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Exploring word recognition with selected stimuli:
The case for decorrelated parameters

Athanassios Protopapas (aprotopapas@phs.uoa.gr)
Department of Philosophy & History of Science (MITHE), Ano Ilissia University Campus

GR-15771 Zografos, Greece

Efthymia C. Kapnoula (ekapnoula@iowa.uiowa.edu)
Department of Psychology, E11 Seashore Hall

Iowa City, IA 52242-1409 USA

Abstract

We report a study of naming and lexical decision with 132
adult Greek speakers responding to 150 words and matched
pseudowords with decorrelated frequency, length, neighbor-
hood, syllable and bigram frequency, and transparency. This
approach allowed us to individuate and accurately estimate the
effects of each variable, and to assess their linearity and ad-
ditivity. Significant effects of frequency, length, and syllable
frequency were revealed, as well as several interactions. The
results are informative for cognitive modeling of visual word
recognition in more transparent orthographies.
Keywords: Visual word recognition; pseudowords; naming;
lexical decision; mixed-effects models; Greek.

Models of visual word recognition posit distinct mecha-
nisms and representations involved in the processing of or-
thographic stimuli. The implications of these hypotheses for
response times (RT) to individual words and pseudowords are
typically studied using naming and lexical decision tasks. A
productive line of research concerns the effects of lexical and
sublexical variables on RT distributions. In evaluating mod-
els and their properties, several variables have been examined
in this light and have been found to be related to processing
times, such as frequency, length, neighborhood, bigram and
syllable frequency, and more (Balota, Yap, & Cortese, 2006).

A common approach to such studies has been to form
groups of stimuli differing in a parameter of interest, such as
a low-frequency and a high-frequency group. Interactions are
then examined by crossing levels of variables in subgroups.
This has led to the identification of important effects but has
recently been criticized for problems stemming from selec-
tion of atypical items and restricted parameter ranges (Balota,
Yap, Hutchison, & Cortese, 2012). More recent approaches
have abandoned stimulus groupings in favor of regression ap-
proaches, in which wide value ranges of several variables
are simultaneously entered in multivariate analyses (Yap &
Balota, 2009). Advances in statistical modeling have allowed
more parameters to be examined (Baayen, 2008).

This approach has culminated in the “mega study” efforts,
in which huge numbers of stimuli are presented to volun-
teer samples of unprecedented sizes. For example, the En-
glish Lexicon Project (Balota et al., 2007) includes about 40k
words and pseudowords responded to by 1,260 participants.
This allows examination of the full ranges of all parameters
and their combinations. Special subsets may be selected for
targeted analysis, so this method allows replication of previ-

ous studies and examination of potential biases or dependen-
cies. Moreover, these data are available for future studies on
as-yet unidentified parameters without further data collection.
Thus mega-studies constitute a large step forward in our quest
for understanding word processing.

The multiple regression approach is also vulnerable to crit-
icism. Regression models typically include a linear effect for
each variable, assuming that this effectively “partials out” all
influence of the corresponding parameter, allowing the effects
of other parameters to be accurately estimated. This is only
the case when all effects are linear and independent. If not,
the linear modeling removes only part of an effect, conflating
the remainder with other correlated variables. The problems
of linearity and additivity are compounded and cannot be ad-
dressed in stimulus sets with correlated effects because it can-
not be known whether a variable has a true curvilinear effect
or an interaction with a correlated variable. In both cases de-
partures from linearity will be identified but the decision to
“remove” one of the two will affect the other and may do
so in a nonrepresentative or nonoptimal manner. Moreover,
in the absence of curvilinearity and nonadditivity, correlated
parameters necessarily lead to underestimated effects because
shared variance is removed when one parameter is controlled.

Linearity is potentially informative as cognitive processing
models can make specific predictions about the shape of the
relationship between aspects of the stimuli and the time re-
quired to respond to them. Thus it is useful to establish the fit-
ting functions on the actual RT distributions and incorporate
them in modeling (cf. Balota & Yap, 2011). Nonadditivity is
also of great interest because it has implications for theoret-
ical approaches insofar as the cause of each interaction must
be understood within the context of relevant assumptions.

