960) displayed latent learning in human adults, 
substituting the maze environment for a cluttered cubicle 
shelf. 

The following subsections describe Model-based RL – a 
RL framework that learns environmental contingencies 
beyond reward, Voicu & Schmajuk model of navigation – a 
model capable of resolving the 2-goal problem, and SNIF-
ACT – a model that implements a decision mechanism 
similar to Voicu & Schmajuk within a unified cognitive 
framework.  

Model-based RL 
Model-based RL (Sutton & Barto, 1998) extends RL by 
learning the environmental structure beyond action utilities. 
The term "Model" in "Model-based RL" refers to agent's 
internal model of the environment. An agent based on this 
framework is capable of planning its route before execution. 
However, the planning process itself is still based on RL. 
Using the example from the 2-goal Problem section, 
presented with a new goal B, and having the knowledge that 
1-5-7 leads to B, a model-based RL agent will begin to plan 
its route by considering random actions. In other words, 
because this framework uses a decision mechanism based 
on RL, having the additional knowledge about the world 
does not reduce decision cycles.  

Voicu & Schmajuk 
Although models of space navigation can employ RL (e.g. 
Sun & Peterson, 1998), there is a class of decision 
mechanisms employed in many artificial navigation systems 
that do not use RL representation (for review see Trullier, 
Wiener, Berthoz, & Meyer, 1997). As Trullier et al. state, 
“Navigation would be more adaptive if the spatial 
representation were goal-independent” (p. 489).  

In a primary example of goal-independent representation 
Voicu and Schmajuk (2002) implemented a computational 
model that learns the structure of the environment as a 
network of adjacent cells. Once a goal is introduced, reward 
signal spreads from the goal-cell through this network, such 
that the cells farther from the goal-cell receive less 
activation than those that are close. Goal-driven behavior in 
this model comprises moving towards the cells with the 
highest activation.  

Once this model memorizes the map of the environment, 
it does not need to learn the reward structure through trial-
and-error; rather, the utility of each action-path is identified 
through spreading activation from the goal. In this manner, 
this model resolves the 2-goal problem. 

One major limitation of this model is that it makes 
unrealistic assumptions about the world (e.g. that it can be 
neatly mapped out as a grid of adjacent spaces). This model 
would be computationally infeasible for sufficiently large, 
dynamic, probabilistic environments. Additionally, this 
model is not integrated within a larger cognitive framework. 
As a standalone model of maze navigation behavior in an 
oversimplified environment, there are questions as to the 
scalability and fidelity of the model. The following sections 
address how a similar mechanism, where decisions are 
based on spreading activation from the goal, may be 

1265



implemented within a unified cognitive framework, such 
that integration is at the core of modeling. 

SNIF-ACT 
SNIF-ACT (Fu & Pirolli, 2007) is a model of human 
information-seeking behavior on the World Wide Web. The 
pertinence of SNIF-ACT to current work is that it is a model 
of how humans use declarative knowledge (rather than 
action utilities) in goal-driven behavior in a very rich and 
unpredictable task-environment. The World Wide Web is 
unpredictable in the sense that there is no way for any of its 
users to know what links they will encounter during web 
browsing. For this reason an agent must be able to evaluate 
its actions (which link to click) without any prior 
reinforcement of those actions.  

The action of clicking a link in SNIF-ACT is based not on 
the previous reinforcement of clicking on that link, but 
rather on the semantic association of the text in the link to 
user goals (information scent). To implement this concept in 
ACT-R, Fu & Pirolli changed the utilities for clicking links 
based on the link-goal association strengths (note the 
similarity to the Voicu & Shmajuk model). This is different 
from the standard ACT-R implementation, where the 
decision mechanism is based on RL. Changing the utility 
mechanism in this way allows SNIF-ACT to make non-
random decisions between multiple matching actions that 
have never been reinforced.  

Besides being limited to text-link browsing, SNIF-ACT's 
other major limitation is that it does not learn the association 
strengths between links and goals, but rather imports these 
values from an external source. However, SNIF-ACT's 
decision-making mechanism is an excellent example of how 
to achieve goal-driven behavior in the absence of prior 
reinforcement within the ACT-R framework. 

Goal-Proximity Decision Making 
RL cannot account for human/animal decision-making in 
the absence of reward. The Voicu & Schmajuk and the Fu & 
Pirolli models described above suggest an alternative 
decision mechanism where agent choice depends on 
spreading activation from the goal.  

More specifically, these models employ reward-
independent associative knowledge to represent 
environmental contingencies. The decision mechanism in 
both models works by approaching the option most strongly 
associated with the goal element.  

