UC Merced

Proceedings of the Annual Meeting of the Cognitive Science Society

Title

Event Segmentation In Story Listening Using Deep Language Models

Permalink

https://escholarship.org/uc/item/12c888dt

Journal

Proceedings of the Annual Meeting of the Cognitive Science Society, 44(44)

Authors

Kumar, Manoj Goldstein, Ariel Michelmann, Sebastian et al.

Publication Date

2022

Peer reviewed

Event Segmentation In Story Listening Using Deep Language Models

Manoj Kumar

Princeton University, Princeton, New Jersey, United States

Ariel Goldstein

Princeton University, Princeton, New Jersey, United States

Sebastian Michelmann

Princeton University, Princeton, New Jersey, United States

Jeffrey Zacks

Washington University in Saint Louis, Saint Louis, Missouri, United States

Kenneth Norman

Princeton University, Princeton, New Jersey, United States

Uri Hasson

Princeton University, Princeton, New Jersey, United States

Abstract

Event segmentation theory posits that we segment continuous experience into discrete events and event boundaries occur at large transient increases in prediction error, often related to context changes. Identifying event boundaries a priori has been difficult in naturalistic settings. To overcome this challenge for story listening, we used a deep learning language model (GPT2) to compute the predicted probability distributions of the next word, at each point in the story. For 3 stories, we computed the surprise, the entropy, and the Kullback-Leibler divergence (KLD). We then asked participants to listen to these stories while marking event boundaries. We used regression models to compare the GPT2 measures and the human segmentation data. Preliminary results indicate that event boundaries are associated with transient increases in KLD. This supports the hypothesis that prediction error serves as a control mechanism governing event segmentation, and points to important differences between operational definitions of prediction error.