In the present study we begin to address these issues by ex-
amining RTs to a set of words and pseudowords in which vari-
ables typically examined in word recognition were uncorre-
lated. We work in Greek, a language with higher orthographic
transparency and word length than English (Protopapas &
Vlahou, 2009), aiming to contribute to the cross-linguistic ef-
fort. We selected words from a corpus ensuring that there was
no significant correlation among frequency, length, neighbor-
hood, syllable and bigram frequency, and graphophonemic
transparency. A set of pseudowords was then created, sim-
ilarly uncorrelated, matching the word group in these vari-
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ables. To the extent a reasonably wide range was sampled,
this approach permits isolation of the effects of each variable
and identification of individual interactions and nonlineari-
ties. All items were presented in a naming and a lexical de-
cision task. To maximize reliability and allow detection of
small effects, we employed a relatively large sample, based
on Rey, Courrieu, Schmidt-Weigand, and Jacobs (2009).

Method
Participants
The sample included 97 women and 35 men, native speak-
ers of Greek, 18–36 years old (M = 23.3, SD = 4.7), mostly
students (12–21 years of education, M = 15.4, SD = 2.1).
Fourteen were left-handed.

Stimuli
A set of 150 words were selected from the IPLR word list
(Protopapas, Tzakosta, Chalamandaris, & Tsiakoulis, 2012),
2–5 syllables long (4–10 letters; 4–11 phonemes). In an it-
erative selection process, a set of properties were retrieved
along with each word, including log frequency of occur-
rence; number of letters, phonemes, and syllables; ortho-
graphic and phonological neighborhood (Coltheart’s N); or-
thographic and phonological syllable frequency; letter and
phoneme bigram frequency; and a nondirectional measure of
graphophonemic transparency (log mean token “sonograph”
probability; Spencer, 2009). A nonparametric index of as-
sociation (Spearman’s ρ) among all variables was calculated.
The process terminated when groups of qualitatively distinct
variables were not significantly correlated. The following
variables were retained as most relevant for the analyses re-
ported below: log frequency, number of letters, mean syllable
and bigram frequency, and transparency. Figure 1 (top row)
shows the distribution of each variable in the selected sets
against the overall type and token distribution in the corpus.

A set of 150 pseudowords were constructed to resemble the
words in basic phonological and orthographic structure and
letter and phoneme distribution. The pseudowords were in-
distinguishable from the words in the target variables, as ver-
ified by the Kolmogorov-Smirnov test for equality of distri-
butions. The results of these tests are listed in Table 1, along
with the correlations among the variables for both sets.

A difficulty was encountered in pseudoword neighbor-
hoods. Matching to the words required including items with
many neighbors. Neighborhoods for long words are mainly
due to grammatical inflection. Long words typically have few
or no unrelated neighbors, but due to the rich inflectional sys-
tem of Greek all content words have neighboring inflectional
variants. Neighborhoods for pseudowords would therefore be
limited to the inflectional families of word neighbors, so that
some pseudowords would be strongly influenced by one lex-
ical lemma. This was undesirable because pseudowords are
known to activate lexical neighbors strongly (even assimilat-
ing their stress pattern; Protopapas, Gerakaki, & Alexandri,
2007). Therefore, using pseudowords with neighbors would

result in a pseudoword set in which word activation might
play a prominent role and suppress nonlexical effects. Thus
we decided to minimize pseudoword neighborhoods and keep
the pseudowords distinct from specific words, at the cost of
matching and correlations involving neighborhoods.

Procedure
A naming and a lexical decision task were implemented in
DMDX (Forster & Forster, 2003). In both tasks, each item
was presented in Arial 36-pt white font at the center of a lap-
top 15.4′′ screen for 1.9 s. A few practice and warm-up items
preceded the experimental stimuli. A short break was offered
halfway through each block of 150 stimuli. For lexical de-
cision, participants responded by pressing the left and right
control keys. Words and pseudowords were intermixed ran-
domly. The “word” response was set to the participant’s pre-
ferred or nonpreferred hand, approximately counterbalanced.
For naming, words and pseudowords were presented in sep-
arate blocks, in counterbalanced order between participants.
Responses were recorded and onset times were subsequently
verified using CheckVocal (Protopapas, 2007). The order of
naming and lexical decision tasks was counterbalanced. In
both tasks, items were presented in a different random order
for each participant. A distractor task (digit span) was admin-
istered between the two tasks to minimize carryover effects.

Results
Raw response times were logarithmically transformed and
analyzed using mixed-effects models with crossed random ef-
fects for participants and items, separately for words and non-
words. Analyses were conducted using package lme4 (Bates,
Maechler, & Bolker, 2012) in R (R Core Team, 2012), mainly
following Baayen (2008). All variables were centered. Mod-
els reported below included fixed effects and random slopes
per participant for the linear effects of trial number and pre-
ceding RT, as well as random intercepts for participants and
for items. These “baseline” effects are not discussed further.