In the Voicu & Schmajuk model, the strength of 
association between two elements is inversely proportional 
to the physical distance of those elements in space. In SNIF-
ACT, the strengths of associations are imported from an 
external source – Pointwise Mutual Information engine 
(Turney, 2001), where association strength between two 
words is incremented every time that the two words co-
occur within a window of text, and decremented every time 
that the two words occur in the absence of one another.  

In other words, the experienced temporospatial proximity 
between items X and B may be employed to predict whether 

X is en route to B. While the agent is seeking some goal, A, 
it may be learning the proximity of elements in its 
environment, including the proximity of X and B. Given a 
new goal, B, the agent can use its knowledge to judge the 
utility of approaching X to find B. In this manner, the 
environmental contingencies learned while performing goal 
A can help to improve agent performance on goal B, thus 
resolving the 2-goal problem. 

We call this mechanism Goal-Proximity Decision-making 
(GPD). In more generic terms, GPD (1) relies on having 
associative memory, where association strengths between 
memory elements represent experienced temporal proximity 
of these elements, and (2) chooses to approach the 
environmental cue that is most closely associated with its 
current goal.  

Implementation 
We implement GPD in the ACT-R cognitive architecture 
(Anderson & Lebiere, 1998). ACT-R comprises a 
production system as the central executive module, a 
declarative memory module, a goal module, and visual and 
motor modules.  

To implement GPD in ACT-R, we developed an ACT-R 
model that, given some goal G, looks through all the options 
on screen, performing retrievals from memory. Retrievals 
from memory in ACT-R, among other factors, depend on 
spreading activation from the goal – such that the memory 
elements that are more strongly associated with G are more 
likely to be retrieved. The GPD model then clicks on the last 
option to have been retrieved from memory.  

Although ACT-R employs the spreading activation 
mechanism, making for an easy implementation of the GPD 
model (only 13 productions), it does not make predictions 
about how association strengths between memory elements 
are learned. ACT-R 4.0 (an older version) had a mechanism 
for associative learning (Lebiere & Wallach, 2001; Wallach 
& Lebiere, 2003). However, according to Anderson 
(Anderson, 2001), this particular form of associative 
learning turned out to be "disastrous", and produced "all 
sorts of unwanted side effects" (p. 6). 

To implement associative learning in ACT-R we first 
create an episodic buffer – a simple list containing the 
names of recently attended memory elements. Whenever the 
model checks the contents of the visual buffer (visual 
attention), the name of the memory element from the visual 
buffer is pushed into the episodic buffer.  

Next, we update association strengths between the latest 
episode and every other item in the episodic buffer. To do 
this we employ error-driven learning. Error-driven learning, 
also known as the Delta rule, is widely accepted as a 
psychologically and biologically valid mechanism of 
associative learning (for psychological, computational, and 
biological review of error-driven learning see Gluck & 
Bower, 1988; O'Reilly & Munakata, 2000; Shanks, 1994). 
For each new element j and previously experienced element 
i, the strength of association between j and i, Sji, at current 
time, n, is increased in the following manner: 
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where β is the learning rate parameter, and ai is the 
activation of each element i in the episodic buffer. Episodic 
activation, ai, is assumed to decrease by some decay 
parameter, э, at each tic. It should be noted that we did not 
employ the ACT-R native constraints for memory activation 
and decay – ACT-R memory decay implementation 
accounts for frequency, recency, and spreading activation, 
bearing peripheral complexity, to be examined at a future 
date. The pseudocode for the GPD model and this 
associative learning mechanism is provided in Table 1. 

 
Table 1. Implementation of GPD. 

Sji is the association strength between memory elements j and i 
э is the rate of decay of activation of objects in episodic memory 
β is the associative learning rate parameter 
 
######################################### 
# GPD algorithm 
given a goal, G, and current best option, Y { 
  for each option in the environment, X { 
    learn episode (X) 
    given two options, X and Y { 
      attempt retrieval from declarative memory 
      spreading activation from G 
      set Y to be the retrieved memory element 
    } 
  } 
  learn episode (Y) 
  approach option Y 
} 
 
######################################### 
# Episodic/associative learning 
learn episode (j) { 
 activationOfItem = э 
 for each item in episodic-buffer, i { 
    Sji += β * (activationOfItem – Sji) 
  activationOfItem = activationOfItem * э 
 } 
 push j into episodic-buffer 
} 

Experiment 
The purpose of this experiment is to collect data for 
validation of how GPD can account for human choice where 
RL cannot. The structure of the experiment reflects the 2-
goal problem. More precisely, this experiment requires the 
participants to traverse a simple maze in search of different 
goal-items presented one at a time. Whereas RL would 
predict that reward structure is updated after the agent 
reaches a goal or a dead-end, GPD would predict that the 
agent also learns where other items in the maze are located. 
When asked to find a new goal, RL should perform at 
chance level (since there has been no reward for this goal), 
whereas GPD should perform above chance level. Human 
data from this experiment should provide a stark contrast 
between the two decision mechanisms. 
Participants 

Twenty-one human participants, consisting of 
undergraduate students at RPI, were asked to participate for 
course extra credit, as specified by course instructor.  

