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Exploring Causal Overhypotheses in Active Learning
Chentian Jiang (chentian.jiang@ed.ac.uk)

School of Informatics, 10 Crichton Street
Edinburgh, EH8 9AB, UK

Christopher G. Lucas (clucas2@inf.ed.ac.uk)
School of Informatics, 10 Crichton Street

Edinburgh, EH8 9AB, UK

Abstract

People’s active interventions play a key role in causal learning.
Past studies have tended to focus on how interventions help peo-
ple learn relationships where causes are independently sufficient
to produce an effect. In reality, however, people can learn dif-
ferent rules governing how multiple causes combine to produce
an effect, i.e., different functional forms. These forms are ex-
amples of causal overhypotheses—abstract beliefs about causal
relationships that are acquired in one situation and transferred
to another. Here we present an active “blicket” experiment to
study whether and how people learn overhypotheses in an active
setting. Our results showed participants can learn disjunctive
and conjunctive overhypotheses through active training, as mea-
sured in a new disjunctive task. Furthermore, intervening on
two objects led to better conjunctive judgments, and comple-
mentarily, conjunctive training predicted more objects in future
interventions. Overall, these results expand our understanding
of how active learning can facilitate causal inference.
Keywords: causal learning; active learning; transfer learning;
overhypothesis; intervention

When learning causal relationships, people often play the role
of an active experimenter, choosing actions to intervene on a
causal system and observing the consequences of those inter-
ventions. Several studies have shown that our interventions
tend to be informative, providing more information than pas-
sive observations or arbitrary intervention choices (Bramley,
Lagnado, & Speekenbrink, 2015; Coenen, Rehder, & Gureckis,
2015; Steyvers, Tenenbaum, Wagenmakers, & Blum, 2003;
Cook, Goodman, & Schulz, 2011; Sim & Xu, 2017; Oaksford
& Chater, 1994). Thus, interventions play a key role in learn-
ing and making accurate inferences about causal relationships.

However, past active learning studies focused mainly on
discovering the structure of a causal relationship—which ob-
jects or events are causes and which are their effects (Figure 1).
The nature of the relationship, on the other hand, was either
explicitly described or consistent with the simple expectation
that causes are independently sufficient to produce or prevent
an effect. The independence assumption holds for a wide va-
riety of phenomena in causal inference and appears to be a
default expectation people have in unfamiliar contexts (Cheng,
1997; Gopnik & Sobel, 2000; Griffiths & Tenenbaum, 2005;
Lu, Yuille, Liljeholm, Cheng, & Holyoak, 2008). In reality,
however, this assumption is not always appropriate and people
may not know what kinds of causal relationships are plausible
in a novel context. For example, a child might have to learn to
use multiple simultaneous batteries in a circuit to activate an
LED. In such a situation, people must learn different kinds of
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Figure 1: Causal graph. The edges (arrows) define the causal
structure: For a given edge, the source node is the “parent”
(cause) and the destination node is the “child” (effect). Isolated
nodes are not involved in any causal relationships. The child
node X3 has a conditional probability P defined by the func-
tional form (one type of overhypothesis) of the relationship
with its parents Pa(X3).

causal relationships, e.g., that multiple causes are required to
produce an effect, and use these beliefs to guide their causal
inferences in new contexts (Lucas & Griffiths, 2010; Griffiths
& Tenenbaum, 2009; Griffiths, Sobel, Tenenbaum, & Gopnik,
2011; Lu, Rojas, Beckers, & Yuille, 2016).

Formally, people can learn different functional forms of
causal relationships—rules governing how multiple causes
combine to produce an effect (Figure 1). Functional forms
are essential to causal learning because they are examples of
causal overhypotheses—abstract beliefs about causal relation-
ships that transfer across different contexts, accounting for the
prior knowledge that people use to constrain their learning in
new contexts (Lucas, Gopnik, & Griffiths, 2010; Kemp, Per-
fors, & Tenenbaum, 2007). For example, in a passive learning
setting, Lucas and Griffiths (2010) demonstrated that overhy-
potheses about the functional form transfer to future causal
judgments. Participants were asked to identify “blickets” (true
causes) from a set of blocks (prospective causes) by observing
how different combinations of blocks caused a machine to
activate (effect). One group of participants was trained using
a disjunctive functional form, where the machine activated in
the presence of any single blicket; another group was trained
using a conjunctive form, where the machine activated to two
simultaneous blickets. In a subsequent testing phase with new
blocks and blickets, both groups of participants observed am-
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biguous evidence that was plausible under both disjunctive
and conjunctive forms. Crucially, Lucas and Griffiths (2010)
found that participants with disjunctive training were more
likely to judge a singleton block to be a blicket, while par-
ticipants with conjunctive training were more likely to judge
a pair of blocks to be blickets. In other words, overhypothe-
ses about the functional form constrained participants’ causal
judgments in a new situation.

