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Abstract

Successful teaching requires an assumption of how the learner
learns - how the learner uses experiences from the world to
update their internal states. We investigate what expectations
people have about a learner with a behavioral experiment: Hu-
man teachers were asked to teach a sequential decision-making
task to an artificial dog in an online manner using rewards and
punishments. The artificial dogs were implemented with either
an Action Signaling agent or a Q-learner with different dis-
count factors. Our findings are threefold: First, we used ma-
chine teaching to prove that the optimal teaching complexity
across all the learners is the same, and thus the differences in
human performance was solely due to the discrepancy between
human teacher’s theory of mind and the actual student model.
Second, we found that Q-learners with small discount factors
were easier to teach than action signaling agents, challenging
the established conclusion from prior work. Third, we showed
that the efficiency of teaching was monotonically increasing as
the discount factors decreased, suggesting that humans’ theory
of mind bias towards myopic learners.

Keywords: theory of mind; machine teaching; reinforcement
learning

Introduction

People regularly teach other agents (e.g., children, pets, ma-
chines) in their environment using evaluative feedback (re-
wards and punishments). For example, Andrew is teaching
his six-year-old daughter Jane to forage for wild berries. To
do so, he first brings her to a bush with edible berries. What
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does he do next? If his goal is purely for her to eat some wild
berries, then he has achieved his goal. However, to teach her
to forage robustly, he must provide her rewards to incentivize
her to leave that bush and seek new ones. How do people
teach agents using rewards and punishments, and how does
their teaching depend on their knowledge of the internal dy-
namics of how the learner updates their beliefs?

Although not always presented from this perspective, for-
aging is an example of the exploration-exploitation problem
within reinforcement learning: How should an agent balance
exploiting rewards based on their current knowledge while
still exploring for berries? This problem has been extensively
studies across humans, animals, and idealized agents (Cohen,
McClure, & Yu, 2007; Gopnik, 2020; Reid et al., 2016;
Stephens, Brown, & Ydenberg, 2007). Many natural agents
stop exploiting rewards before the resource is exhausted so
that they can explore other states. To do so, there must be
some mechanism that provides an implicit or explicit pun-
ishment to the agent. Although many natural agents forage
efficiently in their environmental niche, the mechanisms used
to tune their behavior often are not robust to environments
outside of their niche. Although foraging itself (and learning
while foraging) has been extensively studied within reinforce-
ment learning and other mathematical frameworks, to the best
of our knowledge, teaching others to forage is an open ques-
tion. In this paper, we explore this question for teaching
agents a full policy in a task that requires the teacher to first



incentivize sub-optimal actions so that the learner learns what
they should do in states they otherwise would not encounter
(because they start close to their ultimate goal).

Teaching the correct actions to take in a domain while explor-
ing the domain is a social task involving the interaction of the
teacher, a learner, and the environment. Researchers have ex-
amined how people teach others, formalized this process, and
created automated methods to teach. One unifying computa-
tional framework across these areas is the Bayesian pedagogy
framework, where the learner and teacher are Bayesian agents
that assume both know the teacher is providing information to
help the learner (Shafto, Goodman, & Griffiths, 2014). How-
ever, this framework is mechanism-agnostic and assumes hu-
mans are doing ideal Bayesian updates, which can be a prob-
lematic assumption. Instead, we take the perspective of ma-
chine teaching, where we examine human teaching from the
perspective of optimized teaching for a particular learning
mechanism.

In this paper, we focus on Q-learning, a family of model-
free reinforcement learning algorithms that learns the optimal
policy as the agent interacts with a Markov Decision Process
(MDP; Sutton & Barto, 2018). We designed a study where a
human teacher intervenes in the agent-MDP loop by selecting
the reward signal at each time step. They were incentivized
to teach the optimal policy as fast as possible. We tested
human performance at teaching multiple Q-learning agents
(students) with different parameters. If human teachers could
teach some agents better than others, it would provide support
that those agents’ parameters are closer to human teachers’
assumptions about how students learn.

