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Abstract 
 
Vuilleumier, Armony, Driver & Dolan (2003) have shown that 
amygdala cells to fearful expressions of human faces seem to be more 
activated by intact or low spatial frequency (LSF) faces than high 
spatial frequency (HSF) faces. These fMRI results may suggest that 
LSF components might be processed by a subcortical pathway that is 
assumed to bypass the striate cortex in order to process LSF 
components faster than HSF components of visual stimuli. The purpose 
of the present paper is to test the usefulness of LSF information as 
compared to HSF information in a visual classification task performed 
by an artificial neural network and a statistical classifier. Our results 
show that visual information, conveyed by LSF faces, allows the 
statistical and connectionist models to better recognize or categorize 
fearful faces amongst neutral faces than HSF faces. These results 
suggest that high-speed connections from the magnocellular layers to 
the amygdala might be a fast and efficient way to perform classification 
of human faces with respect to their emotional expressions. 
 

Introduction 

Neuropsychological results have shown “blindsight” for 
fearful faces in a hemianopic patient (with unilateral destruction 
of primary visual cortex) when he was exposed to emotional 
stimuli in his blind visual hemifield (de Gelder, Vroomen, 
Pourtois & Weiskrantz, 1999; Rossion, de Gelder, Pourtois, 
Guérit & Weiskrantz, 2000). This has led to the hypothesis that a 
neural route, by-passing the striate cortex, might reach the 
amygdala using a subcortical visual pathway from the lateral 
geniculate nucleus (LGN) through the pulvinar and superior 
colliculus. 

Enroth-Cugell & Robson (1966) reported the 
spatiotemporal characteristics of X (responding to high-
resolution stimuli) and of Y (responding to low-resolution 
stimuli) retinal ganglion cells; they showed that, following retinal 
processing, there is a difference between high and low spatial 
frequencies. Hubel & Wiesel (1977) reported that this distinction 
remains for the lateral geniculate nucleus: the magnocellular 

layers receiving preferentially projections from Y retinal 
ganglion cells, whereas X cells project to both parvo and 
magnocellular layers. 

Formally, in the visual thalamus, the magnocellular layer is 
equivalent to a high-pass filter in the temporal frequency domain 
and a low-pass filter in the spatial frequency domain. Thus, 
magnocellular neurons mainly provide rapid but low spatial 
frequency (LSF) information encoding configural features, as 
well as brightness and motion of objects; whereas the 
parvocellular neurons provide slower but high spatial frequency 
(HSF) information about local shape features, color, and texture. 

Testing the role of magnocellular inputs in fearful face 
recognition, Vuilleumier, Armony, Driver & Dolan (2003) 
conducted a functional magnetic resonance imaging (fMRI) 
experiment in which human observers were exposed to different 
spatial frequency components of faces (i.e. LSF only, HSF only, 
or the integral broad spatial frequency (BSF) images), with 
either a fearful or a neutral expression. Results showed that HSF 
and BSF faces produced more activation of the fusiform cortex 
than LSF faces, irrespective of expression; this suggests 
predominant contribution of the parvocellular information to the 
ventral visual stream for face identification. In contrast, the 
amygdala and subcortical tecto-pulvinar areas were “blind” to 
the difference of expressions conveyed by HSF information, but 
selectively activated by fearful relative to neutral faces seen in 
LSF or BSF images; this suggests an important role of 
magnocellular information for the activation of amygdala-related 
circuits in face emotion recognition. 

The purpose of the present paper is to examine the 
usefulness of LSF cues in fearful face recognition by comparing 
the performance of a distributed neuronal and a statistical models 
of visual processing exposed to different spatial frequency 
information. We tested how facial information provided by LSF 
and HSF images influenced two different computational models 
for an emotional classification task of face images. 
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Neuro-computational models 

Our simulations were based on two computational models.  

