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Abstract 

We study solvers of nonogram puzzles, which are good 
examples of constraint-satisfaction problems. Given an 
optimal solving module for solving a given line, we compare 
performance of three algorithmic solvers used to select the 
order in which to solve lines with a reinforcement-learning-
based solver. The reinforcement-learning (RL) solver uses a 
measure of reduction of distance to goal as a reward. We 
compare two methods for storing qualities (Q values) of state-
action pairs, a lookup table and a connectionist function 
approximator. We find that RL solvers learn near-optimal 
solutions that also outperform a heuristic solver based on the 
explicit, general rules often given to nonogram players. Only 
RL solvers that use a connectionist function approximator 
generalize their knowledge to generate good solutions on 
about half of unseen problems; RL solvers based on lookup 
tables generalize to none of these untrained problems. 

Keywords: Nonograms; problem solving; reinforcement 
learning; distance-based reward; SDCC. 

Nonogram puzzles 

Invented in Japan in the 1980s, nonograms (also called 

Hanjie, Paint by Numbers, or Griddlers) are logic puzzles in 

which problem solvers need to determine whether each cell 

of a rectangular array is empty or filled, given some 

constraints. Nonograms are interesting problems to study 

because they are good examples of constraint satisfaction 

problems (Russell & Norvig, 2003), which are ubiquitous in 

real life (Shultz, 2001). Furthermore, despite their 

popularity among puzzle players, little work on nonograms 

exists in cognitive science, either in the form of empirical 

studies or modeling work. But nonograms have attracted 

attention in other areas. For instance, as we will see in the 

literature review section, solving nonograms has been 

studied mathematically, and a number of machine solvers 

exist. Finally, many rules and strategies for human players 

are described in web sites. 

In nonograms, constraints take the form of series of 

numbers at the head of each line (row or column) indicating 

the size of blocks of contiguous filled cells found on that 

line. For example, in Figure 1, the first row contains 2 

blocks of 2 filled cells, whereas row 5 contains no block of 

filled cells. Blocks have to be separated by at least one 

empty cell. At the beginning, the state of all cells is 

unknown (often portrayed visually by a grey color), and the 

goal is to determine if each cell is empty (white) or filled 

(black), while satisfying all of the numerical constraints. 

 

 

  1 2    

  1 1 0 4 3 

2 2      

1 2      

 2      

2 1      

 0      
 

Figure 1 - Example of a 5x5 nonogram puzzle. In the initial 

state presented here, all cells are grey to indicate that the 

problem solver does not know yet if they should be filled 

(black) or empty (white). 

 

Strategies for solving nonograms 

To solve nonograms, two important activities are necessary. 

First, the problem solver needs to decide which line (row or 

column) to solve next, and then to actually solve that line. 

Problem solvers typically need to iterate through the lines, 

progressively gathering more and more information about 

whether cells are empty or filled, until the actual state of 

every cell is known. Just as in crossword puzzles where the 

found words provide letters as clues or constraints for the 

orthogonally intersecting words, partially solving the cells 

on a nonogram line provides additional constraints for the 

intersecting lines. 

A survey of popular web sites giving advice and tips on 

how to solve nonogram puzzles was performed, focusing on 

categorizing advice on selection of a line to solve, or on 

how to solve a given line. The majority of the advice relates 

to solving lines. For instance, an exhaustive set of rules can 

be found on Wikipedia (January 10, 2012 version). In 

contrast, there is comparatively little advice on how to 

appropriately select the next line to solve, and much of this 
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advice is given implicitly in commented solutions of 

specific problems. When available, explicit and general-

purpose advice for line selection can be summed up as 

follows: begin with lines for which the constraint is either 0 

(in which case all cells on that line are empty) or equal to 

the length of the line (in which case, all cells are filled). 

Occasionally, advice is also given to the effect that, by 

adding the different constraints (including an empty cell 

between each block) one can look for those that fill up a 

complete line (e.g., the first row in Figure 1 with constraints 

2 2 is completely known as XX_XX, with X as filled cells 

and _ as empty cells). Skilled players also realize that lines 

that contain blocks of large sizes are often a good place to 

start. Finally, another general piece of advice is to pay 

attention to lines that have changed due to updates of the 

cells of intersecting lines. Except for the last one, these 

general advice rules often consider block constraints only, 

and do not take into account additional constraints imposed 

by cells already known to be filled or empty. 