Materials 
The experiment was presented as a point-and-click 

application on a 17" computer screen, set to 1280x1024 
resolution. Participants were presented with 150x200 pixel 
option buttons, where each button displayed either a letter 
from the English alphabet, or one of the symbols shown in 
Figure 1.  

 

☉☁☇☄☋☍★☼✧❍❑☗❖♁☽♘☮✘✂♨✈☎

⚂♻✵☂❀❄♪⌛◍◣╡▜☃➲⥼⧰╲▓⎲␥⑃ 
Figure 1. Stimuli used for 3-choice mazes. 

 
Procedure and Design 

The experiment employed a single-group design with no 
between-subject variables. Participants were asked to 
perform a simple exploratory maze navigation task. Each 
participant had to complete two 2-arm mazes (2 arms, 2 goal 
items in each arm) and four 3-arm mazes (3 arms, 3 goal 
items in each arm) in the following order: 2-arm, 3-arm, 3-
arm, 2-arm, 3-arm, 3-arm. The choice and goal items in 
each of the 2-arm mazes were random letters of the English 
alphabet, and the choice and goal items of the 3-arm mazes 
were symbols randomly chosen from Figure 1. Participants 
were required to continue with a given maze until they 
completed 6 consecutive error-free trials (trials where only 
the correct path to the goal was taken) in the 2-arm mazes, 
or 12 consecutive error-free trials in the 3-arm mazes.  

For each trial, participants were asked to find one of the 
goal items (for example, in the maze displayed on left of 
Figure 2, a goal could be: C, D, E, or F), such that no two 
successive trials would have repeating goals. The idea here 
is to replicate the 2-goal (or rather n-goal) problem design – 
while participants are looking for a given goal item they 
may be learning the maze, and will be able to perform above 
chance-level when presented with the next goal item. 

 
Figure 2. Sample navigation mazes, 2-arm condition (left) 

and 3-arm condition (right). 
 
Trial Design: 

Each trial persisted until the participant found and clicked 
the required goal item. At the beginning of each trial, 
participants were presented with the top-level options. After 
choosing one of top-level options, participants were 
presented with the bottom-level options (for example, in the 
2-arm maze in Figure 2, a participant is first presented with 
options A and B, and if they choose option A, they are 
presented with options C and D). If the participant chose the 
wrong path to the goal, upon choosing one of the bottom-
level options, they were presented with a “Dead End” 
screen, and taken back to the top-level options. If the 
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participant found and clicked their current goal item, they 
were presented with their next goal. 
Screen Design: 

To ensure that participants attended each option, the 
options were always covered with a grey screen until 
clicked. Another click was necessary to cover an uncovered 
option before proceeding. After the first option is uncovered 
and covered, a participant may proceed to uncover the next 
option. Once all options on screen have been viewed and 
covered, the participant could make their choice with an 
additional click. Additionally, participants were not be able 
to rely on their location memory, as the location of each 
option on screen was randomized; thus participants were 
forced to attend every item (i.e. the participant could not 
say, “when I go left, I get C and D,” they had to recall that, 
“B leads to C and D,” instead).  

Modeling 
Human data were analyzed in terms of agreement with four 
models: GPD, RL, Random, and IdealPerformer. The 
Random model selected which option to click at random, 
and the IdealPerformer model remembered everything 
perfectly (which choices followed which other choices) and 
made choices with perfect memory. The RL model simply 
increased the utility of a goal-choice pair if the choice led to 
the goal successfully, and decreased it otherwise; the option 
with the highest utility warranted a click (no noise was 
added), and if multiple options had the same utility, the 
choice was random. After a few (less than 10) variations 
were attempted, the best-fit GPD model was derived to have 
error-driven learning with the following parameters: э=.5, 
β=.01. No noise was added to spreading activation. 