Computational model of vision 

Several recent advances in computer vision for the 
categorization of facial emotions have been made during the last 
decade. Some models have used a feature-based approach 
(Brunelli & Poggio, 1993), or a more holistic approach based on 
principal component analysis (Turk & Pentland, 1991; Abdi, 
Valentin, Edelman & O’Toole, 1995; Cottrell, Branson & 
Calder, 2002), or non-linear neural-network (Cottrell, 1990). 
These different techniques, promising at a computational level, 
do not explore the role of spatial frequency (SF) information. 
However, some connectionist simulations of visual processes 
have permitted successful categorization and recognition tasks 
using Gabor wavelet coding of visual inputs (Cottrell, Branson 
& Calder, 2002). Dailey  & Cottrell (1999) used this technique 
to differentiate faces from objects. Moreover, Dailey, Cottrell, 
Padgett & Ralph (2002) have shown by means of Gabor wavelet 
filtering the possibility to provide good classification 
performance on database of facial expressions.  

Gabor functions provide an efficient way to describe the 
content of the frequency domain while losing the minimum of 
information in the spatial domain (Gabor, 1946). Therefore, it 
was shown that visual information is reliably compressed by 
Gabor wavelet decomposition. For example, for face 
recognition, Wiskott (1997); Wiskott, Fellous, Krüger & Von 
der Malsburg (1999) proposed applying several jets of Gabor 
wavelets to extract different orientation and spatial frequency 
information at specific locations. Moreover, at both the 
computational and behavioral levels, it has been shown that 
accurate categorization can be achieved using the energy 
spectrum of natural images (Ginsburg, 1986; Guyader, Chauvin, 
Peyrin, Hérault & Marendaz, 2004; Hughes, Nozawa & Kitterle, 
1996; Hérault, Oliva & Guerin-Dugué, 1997; Mermillod, 
Guyader & Chauvin, 2004; Torralba & Oliva, 2003). 

Our model describes images by sampling their energy 
spectrum. It is divided into the following steps. First, an Hanning 
window is applied to avoid an over-representation of vertical and 
horizontal orientations (due to image edges) in the Fourier 
domain. After this pre-processing, images were transferred into 
the Fourier domain using a two-dimensional Fast Fourier 
Transform algorithm and, then, filtered by a set of Gabor filters. 
Filter sizes were normalized with respect to a 1/f decreasing of 
the amplitude spectrum for natural images (Field & Brady, 
1997). We applied a bank of fifty-six Gabor filters 
corresponding to seven different spatial frequency bands (one 
octave per spatial frequency channel) and eight different 
orientations (each 22.5 deg of visual angle). Then the mean 
energy at each filter output is measured. An image is then 
described by 56 different values that correspond to the image 
energy in different orientation and frequency bands. 

 

Statistical and connectionist models of categorization 
 
We tested two different models in categorization tasks.  
The connectionist network involves a distributed model of 

categorization based on a 3-layer back-propagation neural 
network. We used the standard hetero-association training 
algorithm, whose function is to associate each of the different 
category exemplars with a specific output vector coding for 
them. This training algorithm is completely supervised because 
each category is associated with a unique label coding for it. 
Previous simulations have shown that the combination of these 
two artificial models allows reliable categorization capacities 
with respect to empirical data (French, Mermillod, Quinn, 
Chauvin & Mareschal, 2002; Mermillod, Guyader & Chauvin, 
2004). 

The statistical model is based on supervised classifier. 
Using a Principal Component Analysis we reduce the dimension 
of our data and describe each category by its mean vector and its 
eigenvectors.  Then, test data are projected into the “training” 
eigenspace where a Mahalanobis distance is applied in order to 
classify the data. The combination of PCA and Mahalanobis 
distance is often used for classification purposes. This was also 
used in Face recognition (Sirovich & Kirby, 1987). The 
difference here is that, following Dailey & Cottrell (1999), we 
applied PCA not to the face images but to the Gabor responses 
to the face images. 

The aim of these simulations was to test the role of low 
spatial frequency content in faces on the expression recognition 
performance of a distributed classifier network. In the case of a 
failure of the neural network to categorize emotions based on 
LSF images only, the hypothesis of an important functional role 
of coarse (subcortical) magnocellular inputs to the amygdala 
would have to be seriously questioned. 