Prior Work

From children to adults, when asked to teach, people pro-
vide different information than if they are simply asked to
convey some information to another learner. In pedagogical
situations, the MDP framework captures human performance
fairly well. For example, when asked to show how to do a
task, people will take actions that are strictly unnecessary for
completing the task but convey information to a learner. How-
ever, if they are asked to do a task, they only do the necessary
actions for completing the task (Ho, Littman, MacGlashan,
Cushman, & Austerweil, 2016).

Recent work in cognitive science and human-machine inter-
action has explored human teaching strategies and to what
extent they are optimal. For example, work in Bayesian
pedagogy has shown that when teaching a range of sim-
ple concepts by example, people can teach others near op-
timally (Shafto et al., 2014). Similar research on linguistic
pragmatics demonstrates that people’s language use reflects
an intention to be optimally informative (Grice, 1975; Good-
man & Frank, 2016). Moreover, these findings on human
teaching have been shown to generalize to more complex set-
tings, such as sequential decision making (Ho et al., 2016).
However, others have found that in more complex settings,
human teaching is misaligned with an MDP framework (Ho,
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Cushman, Littman, & Austerweil, 2019), which motivates re-
search into learning algorithms tailored to human teaching
strategies (Knox & Stone, 2009; MacGlashan et al., 2017).
Although prior work provides a useful perspective on how
people ought to teach others who know they are being taught,
it does so for an idealized Bayesian agent assumed to be
maximizing environmentally provided rewards. Albeit a use-
ful assumption for examining human teaching, people do not
teach or learn as an idealized Bayesian agent. In the 1990s,
researchers learned how difficult it can be to train a reinforce-
ment learner to complete simple tasks that contained neces-
sary conditions that need to be completed by the learner be-
fore the last steps of their task, which are closer in the state
space to their current location (e.g., Ng, Harada, & Russell,
1999). Based on this intuition, recent work demonstrated that
people fail to teach simple model-free and model-based re-
inforcement learners how to get from a start state to an end
state while staying on a trail in a 3 x 3 Grid World (Ho et
al., 2019). The learners often pick up on “positive net reward
cycles”, which enable them to get an arbitrarily large reward
while not completing the task.

Computational Teaching: Since computational teaching
was first proposed by Shinohara and Miyano (1991), optimal
teaching has been studied for various learning mechanisms
and settings (for a recent review, see Zhu, Singla, Zilles, &
Rafferty, 2018). Of particular interest to us are works on
teaching online learners such as Online Gradient Descent
(OGD) (Liu et al., 2017; Lessard, Zhang, & Zhu, 2018),
active learners (Hanneke, 2007; Peltola, Celikok, Daee, &
Kaski, 2019), and other sequential learners (Hunziker et al.,
2019; Mansouri, Chen, Vartanian, Zhu, & Singla, 2019). For
OGD, an optimal control formulation is required as the learn-
ing mechanism updates sequentially. Recent work studied
teaching of reward functions using demonstrations (i.e., In-
verse Reinforcement Learning; IRL) (Tschiatschek, Ghosh,
Haug, Devidze, & Singla, 2019; Kamalaruban, Devidze,
Cevher, & Singla, 2019). Finally, computational teaching for
reinforcement learning has been studied recently (Zhang, Ma,
Singla, & Zhu, 2020; Rakhsha, Radanovic, Devidze, Zhu, &
Singla, 2020), where optimal teaching is solved for teachers
using rewards and/or state transitions. The present work in-
stead focuses on using computational teaching theory to un-
derstand how humans teach.

Computational Analyses of Sequential Decision
Making

We study the interaction between three entities: the RL agent
(dog learner), the teacher, and the underlying environment.
In this work, we assume that the environment is a reward-
less Markov Decision Process (MDP) parametrized by M =
(8,4, P,up) where S is the state space, 4 is the action space,
P: S5 xA4— Ag is the transition probability function where
Ag denotes the probability simplex over S, and yg € Ag is the
initial state distribution. The reward is provided instead by
the teacher.



Learners

In our human experiment, we focused on two sets of learn-
ers (jointly denoted by L), that have been widely studied as
potential models of theory of mind for human learners: (1)
standard Q-learning and (2) Action Signaling (AS). The two
learners mainly differ in their internal knowledge representa-
tion and how they perform learning updates.