To sum up, strategies for solving lines are well-described 

as explicit, symbolic rules. In contrast, strategies for 

selecting lines appear more difficult to capture in explicit, 

symbolic terms, except for simple cases.  

 

  1 2    

  1 1 0 4 3 

2 2      

1 2      

 2      

2 1      

 0      
 

Figure 2 - Partial solution of a 5x5 nonogram puzzle. 

 

  1 2    

  1 1 0 4 3 

2 2      

1 2      

 2      

2 1      

 0      
 

Figure 3 - Solution of the example 5x5 nonogram, where all 

cells are known to be filled (black) or empty (white) and 

where the solution satisfies all the block sizes constraints. 

 

Figure 2 presents an example of a partial solution of a 

nonogram puzzle after three steps. Column 3 and row 5 

contain no block of filled cells, and thus all cells on them 

are empty. As described above, the first row is completely 

known. At this point, the position of the block of size 4 in 

column 4 is known, and so is the position of block 3 in 

column 5. Even though position of the blocks of size 1 in 

rows 2 and 4 cannot be determined yet, by propagating 

constraints from solving columns, their positions can 

eventually be determined. The final solution of the puzzle is 

given in Figure 3. 

In solving nonograms, the order in which lines are solved 

influences how many steps are necessary to complete the 

solution. A step is defined here as a single iteration on a 

specific line to extract the maximum information possible.  

Research on solving nonograms  

Nonograms have been studied mathematically, and are 

known to be NP-complete (Benton, Snow, & Wallach, 

2006), making search-based solution techniques practical 

only for small problems. More sophisticated solving 

approaches include rule-based techniques (e.g., Yu, Lee, & 

Chen, 2011), use of some intersection mechanism to prune 

inconsistent configurations (e.g., Yen, Su, Chiu, & Chen, 

2010), linear programming (Mingote & Azevedo, 2009), 

genetic algorithms (e.g., Batenburg & Kosters, 2004) and a 

combination of relaxations and 2-satisfiability approaches 

(Batenburg & Kosters, 2009). 

Nonograms also have been used as a tutorial for teaching 

university students about optimization using evolutionary or 

genetic algorithms (Tsai, Chou, & Fang, 2011).  

To our knowledge, there have been no attempts to use 

reinforcement learning to solve nonograms. 

Research objectives  

Our objective is to compare a solver for selecting the order 

in which to solve lines in nonograms based on 

reinforcement learning with three algorithmic methods: 

randomly, heuristically, and optimally (in the shortest 

number of steps). 

We thus ask if an RL-based solver can learn good 

solutions, that is, solutions that are close to the optimum 

(i.e., shortest solution); and how they generalize to unseen 

problems. 

Methods 

Generated nonogram puzzles  

Puzzles used for training and testing of the system have a 

size of 5 rows by 5 columns. The state of each cell (filled or 

empty) is randomly selected. The puzzle presented in Figure 

1 was generated in this way, and used in the simulation. 

Only puzzles that have a unique solution are kept that is, 

puzzles for which block values correspond to one and only 

one board configuration. An example of non-unique 

problem is presented in Figure 4.  

 

 1 1   1 1 

1    1   

1    1   
Figure 4 - Example of a non-unique puzzle. The right and 

the left configurations both satisfy the block size constraints. 
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Training and testing regimes 

RL solvers are incrementally trained on 3 different problems 

(starting with a single problem, and gradually increasing to 

three problems interleaved in the training set), and tested on 

a novel problem. A justification for these choices is 

presented in the Discussion section. Training proceeds on a 

single problem for 40 episodes, then training proceeds with 

problems 1 and 2 for 40 more episodes and finally the solver 

is trained on all three problems for 40 final episodes. Thus 

training involves 120 episodes in total. The reason for using 

this interleaved, incremental training (which rehearses 

problems already learned) is to avoid catastrophic 

interference (McCloskey & Cohen, 1989). 

Optimal solver for lines 

Before discussing approaches to the selection problem, it is 

important to emphasize that simulations use an optimal line 

solver for solving a given line once it is selected. This 

optimal line solver can find all the new cells that can be 

declared as filled or empty. 

To find these cells, the optimal line solver module first 

generates every possible position of all blocks (constraints) 

in the line consistent with the cells already determined as 

filled or empty. Second, it computes the intersection of all 

these possible positions. Finally, it identifies cells that are 

always filled or always empty in these intersections as such 

cells are now known for sure to be filled or empty.  