Intuitively, it follows that overhypotheses about the func-
tional form can also constrain people’s intervention strategies.
Returning to our example, if the child has the overhypothesis
that multiple batteries are necessary to activate the LED, then
they might proceed to test combinations of batteries, rather
than individual batteries. Empirically, the past studies de-
scribed above showed that people can learn overhypotheses
about different functional forms and that they can also choose
informative interventions based on their causal beliefs. How-
ever, to the best of our knowledge, no study has investigated
the relationship between the two. Investigating the relationship
between causal overhypotheses and active learning is impor-
tant for improving our understanding of how people’s interven-
tion choices can facilitate better causal inferences. Therefore,
we explore this relationship through the three questions below.

Question 1: Can people learn overhypotheses about the
functional form in an active setting? More concretely, if
we now allow participants to control their own observations
through active interventions, can we still confirm that they
learn overhypotheses, as measured by their causal judgments
in a new situation? We investigate this question by assign-
ing participants to active training with either the disjunctive
or conjunctive form and then measuring their causal judg-
ments about a new task. The new task has either a matched
or mismatched form with the training phases. A significant
difference in matched vs. mismatched judgments would show
that people can successfully learn the overhypothesis from
their active training.

This first question serves two purposes. The first is to
replicate people’s ability to learn different functional forms
in active settings; this ability was previously established by
Lucas and Griffiths’s (2010) results in passive settings. In
active learning settings, people’s interventions tend to be in-
formative, allowing them to learn different causal structures
of disjunctive relationships (e.g., Bramley et al., 2015); we
expect that their informative interventions will extend to learn-
ing about other functional forms, such as conjunctive rela-
tionships. Furthermore, Sim and Xu (2017) studied another
type of causal overhypothesis—whether objects have match-
ing features (colors and shapes)—and showed that even small
children’s interventions during free play allowed them to learn
overhypotheses. Therefore, by reasoning from these past find-
ings, we anticipate replicating that people can learn overhy-
potheses about the functional form in an active setting.

The second purpose of asking whether people can learn
functional forms in an active setting is to consider the negative
alternative: Under a time constraint (such as the time limit

in our experiment), it is possible that people mainly employ
a positive testing strategy (Coenen et al., 2015); when this
strategy combines with their prior preference for disjunctive
relationships (Lucas & Griffiths, 2010), people might test only
singleton objects and, upon observing no positive effects and
running out of time, conclude that there are no causal relation-
ships. In this case, they would not learn other overhypotheses
like a conjunctive relationship, which is revealed by testing
combinations of objects. Therefore, although we anticipate
that people will be able to learn overhypotheses in an active
setting, we also do not discount the negative alternative.

Question 2: How do people choose interventions that help
them learn overhypotheses? If we find a positive answer
to the first question, we can pursue a more detailed second
question about how exactly people choose informative inter-
ventions to learn about a functional form. We explore this
question by measuring the number of objects in each partici-
pant’s first intervention and their subsequent causal judgment
accuracies, predicting that testing more objects leads to better
conjunctive judgments and worsened disjunctive judgments.

Question 3: Complementary to Question 2, how do previ-
ously learned overhypotheses affect intervention choices
in a new situation? Namely, what interventions do people
consider informative given a previously learned overhypoth-
esis? We explore this question using the same intervention
measure as Question 2: the number of objects in each partici-
pant’s first intervention in a new causal learning task, where
they need to rely on their previously learned overhypothe-
sis. We predict that a conjunctive overhypothesis will lead to
testing more objects than a disjunctive overhypothesis.