For each task and stimulus type we examined the follow-
ing: (a) A “full” model, with the complete set of variables,
i.e., baseline effects plus all six experimental parameters (lin-
ear effects only, not interacting). This was used to estimate
the “full” effects of each parameter. (b) For each parameter, a
variant of the full model excluding that parameter. The item
random intercepts of this model were used to estimate the
“residual” effects of each parameter. (c) A baseline model
with only the baseline effects. (d) For each parameter, a vari-
ant of the baseline model including only that parameter. This
was used to estimate the “single” effects of each parameter.
Comparison of this model to the baseline (via likelihood ra-
tio) determined the significance of each parameter. (e) An
“augmented” model, in which quadratic effects and interac-
tions were added to the full model in a forward-backward pro-
cedure and retained when significant (determined via likeli-
hood ratio at p < .05). The linear effects of all six parameters
were retained whether or not they made significant contribu-
tions, and are listed in Table 1 (4 rightmost columns).
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Table 1: Correlation coefficients (Spearman’s ρ) among the 6 experimental parameters, for words (above the diagonal) and pseu-
dowords (below the diagonal), and Kolmogorov-Smirnov tests for equality of distributions between words and pseudowords.
The four rightmost columns show the estimated β̂ for the corresponding linear effect in the augmented model (see text).

Correlations K-S test Naming Lexical decision
Variable 2 3 4 5 6 D p Words Pseudo Words Pseudo

1 frequency −.05 .00 −.02 .10 .00 −.0152∗ −.0311∗

2 N letters −.01 −.05 .01 −.11 .06 .950 +.0163∗ +.0306∗ +.0151∗ +.0361∗

3 neighborhood −.50† −.08 .07 −.02 .70 .000 −.0033 −.0668∗ −.0092∗ +.0409∗

4 syllable freq. −.08 .07 .09 −.09 .15 .079 +.0032∗ +.0022∗ +.0044∗ +.0006
5 bigram freq. .08 −.04 .06 .06 .09 .531 −.0039 −.2131∗ −.2578∗ +.1335
6 transparency .00 −.03 −.12 .05 .05 .983 +.0000 −.0005 +.0018∗ −.0010
Note: † p < .0005; for all other correlations, p > .1; ∗|t| ≥ 2.0

The variance of item random intercepts varied between
tasks. In the baseline models, it was 4.98 for word naming,
16.03 for pseudoword naming, 9.99 for word lexical decision,
and 7.90 for pseudoword lexical decision (all ×10−3). This
sets an upper limit for the contributions of the experimental
parameters, which are all item-related, indicating that there
is more variance to be accounted for in pseudoword naming
(the highest) than in word naming (the lowest). In compari-
son, the residual (error) variance of the baseline models were
13.1, 19.3, 37.9, and 36.8, respectively, suggesting that lexi-
cal decision tasks are “noisier” than naming tasks.

Linear individual effects The results for these analyses are
summarized graphically in the four bottom rows of panels in
Figure 1, in which the linear effect of each parameter is tested
when all other parameters were in the model (residual vs. full
model) and when no other parameters were in the model (sin-
gle vs. baseline model). The two estimates were generally
within one standard error of each other, indicating very close
correspondence of the two types of analysis in estimating in-
dividual linear effects. The reduction in item variance (ran-
dom intercept for items) by inclusion of each parameter was
also very similar between the two approaches. There were
some differences in significance but they concerned low vari-
ance proportions (1%) or were associated with pseudoword
orthographic neighborhood, which was not decorrelated.

Quadratic effects Examination of the raw and residual
trends in Figure 1 indicated monotonic and largely linear ef-
fects of frequency, length, and syllabic frequency, especially
for words. Some curvilinearity was apparent for other param-
eters, particularly for pseudowords. Nonlinearities were ex-
amined for every parameter in each case by testing quadratic
terms added (centered) to the full model. The quadratic effect
of bigram frequency was significant in pseudoword naming
(β̂ = .1024, SE = .0435), word lexical decision (β̂ = .1720,
SE = .0854), and pseudoword lexical decision (β̂ = −.0778,
SE = .0412). The quadratic effect of orthographic neigh-
borhood was significant in pseudoword lexical decision (β̂ =
−.0043, SE = .0021) but seems spurious in light of the
severely skewed distribution of this parameter. No other

quadratic terms were found to be significant. No higher-order
terms or other nonlinear functions were tested.