This approach covers rules and strategies typically given 

to players for solving lines of nonograms, and implements 

rules described in other solvers (e.g., Yu et al., 2011). For 

instance, with a line that is currently blank (all unknowns), 

this method implements the rules described in Wikipedia 

(January 10, 2012 version) under "Simple Boxes" and 

"Simple spaces".  

Modules for selecting lines to solve 

Given this optimal line solver for solving lines, we turn to 

the issue of selecting the next line (either a row or a column) 

to solve.  

 

Random solver  

A random solver randomly selects the next line to solve, 

with replacement, from lines that are not completely solved 

already. Selection with replacement allows taking the same 

line twice in a row.  

 

Heuristic solver 

A heuristic solver, inspired by the advice given to humans 

described above, selects order as follows. First, it chooses 

lines that have no block (easy case to solve because all cells 

are blank) and lines that are filled completely (e.g., 2 2). 

Then other lines are sorted and chosen in decreasing order 

of the largest block value. Lines with the same score (i.e., 

ties) are selected in the order in which they appear in the 

puzzle (rows then columns). Selection of the next line to 

solve is done without replacement until all lines have been 

visited, after which a new round of visits is performed 

starting from the best remaining candidate lines. 

Similarly to the general advice and rules that can be found 

online, the heuristic solver does not take into account the 

current state of the problem. 

 

Optimal nonogram solver 

Here, a breadth-first search finds the minimal number steps. 

While this is feasible for the 5x5 puzzles considered here, 

experiments with larger puzzle sizes suggest that search 

time is prohibitively long -- a well-established result for NP-

complete problems, as mentioned
1
. 

 

Reinforcement learning (RL) solver 

The reinforcement learning (RL) solver learns the expected 

value of lines using a reinforcement algorithm called 

SARSA (Sutton & Barto, 1998). SARSA learns estimates of 

the expected value or quality (Q) of future rewards for every 

state-action pair. Its learning rule is 

Q(st,at)  Q(st,at) + α [ rt+1 + γ Q(st+1,at+1) - Q(st,at)] 

where Q is the predicted reward (sometimes called Quality), 

s is a state, a is an action, r is a reward, and indices t and t+1 

are used for current and next states and actions respectively; 

α is the learning rate, and γ is the discount factor. The name 

SARSA is based on the quintuple that the algorithm uses (st, 

at, rt+1, st+1, at+1). 

In the present simulations, we use a learning rate of 0.9, 

and a discount factor of 0.9 to reward the shorter solutions 

more highly. States, actions and rewards are described 

below. 

States 

For a given action (a choice of a line), the state given to 

the RL solver consists of the states of the cells on the 

corresponding line. In other words, the RL solver gets 

information that is directly relevant to the line considered, 

as the action will only affect the cells in the line considered. 

In human problem solvers, this corresponds to an attention 

mechanism that focuses on the relevant elements, rather 

than seeing the complete problem configuration.  

The state of a line consists of two elements: (1) the value 

of the block sizes coded using the integer corresponding to 

the number of cells in the block; and (2) states of cell on the 

line, which can take three values: unknown (U), filled (F) or 

empty (E), For example, in Figure 2, the state of column 1 is 

[1, 1, 0, F, U, U, U, E]. Note that learning begins in the 

initial state in which all cells of the board are Unknown, and 

that, for lines or columns composed of 5 cells, there cannot 

be more than three blocks 

                                                           
1 As an approximation, if each line had to be solved once and 

only once, there would be (n+n)! combinations of sequences, 

which quickly increases with n. For n = 5, we get 3.6 million 

combinations, for  n = 6, we get 479 millions; and n = 7, we 

already have 8.7x1010 (In practice, lines often need to be visited 

multiple times; or in rare cases not need to be visited at all).  
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Actions 

An action is a choice of the next line to solve. As there are 

5 rows and 5 columns, the maximal number of actions 

available is 10. As soon as a line is completely solved, it is 

not further included in the list of actions considered for 

selection.  

Given a list of actions and associated Q values, the RL 

solver needs to choose an action to execute. Action selection 

is performed with replacement (i.e., the same action can be 

taken again before all actions are visited). In testing mode, 

the solver uses a greedy technique called Hardmax which 

always selects the action with the largest Q value. In 

contrast, the solver uses a Softmax approach when in 

learning mode to allow exploration of the problem space. 

Under Softmax, every possible action can potentially be 

selected with a probability of selection increasing with the Q 

value.  