To address these questions, we extend Lucas and Griffiths’s
(2010) blicket experiment to an active learning setting. The
blicket experiment format allows us to measure causal judg-
ments that indicate whether people learned different functional
forms; we additionally measure interventions by allowing par-
ticipants to interact with objects in the experiment. Finally,
we discuss opportunities for improving our experiment design
and directions for continuing to investigate the relationship
between causal overhypotheses and active learning.

Experiment
Participants 212 participants were recruited using Amazon
Mechanical Turk (HIT Approval Rate ≥ 99%, Number of
HITs Approved ≥ 1000, Age ≥ 18) for the 8 experimental
conditions described in Tables 1 and 2. From top to bottom in
Table 2, each condition in the Disjunctive column has 27, 29,
29 and 26 participants; each condition in the Conjunctive col-
umn has 25, 26, 25 and 25 participants. They were paid $1.5
for completing the study (7.36 minutes on average, excluding
the instructions) and received a bonus of up to $1.05 for their
questionnaire performance (mean total compensation: $2.32).

Design As in Lucas and Griffiths’s (2010) experiments, we
present participants with blocks and a “blicket machine”, and
we ask them to identify “blickets” among the blocks by observ-
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Table 1: Phase Definitions

Phase Num. Blocks Num. Blickets

1 (training) 3 1 (D) or 2 (C)
2 (training) 6 3
3 9 4

Table 2: Experimental Conditions

Training
Length

Match with
Training Form

Phase 3 Form

Disjunctive Conjunctive

Long Same D1 D2 D3 C1 C2 C3
Different C1 C2 D3 D1 D2 C3

Short Same D1 D3 C1 C3
Different C1 D3 D1 C3

Table 1: In each phase, the blickets are a subset of the blocks.
In Phase 1, the D (disjunctive) variant has one blicket while
the C (conjunctive) variant has two. Table 2: Each of the 8
between-participant conditions is a sequence of D/C training
phases (1-2) followed by a final D/C Phase 3, representing a
manipulation of the training length, match with training form,
and Phase 3 form. For example, D1D2D3 is one condition
representing a long training (D1D2) with the same form as the
Phase 3 disjunctive form (D3).

ing the machine’s response. Whereas Lucas and Griffiths’s
study involved fixed and passive sequences of events, ours
uses a computer-based presentation that allows participants to
produce their own sequences of events through active interven-
tions (see Figure 2; more details in our preregistration1). Our
experiment contains three phases with successively more chal-
lenging tasks, requiring increasingly selective interventions.

To focus on the relationship between overhypotheses and
interventions, we only consider simple causal structures and
deterministic functional forms. In graphical terms (see Fig-
ure 1), all nodes have binary states (0 or 1), blickets are parent
nodes, the machine’s activation is their common effect, and the
non-blicket blocks are isolated nodes. The conditional proba-
bility of the machine’s activation (i.e., the effect E) is defined
by either the disjunctive form (D), where the presence of any
blicket (i.e., any parent node X ∈ Pa(E) with a value of 1) ac-
tivates the machine [P(E|Pa(E)) = (∑X∈Pa(E) X)≥ 1], or the
conjunctive form (C), where at least two simultaneous blick-
ets activate the machine [P(E|Pa(E)) = (∑X∈Pa(E) X) ≥ 2].
Our instructions suggest to participants that the only struc-
tural problem is to identify the true parent nodes (blickets)
that have edges directed toward the blicket machine node.
However, to make accurate judgments about the identity of
blickets and the behavior of the blicket machine, participants
must understand how to make informative interventions given
the functional form of the causal relationship. For example,

1Preregistration: https://osf.io/n9cx2

Figure 2: Web interface for our active blicket task (Phase 3).
Participants could intervene on the blocks (initially on the left),
i.e., click on them to move them on or off the “blicket machine”
(right; embellished with cogs) in arbitrary combinations. They
could then press a button to test the machine’s binary response
(“activation” with a green color or “nothing happened” with
no color change). Their history of tested combinations was
recorded at the bottom, and they could test any number of
combinations within a time limit of 45 seconds.

blickets can be identified by intervening on single blocks in
tasks with a disjunctive form, but this strategy would not reveal
any blickets in tasks with a conjunctive form.