A Q-learning agent stores an estimate of the Q rable, Q :
S x4 — R, which approximates the future cumulative re-
wards that the agent can receive after performing an action
a € 4 in a state s € § (Watkins, 1989). The learning up-
date rule is defined by two parameters: the learning rate o
and the discount factor y. o determines how aggressive the
learner updates its current belief given the new experience,
and 7y indicates how much the learner prefers future rewards
compared to immediate rewards. Given an experience for a
time step ¢, e, = (s¢,ar,81+1, 1 ), Q-learning updates the (s, a,)
entry of its Q table as

Or1(sr,a) = (1 =) Qs (51, a1) + 01 <Vt +'Yn}1?/1XQt(St+l’a/)>

An Action Signaling (AS) agent stores a multinomial prob-
ability distribution over actions for each state, representing
its current belief distribution of the optimal action. We in-
cluded this type of agent because the action-signaling model
was proposed to describe people’s assumptions about a learn-
ing agent when they teach the agent (Ho et al., 2019). In this
paper, we represent the multinomial distribution also with a
table, 0 : S x 4 — R, where ¥ ,c 4 O(s,a) = 1. The learning
update of an AS agent is defined by a single parameter, the
learning rate K, which serves an analogous as o in Q-learning.
Given a new piece of experience e, = (s;,a;,8¢+1,;), an AS
agent updates the belief distribution over the current state s;.
If r, > 0, the probability w.r.t. a, will increase, whereas if
r; < 0, the probability w.r.t. a; will decrease. In contrast to
Q-learning, an AS agent does not make use of the next state
St+1, and does not aim at optimizing the long term reward.
Specifically,

O (Szaa)el[a:a’]m
Yoea Or(si,b)e' b=l

We further assume that all learners behave according to the
e-greedy policy w.r.t. the current Q table, i.e.

Qr+1(s1,a) VacA. (1)

wp. 1 —¢
w.p. €.

4y = (s7) = { e ma, 00 ), @)

uniform from A,

The teacher’s goal is to drive the learner to learn a target pol-
icy ©', which specifies the action a’ € A the teacher wishes
the learner to take at any state s € S. This example goal
can be expressed as a target set of Q tables that satisfy
Q" :={0:0(s",a") > Q(s',a),Va # a' }. The teaching suc-
ceeds if the learner’s Q, falls into Q7 at some time step f,
in which case the teaching process terminates. The teachers
were asked to achieve the teaching goal as quickly as possi-
ble.
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The computational difficulty of teaching all learners
in L is the same.

In this subsection, we show that all learners in £ have the ex-
act same teaching complexity, despite taking different forms
and having different parameters. To demonstrate that, let us
first show that the optimal teaching problem forms a higher-
level teaching MDP A’ = (E,A,p,1): (1). The teacher ob-
serves the teacher state &, € =, which jointly characterizes
the environment and the learner at time #: &, := (s;,a;,s;,0;).;
(2). The teacher’s action space consists of all possible re-
wards r, € A:=R; (3). The teacher receives a constant
cost of p, = 1 for every time step before the teaching goal
is accomplished; (4). The teaching state transition probabil-
ity is specified by T(&41 | &,r;). The resultant teacher state
&1 = (St41,ar11,5,, 1,0r11) is generated as follows: s;1 is
copied from s; in & a1 ~ R, (5i41)5 8, ~ P(|si1,a041)s
Q41 is the learner’s updated Q table.

The optimal teaching policy is one where the teacher mini-
mizes its cumulative teaching action cost ):;T:o Ps, s.t. Or €
Q. Due to the randomness of the MDP as well as the
learner’s behavior policy, this quantity is a random vari-
able, and thus we instead minimize its expected value. For-
mally, the teacher seeks a time-invariant teaching policy ¢*:
0" = argmingz,\Eac [L/0p: » 5.t Or € Q'] . The shortest
expected time step to achieve the teaching goal is the teach-
ing dimension, i.e.

