
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Solving nonogram puzzles by reinforcement learning

Permalink
https://escholarship.org/uc/item/13t021xk

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 34(34)

ISSN
1069-7977

Authors
Dandurand, Frederic
Cousineau, Denis
Shultz, Thomas R.

Publication Date
2012

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/13t021xk
https://escholarship.org
http://www.cdlib.org/

Solving nonogram puzzles by reinforcement learning

Frédéric Dandurand (frederic.dandurand@gmail.com)
Department of Psychology, Université de Montréal, 90 ave. Vincent-d'Indy

Montréal, QC H2V 2S9 Canada

Denis Cousineau (denis.cousineau@uottawa.ca)
École de psychologie, Pavillon Vanier, Université d'Ottawa

136 Jean Jacques Lussier, Ottawa, Ontario, K1N 6N5, Canada

Thomas R. Shultz (thomas.shultz@mcgill.ca)
Department of Psychology and School of Computer Science, McGill University, 1205 Penfield Avenue

Montreal, QC H3A 1B1 Canada

Abstract

We study solvers of nonogram puzzles, which are good
examples of constraint-satisfaction problems. Given an
optimal solving module for solving a given line, we compare
performance of three algorithmic solvers used to select the
order in which to solve lines with a reinforcement-learning-
based solver. The reinforcement-learning (RL) solver uses a
measure of reduction of distance to goal as a reward. We
compare two methods for storing qualities (Q values) of state-
action pairs, a lookup table and a connectionist function
approximator. We find that RL solvers learn near-optimal
solutions that also outperform a heuristic solver based on the
explicit, general rules often given to nonogram players. Only
RL solvers that use a connectionist function approximator
generalize their knowledge to generate good solutions on
about half of unseen problems; RL solvers based on lookup
tables generalize to none of these untrained problems.

Keywords: Nonograms; problem solving; reinforcement
learning; distance-based reward; SDCC.

Nonogram puzzles

Invented in Japan in the 1980s, nonograms (also called

Hanjie, Paint by Numbers, or Griddlers) are logic puzzles in

which problem solvers need to determine whether each cell

of a rectangular array is empty or filled, given some

constraints. Nonograms are interesting problems to study

because they are good examples of constraint satisfaction

problems (Russell & Norvig, 2003), which are ubiquitous in

real life (Shultz, 2001). Furthermore, despite their

popularity among puzzle players, little work on nonograms

exists in cognitive science, either in the form of empirical

studies or modeling work. But nonograms have attracted

attention in other areas. For instance, as we will see in the

literature review section, solving nonograms has been

studied mathematically, and a number of machine solvers

exist. Finally, many rules and strategies for human players

are described in web sites.

In nonograms, constraints take the form of series of

numbers at the head of each line (row or column) indicating

the size of blocks of contiguous filled cells found on that

line. For example, in Figure 1, the first row contains 2

blocks of 2 filled cells, whereas row 5 contains no block of

filled cells. Blocks have to be separated by at least one

empty cell. At the beginning, the state of all cells is

unknown (often portrayed visually by a grey color), and the

goal is to determine if each cell is empty (white) or filled

(black), while satisfying all of the numerical constraints.

 1 2

 1 1 0 4 3

2 2

1 2

 2

2 1

 0

Figure 1 - Example of a 5x5 nonogram puzzle. In the initial

state presented here, all cells are grey to indicate that the

problem solver does not know yet if they should be filled

(black) or empty (white).

Strategies for solving nonograms

To solve nonograms, two important activities are necessary.

First, the problem solver needs to decide which line (row or

column) to solve next, and then to actually solve that line.

Problem solvers typically need to iterate through the lines,

progressively gathering more and more information about

whether cells are empty or filled, until the actual state of

every cell is known. Just as in crossword puzzles where the

found words provide letters as clues or constraints for the

orthogonally intersecting words, partially solving the cells

on a nonogram line provides additional constraints for the

intersecting lines.

A survey of popular web sites giving advice and tips on

how to solve nonogram puzzles was performed, focusing on

categorizing advice on selection of a line to solve, or on

how to solve a given line. The majority of the advice relates

to solving lines. For instance, an exhaustive set of rules can

be found on Wikipedia (January 10, 2012 version). In

contrast, there is comparatively little advice on how to

appropriately select the next line to solve, and much of this

1452

advice is given implicitly in commented solutions of

specific problems. When available, explicit and general-

purpose advice for line selection can be summed up as

follows: begin with lines for which the constraint is either 0

(in which case all cells on that line are empty) or equal to

the length of the line (in which case, all cells are filled).