Each experimental Phase (Table 1) has a blicket machine
with either a disjunctive or conjunctive form. The three phases
have the same 45 second time limit for the active task (Fig-
ure 2) but different objects and causal structures; later phases
increase the structural complexity by adding more blickets
(parent nodes) and non-blicket blocks (isolated nodes).

The earlier Phases 1-2 serve to train participants to suc-
cessfully learn an overhypothesis about the functional form,
e.g., Phase 1 uses a simple three-node causal structure (with 1
blicket for the disjunctive form or 2 for the conjunctive form),
where all 23 = 8 possible combinations of blocks can be tested
within the time limit. Furthermore, this structure replicates
the structure used in Lucas and Griffiths’s (2010) experiments,
where people have previously succeeded in learning disjunc-
tive and conjunctive overhypotheses from passive data.

The final Phase 3 serves to investigate how overhypotheses
learned from previous training phases inform causal judg-
ments and interventions in this final phase. The task here is
more combinatorially complex, involving finding 4 blickets
among 9 blocks within 45 seconds. Critically, this complexity
increases the importance of relying on overhypotheses from
preceding phases, as opposed to finding a brute force solution,
e.g., testing all 29 = 512 combinations of blocks, which is
impossible under the time limit.

1224

https://osf.io/n9cx2


Short Long

Different Same Different Same

0.5

0.6

0.7

0.8

0.9

1.0

Match of Functional Form

M
ea

n 
A

cc
ur

ac
y

Blicket ClassificationA
Short Long

Different Same Different Same

0.5

0.6

0.7

0.8

0.9

1.0

Match of Functional Form

M
ea

n 
A

cc
ur

ac
y

Activation PredictionB

Phase 3 Form D3 C3 Data Full Filtered

Figure 3: Questionnaire performance in Phase 3 grouped by match, Phase 3 functional form, and training length. The grouping
variables are defined in Table 2. Chance (.5) accuracy is shown with a dotted green line. Error bars in either direction denote
the magnitude of the standard error. Mean participant accuracies for A blicket classification and B activation prediction are
calculated separately for the full and filtered data.

Procedure Each participant encountered either a long train-
ing with Phases 1 and 2 or a short training with only Phase 1.
Following training, they performed the final Phase 3 (see Ta-
bles 1 and 2).

Within each phase, participants interacted with the active
causal learning task described in Figure 2 and then answered a
questionnaire. In the active task, the blicket machine’s underly-
ing functional form was either disjunctive or conjunctive. The
corresponding questionnaire included two types of causal ques-
tions: judgments about whether each block was a blicket or
not, and predictions about the activation of the blicket machine
in the presence of seven different combinations of blocks. The
latter contained combinations with zero, one and two blickets
along with other non-blicket blocks, as well as one combi-
nation with all blocks in the phase. To allow participants to
learn overhypotheses through their own interventions, we only
gave between-phase feedback and bonus compensation for ac-
tivation prediction questions, but not for blicket classification
questions.

Overall, we manipulated the number of training phases, the
underlying functional form in Phase 3 (disjunctive or con-
junctive), and whether the training Phases 1-2 had a matched
functional form with Phase 3, creating 8 between-participant
experimental conditions (Table 2).

Results
We explored overhypothesis learning in an active setting,
focusing on causal judgments and interventions in a new
situation—Phase 3. Therefore, we analyzed 2 the question-
naire accuracies and intervention measurements in Phase 3.

Filtering To represent the data accurately while accounting
for potential data quality issues, we report results for both the
full data set (N = 212) and a filtered subset (N f = 181), which

2Analysis code: https://github.com/chen10an/active
-blicket-comp/tree/1.0.x/analysis

includes only participants who made at least 9 interventions
in Phase 3. We chose this filtering criterion3 on the basis that
9 is the minimum number of interventions required to learn
the easier variant of the Phase 3 form, i.e. the disjunctive form
(Lucas & Griffiths, 2010). Therefore, this filtering aims to
consider only participants who were actively engaged with
learning the Phase 3 form. From top to bottom in Table 2,
each condition in the Disjunctive column has 23, 22, 22 and
24 filtered participants; each condition in the Conjunctive
column has 23, 25, 20 and 22 filtered participants. We address
this filtering in the Discussion section.