We limit the number of steps that are allowed for finding 

a solution to 25, a value that is large enough to find a 

solution by randomly selecting actions (see Random in 

Figure 5). When failing to solve within 25 episodes in 

testing mode, the RL solver is typically stuck repeatedly 

selecting an action which does not yield any progress. 

Rewards 

To provide rewards for line selection, we use a variant of 

a distance-reduction heuristic called distance-based rewards 

(Dandurand, Shultz, & Rey, 2012). Here, we return a reward 

equal to the proportion of the currently unknown cells that 

are determined as filled or empty as a result of selecting this 

action (i.e., solving this line). For instance, if cell states of 

the line are [U F U U E] before performing the action and 

[U F F U E] after, then 1 of the 3 unknowns were 

discovered, and this action would be rewarded with 0.33.  

Storing Q values 

We compare two systems for storing the rewards 

associated with state-action pairs. The first one is a classical 

lookup table which, for each unique state-action pair 

encountered, stores the value of the reward. Values need to 

be initialized to a non-zero value (here, we used 0.05) so 

that probabilities of selection are non-null under Softmax. 

The second system consists of a connectionist function 

approximator. Instead of explicitly storing all Q values, a 

neural network is used to generate an approximation of the 

Q value as a single, real-valued output, taking the state-

action pair as input.  The three possible cell states are coded 

using 2 bits: Filled (1 0), Empty (0 1) or Unknown (0 0). 

Thus, a line state is a 13x1 vector (3 block values + 5 cells * 

2 bits per cell). Actions are coded as a 10x1 vector (5 rows 

then 5 columns) of binary values with the bit at the 

corresponding location set to 1, all others set to 0. Thus, for 

column 1 in Figure 2, the neural network function 

approximator receives as input the vector [1 1 0 1 0 0 0 0 0 

0 0 0 1 0 0 0 0 0 1 0 0 0 0], corresponding to the 

concatenation of state and action. 

The neural network used is called sibling-descendent  

cascade-correlation (SDCC: Baluja & Fahlman, 1994), a 

variant of cascade correlation (CC: Fahlman & Lebiere, 

1990) with reduced network depth. CC has been 

successfully used to model learning and cognitive 

development in numerous tasks (Shultz, 2003). Whereas 

default SDCC parameters are optimized for pattern 

classification, more appropriate parameter values were 

selected here for function approximation, namely to allow 

for longer input and output phases (see details in: 

Dandurand et al., 2012).  Input and output phases were 

allowed to last for 200 epochs with a patience of 50 epochs. 

Change threshold was set to 0.01 for input phases, and 

0.002 for output phases. Finally, the score threshold 

parameter was set to 0.025, a value that is small enough to 

approximate the targets well while limiting overfit.  

A cache system is used to interface SARSA and SDCC 

because they have different processing requirements. More 

specifically, SARSA updates its approximation function Q 

after every action (called online learning). In contrast, 

learning in SDCC involves multiple patterns (input-output 

pairs) at once (called batch learning). SARSA updates the 

cache buffers until there are enough patterns to make a 

batch to train CC; details can be found in Rivest and Precup 

(2003).  

Results 

First, we investigate the characteristics of the puzzles used 

for testing and training using the three algorithmic solvers. 

A sample of 20 simulations was run, with each simulation 

learning 3 different puzzles and different random 

initializations of neural networks. The numbers of steps 

necessary to solve these puzzles, plotted in Figure 5, suggest 

that puzzles are well-matched across training sessions and 

testing. 

 
 

Figure 5 - Number of steps necessary to solve test and 

training nonogram puzzles using the three algorithmic 

solvers. Error bars represent standard errors (SE). 

 

Figure 6 shows performance results for the lookup table. 

As we can see, it learns near-optimal solutions for the 

training material (M = 8.5 and M = 7.6 for RL and optimal 

nonogram solvers respectively); outperforming the heuristic 
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solver. However, RL solvers based on a lookup table do not 

generalize at all; performance on the test set reaching the 

maximal 25 steps on all 20 replications.  

  

Figure 6 - Number of steps to solve nonogram puzzles with 

the RL solver using a lookup table, compared with the three 

algorithmic solvers, with standard error (SE) bars 

 

 
Figure 7 - Generalization performance (i.e. test set) of RL 

solvers using connectionist function approximators and 

lookup tables, with a ceiling at 25 steps, compared with the 

three algorithmic solvers, with standard error (SE) bars 

 

Next, we investigate generalization performance 

comparing the lookup table with the connectionist function 

approximator (see Figure 7). As we can see, the 

connectionist function approximator does generalize to good 

solutions of 9.1 steps (in the second column) for 7 of the 20 

simulations. The other 13 are at ceiling, which, when 

included makes the average shown in the first column. 