Occasionally, advice is also given to the effect that, by

adding the different constraints (including an empty cell

between each block) one can look for those that fill up a

complete line (e.g., the first row in Figure 1 with constraints

2 2 is completely known as XX_XX, with X as filled cells

and _ as empty cells). Skilled players also realize that lines

that contain blocks of large sizes are often a good place to

start. Finally, another general piece of advice is to pay

attention to lines that have changed due to updates of the

cells of intersecting lines. Except for the last one, these

general advice rules often consider block constraints only,

and do not take into account additional constraints imposed

by cells already known to be filled or empty.

To sum up, strategies for solving lines are well-described

as explicit, symbolic rules. In contrast, strategies for

selecting lines appear more difficult to capture in explicit,

symbolic terms, except for simple cases.

 1 2

 1 1 0 4 3

2 2

1 2

 2

2 1

 0

Figure 2 - Partial solution of a 5x5 nonogram puzzle.

 1 2

 1 1 0 4 3

2 2

1 2

 2

2 1

 0

Figure 3 - Solution of the example 5x5 nonogram, where all

cells are known to be filled (black) or empty (white) and

where the solution satisfies all the block sizes constraints.

Figure 2 presents an example of a partial solution of a

nonogram puzzle after three steps. Column 3 and row 5

contain no block of filled cells, and thus all cells on them

are empty. As described above, the first row is completely

known. At this point, the position of the block of size 4 in

column 4 is known, and so is the position of block 3 in

column 5. Even though position of the blocks of size 1 in

rows 2 and 4 cannot be determined yet, by propagating

constraints from solving columns, their positions can

eventually be determined. The final solution of the puzzle is

given in Figure 3.

In solving nonograms, the order in which lines are solved

influences how many steps are necessary to complete the

solution. A step is defined here as a single iteration on a

specific line to extract the maximum information possible.

Research on solving nonograms

Nonograms have been studied mathematically, and are

known to be NP-complete (Benton, Snow, & Wallach,

2006), making search-based solution techniques practical

only for small problems. More sophisticated solving

approaches include rule-based techniques (e.g., Yu, Lee, &

Chen, 2011), use of some intersection mechanism to prune

inconsistent configurations (e.g., Yen, Su, Chiu, & Chen,

2010), linear programming (Mingote & Azevedo, 2009),

genetic algorithms (e.g., Batenburg & Kosters, 2004) and a

combination of relaxations and 2-satisfiability approaches

(Batenburg & Kosters, 2009).

Nonograms also have been used as a tutorial for teaching

university students about optimization using evolutionary or

genetic algorithms (Tsai, Chou, & Fang, 2011).

To our knowledge, there have been no attempts to use

reinforcement learning to solve nonograms.

Research objectives

Our objective is to compare a solver for selecting the order

in which to solve lines in nonograms based on

reinforcement learning with three algorithmic methods:

randomly, heuristically, and optimally (in the shortest

number of steps).

We thus ask if an RL-based solver can learn good

solutions, that is, solutions that are close to the optimum

(i.e., shortest solution); and how they generalize to unseen

problems.

Methods

Generated nonogram puzzles

Puzzles used for training and testing of the system have a

size of 5 rows by 5 columns. The state of each cell (filled or

empty) is randomly selected. The puzzle presented in Figure

1 was generated in this way, and used in the simulation.

Only puzzles that have a unique solution are kept that is,

puzzles for which block values correspond to one and only

one board configuration. An example of non-unique

problem is presented in Figure 4.

 1 1 1 1

1 1

1 1
Figure 4 - Example of a non-unique puzzle. The right and

the left configurations both satisfy the block size constraints.

1453

Training and testing regimes

RL solvers are incrementally trained on 3 different problems

(starting with a single problem, and gradually increasing to

three problems interleaved in the training set), and tested on

a novel problem. A justification for these choices is

presented in the Discussion section. Training proceeds on a

single problem for 40 episodes, then training proceeds with

problems 1 and 2 for 40 more episodes and finally the solver

is trained on all three problems for 40 final episodes. Thus

training involves 120 episodes in total. The reason for using

this interleaved, incremental training (which rehearses

problems already learned) is to avoid catastrophic

interference (McCloskey & Cohen, 1989).