Interactions Two-way interactions were examined by test-
ing each pair of parameters. In word naming, there was an
interaction between frequency and neighborhood (β̂ = .0054,
SE = .0016). In addition, there were interactions of trans-
parency with frequency (β̂ = .0007, SE = .0003), neigh-
borhood (β̂ = −.0007, SE = .0003), and syllabic frequency
(β̂ = .0002, SE = .0001). In pseudoword naming there
was an interaction of length and neighborhood (β̂ =−.0201,
SE = .0068). In word lexical decision there were interactions
of neighborhood with frequency (β̂ = .0070, SE = .0023)
and with transparency (β̂ = −.0009, SE = .0005). Finally,
in pseudoword lexical decision there was a marginal inter-
action of syllabic frequency with bigram frequency (β̂ =
.0050, SE = .0029). There were no interactions involving the
quadratic terms. No higher-order interactions were tested.

Following the addition of the aforementioned quadratic
and interactive effects, the augmented models reduced the
item variance (random intercepts) by half or more. Specifi-
cally, the proportion of item variance in the baseline model
that was accounted for by the six experimental parameters
was .48 for word naming, .71 for pseudoword naming, .48
for word lexical decision, and .50 for pseudoword lexical de-
cision. Additional proportions in naming could be accounted
for by modeling initial phoneme classes but there was no need
for that in the present approach as the respective onset effects
were adequately captured in the by-item random intercepts.

Discussion

We employed a stimulus selection procedure to create a set
of words and matched pseudowords with decorrelated pa-
rameters, aiming to examine curvilinear and interactive ef-
fects more accurately than with blind multiple regression. In
this study we first confirmed that the linear effects are simi-
lar when estimated in full models vs. single-parameter mod-
els. Differences emerged for unmatched variables, as should
be expected. Therefore this method achieves isolation of
the effects of basic parameters, allowing further use in sit-
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uations where complex modeling may be impractical or im-
possible, such as in fMRI. Use of decorrelated parameters to
examine brain modulation in response to written stimuli has
been previously reported for 465 monosyllabic English words
(Graves, Desai, Humphries, Seidenberg, & Binder, 2010).
Our analysis supports this approach and extends it to mul-
tisyllabic words and a more transparent orthography.

Our results do not strongly challenge the common assump-
tion of linearity, as most of the effects seem well approx-
imated by a linear function. However, our analyses were
based on log RT and not raw times. If linear fits on log RT
can pass more stringent tests in comparison with a richer set
of curvilinear alternatives, the implications for modeling are
that models should predict logarithmic RT curves. The exist-
ing analysis techniques allow the field to progress from pre-
diction of differences between conditions, or the mere exis-
tence of associations among parameters, toward more specific
predictions of the relations between participants, items, and
measures, as for example in the rate-amount (Faust, Balota,
Spieler, & Ferraro, 1999) and difference engine (Myerson,
Hale, Zheng, Jenkins, & Widaman, 2003) approaches. Sim-
ple correlation between predicted and measured times may
become inadequate as more specific derivations and variance
comparisons become increasingly feasible.

It remains to be established whether the effects uncovered
in this analysis are properly accounted for in linear models
of log RT. The effect of frequency, in particular, seems to
level off somewhat towards lower frequencies. Although this
may be an artifact of nonhomogeneous sampling affecting the
lower end, it is consistent with a frequency effect less steep
than logarithmic. Given that frequency has been log trans-
formed, it may be fruitful to examine alternatives (e.g., power
functions, ranks, or subjective estimates of familiarity) in ac-
counting for the frequency effect (cf. Balota et al., 2012).
It is reassuring that effect estimates and variance proportions
in lexical decision were substantially greater (double) than in
naming, consistent with the notion of frequency as a lexical-
semantic rather than surface variable.

The large effect of word length may seem surprising but it
should be taken into account that multisyllabic words up to 10
letters long were involved. The Greek orthography is also rel-

atively transparent for reading (Protopapas & Vlahou, 2009),
conceivably supporting more serial approaches than English.
This may explain why about half of the item variance in pseu-
dowords was accounted for by length alone, almost as much
in lexical decision as in naming. An interesting aspect of the
data concerns the low-end shape of this relation, evident in
pseudowords, although there may also be some flattening of
the word curves. This may be related to the U-shape reported
in other languages (see recent discussion in Yap & Balota,
2009) and warrants further investigation.