Active Overhypothesis Training We initially predicted1

that active training (Phase 1-2) with functional forms would
affect participants’ causal judgments in Phase 3, facilitat-
ing more accurate inferences when the earlier phases have
a matched functional form. Conversely, a mismatched form
would lead to lower accuracies. A significant difference in the
matched and mismatched Phase 3 judgments would show that
participants can successfully use active training to learn over-
hypotheses and apply these overhypotheses in a new situation.
We also predicted that this difference would be larger in long
conditions, where the matched or mismatched overhypothesis
is reinforced with more training.

In other words, we expected the match of overhypothe-
ses from preceding phases (same or different compared to
Phase 3’s functional form), the length of training (long or
short), and their interaction to be predictors of Phase 3 ques-
tionnaire performance, considering the Phase 3 functional
form (disjunctive or conjunctive) as a covariate. Thus, we
used these variables to fit two logistic regression models to

3In an earlier filtering approach, we considered only 116 partici-
pants who judged at least one block as a blicket and made at least one
intervention in Phase 3. This yielded similar results to our current
inferential statistics. We use the current approach to exclude fewer
participants and to avoid conditioning our filtering on participant
judgments, as suggested by anonymous reviewers.
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Figure 4: Judgments and interventions in Phase 3. Mean participant accuracies for A blicket classification and B activation
prediction questions in Phase 3 are grouped by the number of blocks in the first intervention and the Phase 3 functional form.
The mean is calculated separately for the full (solid lines) and filtered (dashed lines) data. Error bars in either direction denote
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Chance (.5) accuracy is shown with a dotted green line. C Number of blocks tested in the first intervention in Phase 3, compared
to the functional form of preceding phases. The box-and-whisker plots show the quartiles of the full or filtered data; each overlaid
point is a participant.

predict the per-participant accuracy percentage in Phase 3
blicket identification (binomial with 9 trials) and activation
prediction (binomial with 7 trials) questions, respectively. For
blicket classification accuracy, we confirmed a significant main
effect of the match of overhypotheses (z = 2.62, p = .009; fil-
tered: z f = 3.25, p f = .001). For activation prediction accu-
racy, the main effect of match was not significant in the full
data (z = 1.24, p = .215), but was significant for the filtered
participants who were more actively engaged with the Phase 3
task (z f = 2.53, p f = .012). Surprisingly, the length of train-
ing and its interaction with the match of preceding phases
were not significant predictors for either type of question (all
p≥ .326). Consistent with past results suggesting that people
find disjunctive relationships easier to learn (Lucas & Griffiths,
2010), the Phase 3 functional form had a significant main ef-
fect for both blicket classification (z = 3.99, p < .001; filtered:
z f = 4.78, p f < .001) and activation prediction (z = 3.67, p <
.001; filtered: z f = 4.23, p f < .001).

The non-significant effect of the training length interaction
in both models may be attributable to weak match effects in
Conjunctive Phase 3 (C3) conditions. Therefore, we used
Welch t-tests (two-tailed) to investigate the specific effects of
match between pairs of conditions, where each comparison
is also visualized in Figure 3. The Disjunctive Phase 3 (D3)

comparisons were mostly consistent with our predictions that
matching overhypotheses would improve performance: in the
full data, the mean blicket accuracy showed a trend toward im-
provement from mismatched to matched conditions with long,
t(47.82) = −2.00, p = .051, and short training, t(49.76) =
−1.80, p = .078. These trends became significant improve-
ments in the filtered data (long: t f (42.10) =−2.18, p f = .035;
short: t f (43.99) = −2.47, p f = .017). The D3 activation
prediction accuracy also improved significantly from mis-
matched to matched conditions with long training, t(50.00) =
−3.04, p = .004 (filtered: t f (42.37) = −4.18, p f < .001).
The short training improvement was not significant in the full
data (t(52.70) =−1.45, p = .154), but was significant in the
filtered data (t f (43.89) =−2.31, p f = .025). In the long and
short C3 conditions, however, the difference between matched
and mismatched accuracies was non-significant for both types
of questions (all p ≥ .164). It is possible that even with a
matching overhypothesis and longer training, the C3 task was
too difficult, which could account for the non-significant effect
of the training length interaction in our modeling. We address
C3’s difficulty in the Discussion section.