Optimal solver for lines

Before discussing approaches to the selection problem, it is

important to emphasize that simulations use an optimal line

solver for solving a given line once it is selected. This

optimal line solver can find all the new cells that can be

declared as filled or empty.

To find these cells, the optimal line solver module first

generates every possible position of all blocks (constraints)

in the line consistent with the cells already determined as

filled or empty. Second, it computes the intersection of all

these possible positions. Finally, it identifies cells that are

always filled or always empty in these intersections as such

cells are now known for sure to be filled or empty.

This approach covers rules and strategies typically given

to players for solving lines of nonograms, and implements

rules described in other solvers (e.g., Yu et al., 2011). For

instance, with a line that is currently blank (all unknowns),

this method implements the rules described in Wikipedia

(January 10, 2012 version) under "Simple Boxes" and

"Simple spaces".

Modules for selecting lines to solve

Given this optimal line solver for solving lines, we turn to

the issue of selecting the next line (either a row or a column)

to solve.

Random solver

A random solver randomly selects the next line to solve,

with replacement, from lines that are not completely solved

already. Selection with replacement allows taking the same

line twice in a row.

Heuristic solver

A heuristic solver, inspired by the advice given to humans

described above, selects order as follows. First, it chooses

lines that have no block (easy case to solve because all cells

are blank) and lines that are filled completely (e.g., 2 2).

Then other lines are sorted and chosen in decreasing order

of the largest block value. Lines with the same score (i.e.,

ties) are selected in the order in which they appear in the

puzzle (rows then columns). Selection of the next line to

solve is done without replacement until all lines have been

visited, after which a new round of visits is performed

starting from the best remaining candidate lines.

Similarly to the general advice and rules that can be found

online, the heuristic solver does not take into account the

current state of the problem.

Optimal nonogram solver

Here, a breadth-first search finds the minimal number steps.

While this is feasible for the 5x5 puzzles considered here,

experiments with larger puzzle sizes suggest that search

time is prohibitively long -- a well-established result for NP-

complete problems, as mentioned
1
.

Reinforcement learning (RL) solver

The reinforcement learning (RL) solver learns the expected

value of lines using a reinforcement algorithm called

SARSA (Sutton & Barto, 1998). SARSA learns estimates of

the expected value or quality (Q) of future rewards for every

state-action pair. Its learning rule is

Q(st,at) Q(st,at) + α [rt+1 + γ Q(st+1,at+1) - Q(st,at)]

where Q is the predicted reward (sometimes called Quality),

s is a state, a is an action, r is a reward, and indices t and t+1

are used for current and next states and actions respectively;

α is the learning rate, and γ is the discount factor. The name

SARSA is based on the quintuple that the algorithm uses (st,

at, rt+1, st+1, at+1).

In the present simulations, we use a learning rate of 0.9,

and a discount factor of 0.9 to reward the shorter solutions

more highly. States, actions and rewards are described

below.

States

For a given action (a choice of a line), the state given to

the RL solver consists of the states of the cells on the

corresponding line. In other words, the RL solver gets

information that is directly relevant to the line considered,

as the action will only affect the cells in the line considered.

In human problem solvers, this corresponds to an attention

mechanism that focuses on the relevant elements, rather

than seeing the complete problem configuration.

The state of a line consists of two elements: (1) the value

of the block sizes coded using the integer corresponding to

the number of cells in the block; and (2) states of cell on the

line, which can take three values: unknown (U), filled (F) or

empty (E), For example, in Figure 2, the state of column 1 is

[1, 1, 0, F, U, U, U, E]. Note that learning begins in the

initial state in which all cells of the board are Unknown, and

that, for lines or columns composed of 5 cells, there cannot

be more than three blocks

1 As an approximation, if each line had to be solved once and

only once, there would be (n+n)! combinations of sequences,

which quickly increases with n. For n = 5, we get 3.6 million

combinations, for n = 6, we get 479 millions; and n = 7, we

already have 8.7x1010 (In practice, lines often need to be visited

multiple times; or in rare cases not need to be visited at all).

1454

Actions

An action is a choice of the next line to solve. As there are

5 rows and 5 columns, the maximal number of actions

available is 10. As soon as a line is completely solved, it is

not further included in the list of actions considered for

selection.