TD(MvL; Q(),TI:T) = (Dl’gl_I)lAEN

T
Y pr.stQre QT] 3)
=0

Using this formalism, we show that all learners in L have the
same teaching dimension for any MDP environment. Specif-
ically,

Theorem 1. For any two teaching instances defined by
(M,L,Qo,7") and (M,L',Q}),1"), where L,L' € L, if Qy and
Q) satisfies that Qo(s,a) > Qo(s,d’) if and only if Qg (s,a) >
Qu(s,d') for all s € S, a,a’ € A4, then TD(M,L,Qo, ") =
TD(M,L,Q},x").

Theorem 1 states that an optimal teacher can teach any learner
in the family £ equally fast, given that the learner starts with
the same initial policy induced by Qy (see the Appendices for
the proof). This finding suggests that if a teacher tries teach-
ing each kind of dog in £ and practice well enough, he/she
can teach each dog with the same efficiency. Notably, the
optimal teacher does not need to know the values of the stu-
dent’s internal parameters (e.g., the learning rate ¢, k and the
discount factor ) or the student’s learning formula (i.e., the
update rule) (see the next section for how the optimal teach-
ing policy was derived).

The Comparison of the Machine Teacher to
Human Teachers

Unlike the theoretical optimal teacher described in the previ-
ous section, our human teachers do not know what learning



algorithm or parameters the students use. This allows us to
probe what people assume about students learning using eval-
uative feedback. We expect that when a student algorithm is
closer to the human preconception of a student, the human
teacher will be better at teaching that student.

How does human teaching compare to machine teaching in
a task where a person needs to teach a reinforcement learner
a full policy when the learner starts one action away from
its environmental goal? Figure 1 presents an idealized
exploration-exploitation scenario, where the dog’s initial state
is one tile left of its goal (the door of its home). The teaching
goal is to teach the dog to go home from every tile. When-
ever the dog reaches its home, it restarts learning on the initial
state. To teach the dog to get home from every tile, the teacher
must incentivize the dog to explore, which results in the dog
moving away from its ultimate goal: It must punish moving
to the goal and/or reward going away from the goal. Once the
dog has gotten to the leftmost tile, the teacher can begin to
“undo” their prior teaching and teach the dog to go right.

Calculating the optimal teaching policy. To derive the op-
timal teaching policy, we used the machine teaching method
described in the Appendices. The learner starts indifferently
with Qg (s,a) = 0 for every feasible state-action pair (s,a). As
we have shown in Theorem 1, the optimal teaching dimen-
sion is the same for all learners in L. For concreteness, we
assume that the learner is parameterized as follows: o0 = 0.9,
Y=0.9, and € = 0.1. Given this configuration, the optimal
teaching policy is precisely the one discussed above (get the
dog to move all the way left with minimal reward/punishment
and then teach it to move right at every state). The number
of steps to teach is a random variable whose outcomes de-
pend on what actions are selected when the dog is indifferent
and when suboptimal actions are taken. Thus, we approxi-
mated the expected number of steps via Monte Carlo (sim-
ulating teaching dogs using the optimal teaching policy and
recording the number of steps it took for the full target pol-
icy to be taught). On average, the optimal teaching policy
takes 11 steps to teach the dog the full target policy, with
100% success rate. Recall that by Theorem 1, itis 11 regard-
less of the learner type or the value of a and y. Changing €
affects the optimal teaching policy and expected number of
steps quantitatively, but the optimal teaching policy follows
the same qualitative procedure as before. In light of this, we
set € = 0.1 as a constant throughout the study.

Although our machine teaching results suggest all learners
in L should be equally efficient to train in this task, is this
the case for human teachers? Are there some learners that
are easier for people to train? Previously, Ho et al. (2019)
found that traditional parametrization of Q-learners was ex-
tremely challenging for people to train even on simple tasks
and that the action-signaling model was much easier for peo-
ple to train. However, they only examined one learner con-
figuration. In this study, we investigate the role of learner
parameters for a different simple teaching task. In particu-
lar, we show that the discount factor greatly impacts human

1162

teaching success, and a Q-learner with a small discount fac-
tor outperforms an action-signaling learner (opposite of their
previous work).