How Interventions affect Overhypotheses To explore
how intervention choices affect overhypothesis learning, we
measured the number of blocks in the first intervention of
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Phase 3 and analyzed how this intervention affected subse-
quent causal judgment accuracies. We predicted that choosing
more objects would lead to higher accuracies in Conjunctive
Phase 3 (C3) and decreased accuracies in Disjunctive Phase 3
(D3). Figure 4A shows this effect in the blicket judgment
accuracy, especially in the filtered data. Specifically, the dis-
junctive blicket accuracy has a decreasing trend as the number
of blocks increases, while the conjunctive blicket accuracy
peaks at two blocks. Figure 4B suggests that the relation-
ship between the number of blocks and activation prediction
performance is more complex.

To investigate the trends in Figure 4A-B, we fitted two
(binomial) logistic regression models to predict blicket classi-
fication (9 trials) and activation prediction (7 trials) accuracy,
respectively. The predictors included the number of blocks
tested in the first Phase 3 intervention, the functional form
of the Phase 3 relationship (disjunctive or conjunctive), and
their interaction. The model results were largely consistent
with our previous observations in Figure 4A-B: For blicket
classification accuracy, there was a significant main effect
of the Phase 3 functional form (z = 4.26, p < .001; filtered
z f = 4.90, p f < .001), underscoring the relative difficulty of
the conjunctive condition, and no significant main effect for
the number of blocks (all p≥ .382), suggesting that any effect
of the number of blocks was not due to choosing more (or
fewer) blocks being a better general-purpose policy. Rather,
the effect of the number of blocks was due to being informa-
tive of a particular Phase 3 form: this interaction did not reach
significance in the full data (z =−1.73, p = .084), but was sig-
nificant for the more engaged participants in the filtered data
(z f =−2.02, p f = .043). For activation prediction accuracy,
there was also a significant main effect of the Phase 3 func-
tional form (z= 3.38, p< .001; filtered: z f = 4.29, p f < .001),
but no other significant effects (all p ≥ .078). Figure 4A-B
suggests that, even though participants were able to identify a
larger subset of blickets with efficient interventions (A), this
partial knowledge was not sufficient to perform better in the ac-
tivation prediction questions (B), which had a larger coverage
over blickets and their combinations with other blocks.
How Overhypotheses affect Interventions We also used
the first Phase 3 intervention to explore how previously learned
overhypotheses about the functional form shaped interventions
in a new task. The first Phase 3 intervention occurred before
participants learned anything about the functional form in
Phase 3, making it a simple marker of how their interven-
tions were informative under an overhypothesis learned from
previous phases. Under a disjunctive overhypothesis, testing
individual blocks would be a straightforward and efficient way
to identify blickets, requiring only nine interventions in all. In
contrast, testing individual blocks would be completely unin-
formative under a conjunctive overhypothesis. This intuition
is consistent with the trends in Figure 4C.

To further test the trends in Figure 4C, we used a linear
model to predict the number of blocks in the first intervention,
where the predictors were the functional form in the previ-

ous training phases (disjunctive or conjunctive), the length
of training (long or short), and their interaction. There was
a significant interaction effect (t(205) = −3.59, p < .001;
filtered: t f (177) = −3.46, p f < .001) and significant main
effect of training length (t(205) = 3.38, p < .001; filtered:
t f (177) = 3.66, p f < .001). The non-significant main effect
of the preceding functional form (p ≥ .322 for both the full
and filtered data) may be attributable to weaker effects in
the short conditions—see the C1 and D1 box-and-whisker
plots in Figure 4C. Consistent with these model results and
with the trends in Figure 4C, the mean number of blocks
tested in the first intervention was significantly higher after
conjunctive training (C1 and C1C2) than after disjunctive
training (D1 and D1D2), t(183.39) = 4.62, p < .001 (filtered:
t f (144.96) = 4.75, p f < .001).