Given a list of actions and associated Q values, the RL

solver needs to choose an action to execute. Action selection

is performed with replacement (i.e., the same action can be

taken again before all actions are visited). In testing mode,

the solver uses a greedy technique called Hardmax which

always selects the action with the largest Q value. In

contrast, the solver uses a Softmax approach when in

learning mode to allow exploration of the problem space.

Under Softmax, every possible action can potentially be

selected with a probability of selection increasing with the Q

value.

We limit the number of steps that are allowed for finding

a solution to 25, a value that is large enough to find a

solution by randomly selecting actions (see Random in

Figure 5). When failing to solve within 25 episodes in

testing mode, the RL solver is typically stuck repeatedly

selecting an action which does not yield any progress.

Rewards

To provide rewards for line selection, we use a variant of

a distance-reduction heuristic called distance-based rewards

(Dandurand, Shultz, & Rey, 2012). Here, we return a reward

equal to the proportion of the currently unknown cells that

are determined as filled or empty as a result of selecting this

action (i.e., solving this line). For instance, if cell states of

the line are [U F U U E] before performing the action and

[U F F U E] after, then 1 of the 3 unknowns were

discovered, and this action would be rewarded with 0.33.

Storing Q values

We compare two systems for storing the rewards

associated with state-action pairs. The first one is a classical

lookup table which, for each unique state-action pair

encountered, stores the value of the reward. Values need to

be initialized to a non-zero value (here, we used 0.05) so

that probabilities of selection are non-null under Softmax.

The second system consists of a connectionist function

approximator. Instead of explicitly storing all Q values, a

neural network is used to generate an approximation of the

Q value as a single, real-valued output, taking the state-

action pair as input. The three possible cell states are coded

using 2 bits: Filled (1 0), Empty (0 1) or Unknown (0 0).

Thus, a line state is a 13x1 vector (3 block values + 5 cells *

2 bits per cell). Actions are coded as a 10x1 vector (5 rows

then 5 columns) of binary values with the bit at the

corresponding location set to 1, all others set to 0. Thus, for

column 1 in Figure 2, the neural network function

approximator receives as input the vector [1 1 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0 0 1 0 0 0 0], corresponding to the

concatenation of state and action.

The neural network used is called sibling-descendent

cascade-correlation (SDCC: Baluja & Fahlman, 1994), a

variant of cascade correlation (CC: Fahlman & Lebiere,

1990) with reduced network depth. CC has been

successfully used to model learning and cognitive

development in numerous tasks (Shultz, 2003). Whereas

default SDCC parameters are optimized for pattern

classification, more appropriate parameter values were

selected here for function approximation, namely to allow

for longer input and output phases (see details in:

Dandurand et al., 2012). Input and output phases were

allowed to last for 200 epochs with a patience of 50 epochs.

Change threshold was set to 0.01 for input phases, and

0.002 for output phases. Finally, the score threshold

parameter was set to 0.025, a value that is small enough to

approximate the targets well while limiting overfit.

A cache system is used to interface SARSA and SDCC

because they have different processing requirements. More

specifically, SARSA updates its approximation function Q

after every action (called online learning). In contrast,

learning in SDCC involves multiple patterns (input-output

pairs) at once (called batch learning). SARSA updates the

cache buffers until there are enough patterns to make a

batch to train CC; details can be found in Rivest and Precup

(2003).

Results

First, we investigate the characteristics of the puzzles used

for testing and training using the three algorithmic solvers.

A sample of 20 simulations was run, with each simulation

learning 3 different puzzles and different random

initializations of neural networks. The numbers of steps

necessary to solve these puzzles, plotted in Figure 5, suggest

that puzzles are well-matched across training sessions and

testing.

Figure 5 - Number of steps necessary to solve test and

training nonogram puzzles using the three algorithmic

solvers. Error bars represent standard errors (SE).

Figure 6 shows performance results for the lookup table.

As we can see, it learns near-optimal solutions for the

training material (M = 8.5 and M = 7.6 for RL and optimal

nonogram solvers respectively); outperforming the heuristic

0

5

10

15

20

25

Test Train0 Train1 Train2

N
u

m
b

e
r

o
f

st
e

p
s

to
 s

o
lv

e
 p

u
zz

le

Random Heuristic Optimal

1455

solver. However, RL solvers based on a lookup table do not

generalize at all; performance on the test set reaching the

maximal 25 steps on all 20 replications.