No significant main effects of orthographic neighborhood
were revealed in our analyses. This is surprising in light of
consistent reports in the literature regarding neighborhood ef-
fects. However, there are issues with Greek word neighbor-
hoods that warrant further scrutiny. Due to extensive inflec-
tion of nouns, verbs, and adjectives, many items counted as
neighbors are inflectional variants, arguably linked to a sin-
gle lexical lemma (contingent on one’s theory of morpho-
logical representation in the lexicon). Moreover, the num-
ber of neighbors diminishes rapidly with word length, as
there are fewer instances of words in longer letter-string
space. This suggests that the emphasis on neighborhood ef-
fects may have resulted from an artifact of English being the
most-studied language and allowing investigation restricted
to short, single-syllable words. Alternatively, more flexible
indices of orthographic distance may be required to express
neighborhood density (e.g., Yarkoni, Balota, & Yap, 2008).

In agreement with recent reports for other languages
(Conrad, Tamm, Carreiras, & Jacobs, 2010), inhibitory
phonological syllabic frequency effects were found for words
in both naming and lexical decision. A smaller but signifi-
cant effect was found in pseudoword naming. No compara-
ble effect was observed with orthographic syllable frequency
(not reported above), consistent with the source of such ef-
fects lying within a phonological sublexical space. In con-
trast to syllables, orthographic bigram effects were minor,
mainly restricted to pseudowords, and partly facilitatory, with
a quadratic component resisting interpretation. There were
no effects of phonological bigram frequency (i.e., phoneme
pairs), consistent with an explanation for bigram effects re-
lated to orthographic familiarity with letter clusters.

Figure 1: (on previous page) The top row shows the distribution of parameter values for the stimulus set, separately for words
(blue) and pseudowords (red), in comparison to all corpus types (light peach) and tokens (light blue). Bars display proportions
of items, adding up to 1.0. The other rows display the effects of each of the six experimental parameters on naming (Rows
2 and 3) and on lexical decision (Rows 4 and 5). Each box displays residual item effects (grey circles) in a model including
baseline effects and all parameters except one. The red solid line plots a smoothed average (via function lowess) of these points.
The dotted red line shows the effect estimate for this parameter when added to the predictor set, resulting in a full model. The
teal solid line plots a smoothed average of the centered raw item means. The dotted green line shows the effect estimate of the
parameter when included in a model with baseline and random effects only, absent all other parameters. The red and green
numbers at the top of each panel are the corresponding effect estimates (β̂) for the same-color dotted lines, whereas the numbers
at the bottom of each panel are the proportions of item variance accounted for by this fixed effect; an asterisk denotes significant
contribution (by likelihood ratio test). The vertical axis is scaled in log milliseconds (with respect to the grand mean intercept).
Note different scaling of horizontal axes between parameters and also between distributions (top row) and effects panels.
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There were no significant effects of consistency except in
the augmented model for word lexical decision. This stands
in contrast to large effects of regularity and consistency re-
ported for English and may be attributed to the greater trans-
parency of Greek. Nevertheless, there were consistent in-
teractions involving transparency in word naming and lexi-
cal decision. Higher-probability grapheme-phoneme tokens
were associated with increased RTs, an effect enhanced for
higher-frequency words and diminished in larger neighbor-
hoods. Instead of a pure consistency effect whereby more
frequent mappings are decoded more rapidly, here we may
have a situation in which systematic mappings permit greater
confusion among lexical candidates. The fact that this only
occurred for words—the (nonsignificant) trends for pseu-
dowords being negative—suggests that it may be related to
orthographic N being a poor index of neighborhood effects.

It should be kept in mind that our findings for pseudowords
must be interpreted with caution as the stimulus set was
not fully controlled and decorrelated due to the aforemen-
tioned neighborhood issue. This is not a major limitation of
the study because most cognitive models typically focus on
words and do not emphasize pseudoword processing.

Overall, the variance accounted for by our parameters was
substantial but far from the 80% estimate Rey et al. (2009)
gave for reproducible item variance in samples of this size.
Although inclusion of initial phoneme class raised this pro-
portion considerably, 80% was achieved only for pseudoword
naming. Word naming lagged behind at 63%, indicating
that major sources of systematic item variance remain to be
brought into the models (Adelman, Marquis, Sabatos-DeVito,
& Estes, in press). Morphological and semantic variables are
obvious candidates to be examined in follow-up studies.
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