Remark (why not change o and x): Note that in our exper-
iment, we only varied the discount factor vy of the Q-learners,
but fixed the learning rate o (for Q-learning) and x (for AS).
This is because we can show formally that the learning rate
parameter does not affect teaching performance. In particular,

Proposition 2. Let Lag,L¢ be two AS-learners with learn-
ing rate K,X' respectively and assume that Qg = 0. Then,
given any sequence of experiences (s;,a;,1,S,), Las and L)
will learn the exact same policy, i.e. argmax,Q;(s,a) =
argmax, Q,(s,a) for all s.

The similar behavior holds for Q-learning. As a result, the
learning rate does not provide meaningful variations to the
experiments and was therefore fixed to a0 = 0.9 for Q-learners
and x = 1 for AS-learners.

Human Experiment

Participants. We recruited 330 participants through Amazon
MTurk. The number of participants was chosen a priori based
on the authors’ intuition from similar previously conducted
studies. We excluded 15 participants (5 for not finishing the
experiment, 6 due to experiment error, and 4 who selected
“do nothing” for more than 90% of the steps). We analyzed
the 915 training sessions from the remaining 305 participants.
Interface/Stimuli. The dog training task took place in a 4 X
1 MDP with an absorbing state on the right. Figure 1 shows
the visual interface that the participants interacted with. Four
states were represented by four tiles that the dog could walk
on, and the absorbing state was represented by a door. Ateach
step, the dog could only go right or left one step. If the dog
went left at the leftmost tile, the dog would stay at the same
tile. If the dog went right at the rightmost tile, the dog would
enter its home, and learning restarted with the dog placed
back at the rightmost tile. A dog training session ended either
if the dog learned the full target policy (successful training),
or the dog had already taken 40 steps (unsuccessful training).
Once the training of one dog ended, participants continued
to train a new dog (a dog in a different color). The internal
states were displayed to participants as two rows provided by
a “brain scanner”, which corresponded to the dog’s current Q
table Q; and the current policy for non-greedy actions (i.e.,
argmax, Q:(s;,a), Ya € A). At the beginning of each train-
ing session, the dog was placed at the rightmost tile with an
initial Q table Qg where the Q value of each state-action pair
was zero for Q-learners and 0.5 for the AS-learner. Partici-
pants responded via a continuous slider (feedback of -1 to 1),
or could select a button to “do nothing” (feedback of zero).

Procedure. Participants taught three dogs to go home from
any tile. They were given an extensive quiz about the in-
structions and could not continue until every question was
answered correctly. There was one between-subjects condi-
tion: learner type. Each participant was assigned to either one
of the four traditional Q-learners (y € {0.0,0.1,0.45,0.9}) or



Preference - -— - ’ - ‘

ﬁ” ‘ Do Nothing -
\ Punishment Reward ‘ This dog has

‘ 1 I |aready moved
7 times.

Click and drag the sider to give more or less rewards and punishments

Figure 1: The dog training task took place in an environment
comprised of four tiles and a door on the right. The dog’s cur-
rent Q table (labeled “Preference”) and policy (labeled “Ac-
tion Plan”) were shown above the garden. In the Q table, four
cells corresponded to the Q values of each of the four tiles.
In each cell, arrows pointing to the left/right encoded the Q
value of moving to the left/right at that tile. Blue solid ar-
rows encoded positive Q values, whereas red dotted arrows
encoded negative Q values. The policy was derived from the
current Q table, where the arrow pointed in the direction with
maximal Q value for the given state. When the dog’s policy at
a tile dictated going towards the door, the background of the
cell turned green, indicating the policy at that state matched
the target policy. After the dog took its action, the participant
was asked to provide feedback to the dog. The participant
could use the slider to select the feedback value or clicked the
“do nothing” button to give zero feedback. After the partici-
pant chose the feedback, the dog’s Q table and target would
be updated, and the dog performed its next action. The num-
ber of steps was displayed in the bottom-right corner.

the AS-learner.