Figure 6 - Number of steps to solve nonogram puzzles with

the RL solver using a lookup table, compared with the three

algorithmic solvers, with standard error (SE) bars

Figure 7 - Generalization performance (i.e. test set) of RL

solvers using connectionist function approximators and

lookup tables, with a ceiling at 25 steps, compared with the

three algorithmic solvers, with standard error (SE) bars

Next, we investigate generalization performance

comparing the lookup table with the connectionist function

approximator (see Figure 7). As we can see, the

connectionist function approximator does generalize to good

solutions of 9.1 steps (in the second column) for 7 of the 20

simulations. The other 13 are at ceiling, which, when

included makes the average shown in the first column.

Networks that reach the ceiling value typically get stuck

selecting repeatedly an action that does not yield progress,

due to the use of Hardmax and a selection strategy with

replacement. Because Hardmax is only sensitive to the

action with the largest Q value, the choice of action does not

reflect learning all other actions
2
. In particular, Hardmax

may select a poor action that obtains the best Q value, even

2 We have considered presenting results with Softmax, which

does reflect learning of all actions. However, we found too much

variability, and that performance was inflated due to capitalization

on chance (randomly selecting good actions within the ten

available).

when good action is just below. We get back to this issue in

the discussion.

Finally, we compare the rewards learned by the SDCC-

based RL solver with the scores given by the heuristic

solver for the first move (i.e., step 1). We find a small but

significant correlation of r = 0.18, p = 0.01, This suggests

that RL solvers learned good solutions without needing to

fully implement the advice often given to human players for

solving the initial board condition. This is unsurprising, as

the rules given to humans may not be optimal, and, with

many steps necessary to solve these puzzles (at least about 9

steps), there are many possibilities to the optimization

process beyond step 1.

Discussion

In general, performance differences between the heuristic

and the RL solvers can be explained by the better choices

that RL solvers make beyond the first solution step when the

board is in its initial state. As mentioned, it is difficult to

describe explicit and general purpose strategies for choosing

lines to solve when the cells already solved place additional

constraints. In fact, none of the online advice gives such

explicit rules, but some advice implicitly provides guidance

when describing solutions for specific problems. Similarly,

RL solvers implicitly learn good choices for the next line to

solve at any point in the solution, leading to near optimal

solutions.

Constraints on the choice of actions

As mentioned, by choosing the most flexible selection

strategy, the one with replacement, networks need to learn

their way out of repeatedly selecting the same action,

leading to no further progress. In future research, different

ways to handle this issue could be explored by placing

additional constraints on action choice. For instance, RL

solvers could keep track of the last N action choices made,

and avoid selecting from these. With N = 0, we get the

present "with replacement" scenario, whereas N = 10 (5

rows and 5 columns) would correspond to the "without

replacement" scenario. Imposing this constraint would

sidestep the need to learn their way out of repeated action

choices.

Cognitive modeling

To our knowledge, there are no experimental studies of

humans solving nonogram puzzles. The present simulations

make testable quantitative predictions about how humans

choose which lines to solve, thus providing some guidance

for such research

As a cognitive model, the present system is hybrid, with a

symbolic system for solving a given line, and a

reinforcement learning with neural network support for

choosing an appropriate ordering of lines. This modeling

approach is grounded in evidence for both implicit and

explicit cognitive processes (e.g., Reber, 1989). With

Clarion (Sun, 2006) as a notable exception, modeling work

on problem solving has mostly focused on explicit symbol

0

5

10

15

20

25

30

N
u

m
b

e
r

o
f

st
e

p
s

to
 s

o
lv

e

Training set 1

Training set 2

Training set 3

Test set

Random

Heuristic

Optimal

0

5

10

15

20

25

30

St
e

p
s

to
 s

o
lv

e

Connectionist function
approximator

Connectionist trials not at
ceiling

Lookup table

Random

Heuristic

Optimal

1456

manipulation. The present work addresses the implicit

aspects of learning how to solve problems. The fact that

advice and strategies found online have little to say about

the order in which to select lines suggests that it may well

be an implicit task, difficult to verbalize as explicit rules.

Towards a universal solver

Our reinforcement learning (RL) solvers learn near-optimal

ordering of lines to solve nonogram puzzles, outperforming

a heuristic solver based on general purpose rules for line

selection. Our solvers show that multiple problems (here, 3)

can be learned by a single system, and that about half of

them generalize to a novel problem when coupled with a

function approximator to compute, rather than merely

stores, expected rewards. These results are so far limited to

puzzles of relatively small size.