 
Simulation 1: Testing spectral information in a 
connectionist network 

Network 
We used a standard 24-6-2 feedforward backpropagation 

hetero-associator (learning rate: 0.1, momentum: 0.9). 

Stimuli 
For all simulations, stimuli were the original stimuli used in 

the neuro-imaging study by Vuilleumier et al. (2003). These 
included 160 human faces from two categories (80 neutral face 
exemplars and 80 fearful face exemplars). Each of 80 different 
individuals appeared with the two emotional expressions (fearful 
 vs. neutral), always in a frontal viewpoint. Face images were 
grey level photographs with an average stimulus luminance, on a 
256 gray-level scale, of 112, 118, and 115 for BSF, HSF, and 
LSF stimuli, respectively, and of 117 and 114 for the neutral and 
fearful face categories, respectively. These average luminance 
values did not significantly differ across the different stimulus 
conditions (Vuilleumier et al., 2003). The size of all images was 
squared to the same frame for computational reasons, by 
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applying an area of 198×198 pixels on the centre of each face, in 
such a way to retain a similar amount of information for each 
stimulus and to keep all internal facial details from the original 
images (from the base of the chin to the top of the forehead). 
And as we described in the first part, each image is then 
described by 56 different values that correspond to the image 
energy in 8 different orientation and 6 different frequency bands. 

In their fMRI study, Vuilleumier et al. (2003) used a high-
pass cut-off >24 cycles per image for HSF faces and a low-pass 
cut-off <6 cycles per image for LSF faces. In order to reproduce 
this cut-off in the connectionist simulations, we removed the 4 
lowest spatial frequency channels (or Gabor filters), coding for 
HSF faces, and the 4 highest spatial frequency channels (Gabor 
filters), coding for LSF faces. Thus, we kept the three highest SF 
bands for the HSF face inputs, and the three lowest SF bands for 
the LSF face inputs. This method allowed us to remove spectral 
information that was not relevant for one or the other simulation, 
while keeping the same vector-size for both simulations. 
Consequently, the input vector size was 24 units (3 spatial 
frequency bands by 8 orientations). 

 
Procedure 

The procedure included two phases: a training phase with a 
subset of fearful and neutral faces, and a testing phase in which 
the neural network was tested on its ability to categorize new 
facial expressions. The procedure described below concerns LSF 
faces. Exactly the same procedure as described below was then 
applied on HSF faces. 

Training phase. Twenty LSF fearful and twenty corresponding 
LSF neutral faces were randomly extracted from the categories 
of emotional expression. Then, the 24-dimensional energy vector 
was associated with the corresponding output vector by the 3-
layer back-propagation network. Then, a new image from the 
training set was coded and associated by the neural network in 
an iterative process. Each run began with a random selection of 
40 training exemplars (20 exemplars per category). Then the 
training consisted of associating each of the 20 exemplars with 
the suitable output (0 1 coding for “fearful” face, 1 0 coding for 
“neutral” face) for a fix number of 500 epochs.  

Test phase. The neural network was trained on the two 
expression categories and then tested on the 60 remaining 
exemplars from the trained category versus the corresponding 60 
exemplars from the other category. Results were averaged over 
50 runs of the above training-test procedure. After applying a 
winner-take-all on the output nodes, the dependent measure was 
the correctness of the outputs produced by the tested vector. 
 
Results 

After training on the low spatial frequency of natural 
images, the neural network produced an average of 94.3 % of 
correct response when tested on new fearful faces. When tested 
on new neutral faces, the network produced 94.4 % of correct 
responses. The difference between the two test conditions is not 
significant. 