Networks that reach the ceiling value typically get stuck 

selecting repeatedly an action that does not yield progress, 

due to the use of Hardmax and a selection strategy with 

replacement. Because Hardmax is only sensitive to the 

action with the largest Q value, the choice of action does not 

reflect learning all other actions
2
. In particular, Hardmax 

may select a poor action that obtains the best Q value, even 

                                                           
2 We have considered presenting results with Softmax, which 

does reflect learning of all actions. However, we found too much 

variability, and that performance was inflated due to capitalization 

on chance (randomly selecting good actions within the ten 

available). 

when good action is just below.  We get back to this issue in 

the discussion.  

Finally, we compare the rewards learned by the SDCC-

based RL solver with the scores given by the heuristic 

solver for the first move (i.e., step 1). We find a small but 

significant correlation of r = 0.18, p = 0.01, This suggests 

that RL solvers learned good solutions without needing to 

fully implement the advice often given to human players for 

solving the initial board condition. This is unsurprising, as 

the rules given to humans may not be optimal, and, with 

many steps necessary to solve these puzzles (at least about 9 

steps), there are many possibilities to the optimization 

process beyond step 1. 

Discussion 

In general, performance differences between the heuristic 

and the RL solvers can be explained by the better choices 

that RL solvers make beyond the first solution step when the 

board is in its initial state. As mentioned, it is difficult to 

describe explicit and general purpose strategies for choosing 

lines to solve when the cells already solved place additional 

constraints. In fact, none of the online advice gives such 

explicit rules, but some advice implicitly provides guidance 

when describing solutions for specific problems. Similarly, 

RL solvers implicitly learn good choices for the next line to 

solve at any point in the solution, leading to near optimal 

solutions.  

Constraints on the choice of actions 

As mentioned, by choosing the most flexible selection 

strategy, the one with replacement, networks need to learn 

their way out of repeatedly selecting the same action, 

leading to no further progress. In future research, different 

ways to handle this issue could be explored by placing 

additional constraints on action choice. For instance, RL 

solvers could keep track of the last N action choices made, 

and avoid selecting from these. With N = 0, we get the 

present "with replacement" scenario, whereas N = 10 (5 

rows and 5 columns) would correspond to the "without 

replacement" scenario. Imposing this constraint would 

sidestep the need to learn their way out of repeated action 

choices.  

Cognitive modeling 

To our knowledge, there are no experimental studies of 

humans solving nonogram puzzles. The present simulations 

make testable quantitative predictions about how humans 

choose which lines to solve, thus providing some guidance 

for such research 

As a cognitive model, the present system is hybrid, with a 

symbolic system for solving a given line, and a 

reinforcement learning with neural network support for 

choosing an appropriate ordering of lines. This modeling 

approach is grounded in evidence for both implicit and 

explicit cognitive processes (e.g., Reber, 1989). With 

Clarion (Sun, 2006) as a notable exception, modeling work 

on problem solving has mostly focused on explicit symbol 
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manipulation. The present work addresses the implicit 

aspects of learning how to solve problems. The fact that 

advice and strategies found online have little to say about 

the order in which to select lines suggests that it may well 

be an implicit task, difficult to verbalize as explicit rules. 

Towards a universal solver 

Our reinforcement learning (RL) solvers learn near-optimal 

ordering of lines to solve nonogram puzzles, outperforming 

a heuristic solver based on general purpose rules for line 

selection. Our solvers show that multiple problems (here, 3) 

can be learned by a single system, and that about half of 

them generalize to a novel problem when coupled with a 

function approximator to compute, rather than merely 

stores, expected rewards. These results are so far limited to 

puzzles of relatively small size.  

For future work, we could study generalization to larger 

puzzle sizes. Long term goals could include the design a 

universal solver that could solve any nonogram puzzle of 

various sizes nearly optimally. We tried training a RL solver 

with different, randomly generated nonograms on every 

learning episode, exploring some of the many simulation 

parameters (e.g., learning rates). These early attempts 

suggest that the task is difficult. In addition to the search 

space being very large, the function approximator appears to 

have difficulty learning stable representations when there is 

very high variability. Future research could also explore 

how to learn a larger number of problems (e.g., 10 or 100) 

in a reasonable time. Preliminary results suggest that it may 

be beneficial to gradually increase puzzle size. 
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