Model data was collected using the model-tracing 
technique (Anderson, Corbett, Koedinger, & Pelletier, 1995, 
as cited by Fu & Pirolli, 2007). For each human participant, 
for each decision, each model was provided with the same 
experience as the human participant up to that choice point, 
and then model’s would-be choice was recorded. For 
example, imagine that Table 2 presents data for a human 
participant having gone through the maze shown on left of 
Figure 2. At the bolded choice-point (trial 1), being that 
there is no experience with the maze, all models would 
choose randomly. Let us say that both the RL and the GPD 
models chose B. Thus, what will be recorded is that these 
two models made an error on trial 1, whereas the human 
participant did not. However, the experience added to the 
two models will be based on human choice. At the end of 
trial 1, RL will have learned that the D-A (if goal is D, click 
A) goal-choice pair has a positive utility. GPD will have 
learned that D is strongly associated with C, less so with A, 
and even less with B, and that C is strongly associated with 
A, and less so with B. At the underlined choice point (trial 
2, top), the RL model will still have to make a random 
choice (utilities for C-A and C-B goal-choice pairs are both 
0 at that point). The GPD model, having learned that C is 
more associated with A than with B, will choose A. 

  

Table 2. Sample data log for a human participant. 
Trial 1: goal=D:  
  looked at A, looked at B, clicked A, 
  looked at C, looked at D, clicked D, success 
Trial 2: goal=C: 
  looked at B, looked at A, clicked B, 
  looked at E, looked at F, clicked F, fail 
  looked at B, looked at A, clicked A, 
  looked at C, looked at D, clicked C, success 
… 

 
Results and Simulation 

Each model’s performance was averaged over 10 model 
runs for each decision point. Results from the first 2-arm 
maze were ignored as training data. Results for human and 
model performances on the first choice of each of the first 6 
trials for the other 2-arm maze (maze 4) are shown at the top 
of Figure 3 (only the first 6 trials are shown because some 
participants did not have data beyond the 6th trial). Results 
for human and model performances on the first choice of 
each of the first 14 trials for the 3-arm mazes (averaged over 
all mazes: mazes 2, 3, 5, and 6) are shown at the bottom of 
Figure 3 (only the first 14 trials are shown because some 
participants did not have data beyond the 14th trial).  

 

 

 
Figure 3. Average performance from human participants, 
GPD, RL, Random, and IdealPerformer models on the 2-
arm maze (top), and the 3-arm mazes (bottom). Error bars 

represent standard error based on 21 participants. 
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Table 3. Root mean square error (RMSE) between human 
and model performances, by trial. 
  2‐arm  3‐arm 
GPD  2.07%  7.95% 
RL  14.84%  18.29% 
IdealPerformer  4.07%  16.34% 
Random  45.32%  45.79% 

 
Table 3 displays Root Mean Square Errors (RMSE) 

between average human and model performances for the 
data displayed in Figure 3 – performance on the first choice 
of each trial for the first 6 trials of the second 2-arm maze, 
and the first 14 trials of the four 3-arm mazes.  

The key aspect to focus on is the early part of the curves 
in Figure 3, where RL simply cannot account for human-
level performance. IdealPerformer model assumes that 
associations between the clicked top-level choices and their 
respective bottom-level objects are strengthened, and that 
the non-clicked top-level choices do not interfere. For 
example, on trial 1 shown in Table 2, the IdealPerformer 
model will have only learned the association between the 
clicked option, A, and the ensuing options, C and D. GPD, 
however would increment association strengths between 
C/D and all of their preceding items: both A and B. Thus, 
IdealPerformer learns unrealistically fast, and RL learns 
unrealistically slow. 

Summary 
Whereas reinforcement learning accounts for human 
decision-making based on prior reward, this paper proposes 
a mechanism to account for human choice in the absence of 
reward, based on associative learning. The proposed 
mechanism, GPD, was implemented in the ACT-R 
cognitive architecture, and examined in its ability to 
simulate human behavior in a simple forced-choice 
navigation task. GPD was able to account for human data 
where RL could not – in the beginning of the task, before 
reward or punishment for finding a given goal could have 
been presented.  

To implement GPD in the ACT-R cognitive architecture, 
it was necessary to add two things. First, we wrote an ACT-
R model that made retrievals based on spreading activation 
from the goal, and clicked on the retrieved option. Second, 
associative learning was introduced: keeping recently 
attended memory elements in an episodic buffer, and using 
error-driven learning to increase the strengths of association 
between memory elements based on their proximity in the 
episodic buffer.  

GPD seems to be a necessary supplement to RL for 
explaining human decision-making. We are currently in the 
progress of using GPD to play Tic-Tac-Toe, providing 
initial grounds for the claim that GPD can be used in more 
than just navigation tasks, but rather in navigating any 
decision-space, including board games. We are also 
beginning to explore how this mechanism scales to more 
complex, dynamic task environments (e.g. exploration of 
Second Life virtual worlds).  

In addition to testing GPD with board games and 
exploration of virtual worlds, it will be necessary to 
integrate GPD with RL, for more complete 
approach/avoidance behavior. Future studies will focus on 
integration of GPD with other cognitive mechanisms, and 
testing the integrated framework across a wide range of 
tasks. 
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