After training on the high spatial frequency of natural 
images, the neural network produced an average of 87.2 % of 
correct response when tested on new fearful faces. When tested 
on new neutral faces, the network produced 92.1 % of correct 
responses. More importantly, the difference between 
generalization performance produced by LSF fearful faces 
compared to HSF fearful faces was significant (χ2 (1)=90.36, 
p<.001). Similarly, the difference of performance between LSF 
neutral faces compared to HSF neutral faces was significant (χ2 
(1)= 12.6, p<.001). 
 
Discussion 

This first simulation has important implications for the 
neurobiological and cognitive underpinnings of emotional face 
recognition, particularly fearful expressions. The lower 
performance produced by the network after training on HSF 
information suggests a problem for a distributed classifier in this 
task. 

Therefore, we suggest that the statistical distribution of 
LSF and HSF faces in terms of their spectral energy vector may 
provide a clear explanation for human imaging and connectionist 
results. The orientation and spatial frequency decomposition 
occurring in the human visual system is able to provide a pattern 
of responses that clearly distinguish between fearful and neutral 
expressions at the level of LSF information, whereas HSF 
information is worse for this particular classification task. 
Therefore, the LSF information provided by the magnocellular 
layers may be capable of providing the necessary information to 
do the classification of fearful expressions. 

 
Simulation 2: Testing spectral information in a 
statistical model 
Statistical model 

We used, for this second simulation, a classical Principal 
Component Analysis (PCA) in order to reduce the 
dimensionality of our data. Then, to classify images we used the 
Mahalanobis distance. 

 
Stimuli 

The stimuli were exactly the same as the one used in the 
simulation 1.  (cf. Simulation 1). We had two sets of data: one 
set for LSF and another one for HSF. Each set corresponded to a 
160 × 24 matrix (160 different faces, 80 neutral and 80 fearful, 
each described with 24 values). 

 
Procedure 

The procedure also included two phases: a training phase 
with a subset of fearful and neutral faces, and a testing phase in 
which the neural network was tested on its ability to categorize 
new facial expressions. The procedure described below concerns 
LSF faces. Exactly the same procedure as described below was 
then applied on HSF faces. 

 
Training phase. The 2 principal eigenvectors of the 30 LSF data 
were computed using a Principal Component Analysis (PCA). 
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These 2 principal vectors preserved around 90% of the total 
variance.  Then each face category: neutral and fearful is 
described by its gravity center in this reduced space.  
 
Test phase. The remaining data, the test ones, were projected on 
the 2- eigenvector space computed during the training phase. 
Then, in order to attribute a class to each test data we computed 
the Mahalanobis distance between each test data and the learnt 
gravity center of each class. The Mahalanobis distance is proved 
to be a good distance for classification purpose (Yambor, W., 
Draper, B. & Beveridge, 2000). 
 
Results 

This classification reaches a percentage of correct 
classification of approximately 89% for LSF data, and only 58% 
for HSF data. 

 
Discussion 

Globally, these results imply that the whole spatial 
frequency spectrum available from the retinal image may not be 
entirely needed to perform a visual categorization of human 
faces in terms of basic emotional expressions, such as fear vs. 
neutral. Therefore, it might indeed be useful for a distributed 
system (i.e. visual and emotional pathways in the brain) to 
exploit the most rapid neuronal pathways conveying LSF 
information (i.e., the magnocellular channel), in order to achieve 
sufficiently reliable but also fast categorization of fearful stimuli. 

 
Conclusions 

The purpose of that paper was to explore the computational 
basis in support of the hypothesis that LSF pathways within the 
visual system may be preferentially responsible for carrying 
visual information to the amygdala about the emotional (fearful) 
expression of faces. However, our network model did not make 
any definite assumptions about the anatomical neuronal stream 
potentially involved in this visual processing pathway (i.e., the 
geniculo-striate cortical stream vs. the tecto-pulvinar subcortical 
stream). Taking our different simulations together, the main 
results suggest that an artificial model of categorization can 
perform a more reliable categorization of faces in terms of 
emotional expression based on their LSF content rather than 
their HSF content. This provides indirect support for a 
computational advantage of extracting LSF cues from faces, as 
previously hypothesized for the amygdala on the basis of brain 
imaging results showing greater activation to LSF than HSF 
fearful faces (Vuilleumier et al., 2003).  