Similarly, in the free-text responses, participants often re-
ported intervention strategies that were shaped by the func-
tional form they had learned in previous phases: participants
with longer disjunctive training tended to test “each block
individually knowing that it would activate whether alone or
with others”, while those with longer conjunctive training
tended to test more blocks at once, e.g., “groups of three to
find blicket pairs, groups of two to narrow it further, known
blickets against the remaining unknown single blocks”.

Discussion

Our experiment explored three questions about the relation-
ship between overhypotheses about the functional form and
people’s interventions during active causal learning. First, we
asked whether people can learn overhypotheses about the func-
tional form in an active setting: we found positive results in the
final disjunctive phase, where people’s judgment accuracies
largely showed they had succeeded in learning the functional
form from their active training. Their judgments were more
accurate following a matched training (disjunctive) but less
so following a mismatched one (conjunctive). Second, we
asked how people’s interventions help them learn about the
functional form: we measured the number of blocks in the
first intervention of the final phase, finding that this interven-
tion measure predicted blicket judgments in the filtered data,
where participants were more engaged with the task. While a
singleton block indicated better blicket judgments about dis-
junctive relationships, a pair of blocks indicated better blicket
judgments about conjunctive ones (Figure 4A). Finally, we
asked the complementary question about how people’s previ-
ously learned overhypotheses shape their intervention choices
in a new task: using the same intervention measure in the last
phase, we found that participants who trained with a disjunc-
tive functional form in previous phases predominantly started
by testing a singleton block, while those who trained with a
conjunctive form tested more blocks; this pattern became more
apparent with longer training (Figure 4C). Overall, these re-
sults begin to expand our understanding of causal interventions
to a new perspective—overhypotheses about the functional
form of causal relationships.
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In addressing whether active training helps people learn
about the functional form, there were also surprising results.
We expected a strong effect of active training (matched vs. mis-
matched) in Conjunctive Phase 3 (C3) judgments, especially
in the long C3 conditions that gave additional training oppor-
tunities to learn about the underlying functional form. Instead,
we found a non-significant trend. One possible explanation
would be that participants were not learning the conjunctive
overhypothesis through active training (i.e., C1 or C1C2), and
thus, participants with a matched conjunctive training were
performing no better than those with a mismatched disjunctive
training. However, this explanation seems unlikely in light of
a small additional study we conducted. In that study, we used
the same dependent measure as Lucas and Griffiths (2010) to
test whether participants learned a conjunctive overhypothe-
sis (0-10 ratings of object D being a blicket; see Lucas and
Griffiths’s paper for details) after training in our active C1.
We compared this to our active D1 training as well as our
replication of the passive disjunctive training in Lucas and
Griffiths’s Experiment 2. There was a significant effect of C1
(M = 7.40, SD = 2.30) vs. disjunctive (M = 1.25, SD = 2.50)
training, despite a small sample size, t(6.28) = 3.80, p = .008
(two-tailed Welch). This result suggests people have little trou-
ble learning conjunctive overhypotheses during C1 training.
Therefore, the non-significant effect of match in C3 conditions
was likely due to other factors.

These factors might include participant fatigue or frustration
during C3, regardless of matched or mismatched training. For
example, participants were not given enough time (45s) to
test all 36 pairs of blocks. In contrast, the same time limit
allowed participants to gather exhaustive information about
D3 by testing all 9 singleton blocks. Indeed, performance was
lower in C3 conditions than in D3 conditions (p < .001 for
both blicket classification and activation prediction questions
in the full and filtered data). The lower C3 performance might
be further compounded by the factor that motivated our data
filtering (N f = 181 remained in the filtered data, out of Ntotal =
212): lack of participant engagement for making at least 9
interventions during the active learning task. These factors
are limitations that follow-up studies may address by using
different schemes for resource limits (e.g., requiring a constant
number of total interventions and/or lowering the number of
blocks) and improving the in-experiment engagement checks.

Finally, future work is needed to expand this paper’s an-
swers to the questions about how interventions and functional
forms influence each other. For example, can we characterize
people’s intervention strategies beyond counting the number
of blocks? Are these intervention strategies consistent with
the goal of maximizing information gain about the functional
form? Addressing these future questions will require extend-
ing the kinds of Bayesian models developed in previous active
causal learning studies (Bramley et al., 2015; Steyvers et al.,
2003; Coenen et al., 2015).
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