For future work, we could study generalization to larger

puzzle sizes. Long term goals could include the design a

universal solver that could solve any nonogram puzzle of

various sizes nearly optimally. We tried training a RL solver

with different, randomly generated nonograms on every

learning episode, exploring some of the many simulation

parameters (e.g., learning rates). These early attempts

suggest that the task is difficult. In addition to the search

space being very large, the function approximator appears to

have difficulty learning stable representations when there is

very high variability. Future research could also explore

how to learn a larger number of problems (e.g., 10 or 100)

in a reasonable time. Preliminary results suggest that it may

be beneficial to gradually increase puzzle size.

Acknowledgments

We thank Arnaud Rey for helpful comments on an earlier

draft. This work is supported by a post-doctoral fellowship

to FD and a grant to TRS, both from the Natural Sciences

and Engineering Research Council of Canada.

References

Baluja, S., & Fahlman, S. E. (1994). Reducing network

depth in the cascade-correlation (No. CMU-CS-

94-209). Pittsburgh: Carnegie Mellon University.

Batenburg, K., & Kosters, W. (2004). A discrete

tomography approach to Japanese puzzles.

Proceedings of the 16th Belgium-Netherlands

Conference on Artificial Intelligence (BNAIC) (pp.

243–250).

Batenburg, K., & Kosters, W. (2009). Solving Nonograms

by combining relaxations. Pattern Recognition,

42(8), 1672–1683.

Benton, J., Snow, R., & Wallach, N. (2006). A

combinatorial problem associated with nonograms.

Linear algebra and its applications, 412(1), 30–38.

Dandurand, F., Shultz, T. R., & Rey, A. (2012). Including

cognitive biases and distance-based rewards in a

connectionist model of complex problem solving.

Neural Networks, 25, 41–56.

Fahlman, S. E., & Lebiere, C. (1990). The cascade-

correlation learning architecture. In D. S.

Touretzky (Ed.), Advances in neural information

processing systems 2 (pp. 524–532). Los Altos,

CA: Morgan Kaufmann.

McCloskey, M., & Cohen, N. J. (1989). Catastrophic

interference in connectionist networks: The

sequential learning problem. In G. H. Bower (Ed.),

The psychology of learning and motivation (pp.

109–165). San Diego: Academic Press.

Mingote, L., & Azevedo, F. (2009). Colored nonograms: an

integer linear programming approach. Progress in

Artificial Intelligence, 213–224.

Reber, A. S. (1989). Implicit learning and tacit knowledge.

Journal of experimental psychology: general,

118(3), 219–235.

Rivest, F., & Precup, D. (2003). Combining TD-learning

with Cascade-correlation networks. the

Proceedings of the twentieth International

Conference on Machine Learning (ICML) (pp.

632–639).

Russell, S., & Norvig, P. (2003). Artificial intelligence, a

modern approach. Second edition. Upper Saddle

River, NJ: Prentice Hall.

Shultz, T. R. (2001). Constraint satisfaction models. In J.

Smelser & P. B. Baltes (Eds.), International

Encyclopedia of the Social and Behavioral

Sciences (pp. 2648–2651). Oxford: Pergamon.

Shultz, T. R. (2003). Computational developmental

psychology. Cambridge, MA: MIT Press.

Sun, R. (2006). The CLARION cognitive architecture:

Extending cognitive modeling to social simulation.

In R. Sun (Ed.), Cognition and multi-agent

interaction. New-York, NY: Cambridge University

Press.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement

learning: an introduction. Cambridge, MA: MIT

Press.

Tsai, J. T., Chou, P. Y., & Fang, J. C. (2011). Learning

Intelligent Genetic Algorithms Using Japanese

Nonograms. Education, IEEE Transactions on,

(99), 1–1.

Yen, S. J., Su, T. C., Chiu, S. Y., & Chen, J. C. (2010).

Optimization of Nonogram’s Solver by Using an

Efficient Algorithm. Technologies and

Applications of Artificial Intelligence (TAAI), 2010

International Conference on (pp. 444–449).

Yu, C. H., Lee, H. L., & Chen, L. H. (2011). An efficient

algorithm for solving nonograms. Applied

Intelligence, 35(1), 18–31.

1457