In the human visual system, LSF inputs from magnocellular 
visual neurons project to a wide range of different areas 
including subcortical tecto-pulvinar regions (Schiller et al. 1979; 
Orban, 1984) and fronto-parietal cortical areas (Bullier, 2001; 
Bar, 2004), but also to ventral temporal cortex (Livingstone & 
Hubel, 1988; Merigan & Maunsell, 1993). By contrast, HSF 
information from parvocellular neurons predominantly projects 
to the ventral temporal cortex. The amygdala may therefore 

receive LSF inputs from either subcortical or cortical pathways, 
although preserved activation by fearful faces during masked 
presentations or in blind patients (Morris et al., 2001; de Gelder 
et al., 1999; Pegna et al., 2004) may suggest an important role of 
the subcortical tecto-pulvinar pathways known to carry LSF 
inputs (Vuilleumier et al., 2003). 

On the other hand, it has been shown that HSF information 
can also play an important role in face processing, particularly 
for the accurate identification of specific exemplars (Morrison & 
Schyns, 2001). Therefore, depending on the situational 
constraints (i.e. identify a target or categorize a stimulus in terms 
of danger), one or the other spatial frequency channel might be 
preferentially used by the cognitive system to deal efficiently 
with its visual environment.  

Furthermore, our new results do not only support the 
observations previously made at a neurophysiological level 
concerning the possible substrates for fast, non-conscious 
process of fearful faces (de Gelder et al., 1999; Vuilleumier et 
al., 2003), but also more generally provide additional evidence 
for the hypothesis of coarse-to-fine processing in visual 
recognition. The coarse-to-fine hypothesis suggests an advantage 
of LSF information for the initial categorization of visual objects 
or scenes (Ginsburg, 1986; Parker, Lishman, & Hughes, 1992, 
1997; Parker & Costen, 1999; Schyns & Oliva, 1994), prior to 
finer visual analysis based on HSF information. These 
psychological data are supported by anatomical evidence 
showing faster LSF integration at the level of the magnocellular 
layers in the lateral geniculate nucleus of the thalamus (Hubel & 
Wiesel, 1977). In other words, a fast propagation of LSF 
information within the perceptual system might constitute an 
efficient mechanism for the fast categorization of visual stimuli 
into most salient or relevant entities (see also Bullier 2001, Bar, 
2004). Thus, rapid connections from the magnocellular visual 
neurons in early thalamic and other subcortical relays to the 
amygdala might be in general agreement with the computational 
demands of a distributed cognitive system. Such a functional 
architecture would be highly consistent with results from the 
present simulations showing more efficient visual classification 
of facial expressions based on their LSF content (rather than 
HSF alone), and with previous neuro-imaging results showing 
more robust amygdala activation to fearful faces seen from LSF 
images (Vuilleumier et al., 2003). 

These empirical results reported here provide a first 
attempt to understand the complex relationships unifying basic 
visual perceptual processes with higher cognitive and emotional 
recognition systems. A next step will be to use such 
computational modeling to simulate and to predict further 
empirical results. Based on their elementary physical properties, 
it is possible to generate stimuli for which magnocellular 
pathways would be completely blind, and then, test the response 
of recognition systems for different emotional categories and 
different categorization processes. Schyns & Oliva (1999) have 
reported psychological evidence showing that different regions 
of the SF spectrum are used depending on the task: LSF is 
preferentially used to describe facial emotions in explicit terms 
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of happy, angry or neutral whereas HSF seems to be used to 
determine if a face is expressive or not. Future simulation 
models should therefore also investigate whether training on the 
same set of faces may lead to specialized processing streams 
(i.e., at the level of hidden-layer or in different subparts of the 
network) extracting distinct LSF or HSF components for 
different task purposes (e.g. emotion recognition based on LSF  
in some neurons, identity or age recognition based on HSF in 
other neurons). 
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