The learning dynamics were shown to the participant in the
form that the dog’s internal state was displayed to the partici-
pant while the participant was sliding to decide the feedback
value. The reason that we showed the internal states and the
learning dynamics was to ensure the human teachers could
access the as much information as the optimal teacher did. On
each trial, the dog would move from one state to another. It
followed an e-greedy policy (€ = 0.1) with respect to the cur-
rent Q-table. When a random action was selected for the dog,
a squirrel would appear in the direction of that action (partic-
ipants were told that when a squirrel appeared, the dog would
move towards it no matter what its internal states were). Af-
ter the dog moved, the participant would respond by dragging
the feedback slider or hitting the “do nothing” button. After
finishing training three dogs, they took a short survey to en-
sure that they treated the slider symmetrically and to gathered
standard demographic data.
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Training Success Rate Average Number of Steps For

Successfully Trained Dogs
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Figure 2: Participant success rate (right panel) and teach-
ing length at training the full policy(left panel) for different
learner types. The blue dotted horizontal lines above the bars
(in the left panel) indicate significant differences between the
bars, tested by Tukey post-hoc pairwise comparisons (see the
main text for details). The dotted horizontal line (in the right
panel) denotes the teaching length based on the optimal teach-
ing policy. Error bars denote 95% confidence intervals. AS:
Action Signaling; Qy—,: Q-learner with y= x.

Results and Discussion

Figure 2 shows the success rate of participants at training
the full policy and the average number of steps taken when
a dog is successfully trained. To analyze the success rate,
we fitted a mixed-effects logistic regression model where the
binary dependent variable was whether the training session
was successful, with learner type being the fixed effect, and
participant being the random effect. The learner type signifi-
cantly influenced the training success rate, > (4) = 24.35,p <
.001. Follow-up pairwise comparisons were performed with
Tukey adjustment. Critically, the training success rate was
significantly larger for Qy—¢ than the success rate for AS,
z=3.25,p = .010. The training success rate for Qy—o was
also significantly larger than the training success rate for
Oy=0.9,2=4.28,p < .001, so did Qy—¢.1 compared to Qy—¢.9,
z=13.61,p < .005. All other pairwise comparisons were not
significantly different.

On the other hand, we also fitted a mixed-effects linear re-
gression model to analyze the number of steps taken when
successful (the right panel of Figure 2), with learner type be-
ing the fixed effect, and participant being the random effect.
The learner type had no significant effect on the number of
steps when successful, F(4,171) = 0.43, p = .786.

Are humans good teachers? How well did people teach the
dogs? Clearly, they were suboptimal — the success rate ranged
from 28.43% to 56.14% (AS: 35.35%, Qy-09: 28.43%,
Oy=0.45: 42.11%, Qy—0.1: 51.46%, Oy—0: 56.14%), and when
successful it took 17.19 to 18.89 steps (AS: 17.57, Qy—o.9:



17.19, QY:0-45: 18.49, QY=0~1: 18.89, Qyzoi 18.28). In con-
trast, the optimal teaching policy had a success rate of 100%
and took an average of 11 steps regardless of the learner type.
In sum, we observed that human teachers were suboptimal:
they did not always succeed in teaching the policy to an agent;
and when they did, they required more steps compared to the
11 steps of the optimal teaching algorithm.

Which student aligns best with humans’ theory of mind?
Our experimental results suggest that the human teachers ex-
pect students to be myopic (i.e. Y= 0, which is its small-
est possible value). One interpretation is that the teacher are
better at teaching students that are predictable (without any
complications arising from discounted future rewards when
Y > 0). Critically, our results were inconsistent with the re-
sults of Ho et al. (2019), showing that teaching a Q-learning
agent with a small discount factor was easier than teaching
an action-signaling agent. One limitation of our results is that
the task, the MDP, and the population were different between
the present study and Ho et al. (2019)’s study, and future work
is required to clarify the generalizability of our findings.
Why is Oy easier to teach than an AS-learner? At the
first glance, the AS-learner is similar to a Q-learner with y=0
in that they both don’t take future expected award into ac-
count. The AS-learner, however, has a critical difference from
Oy=0. Note that according to the AS’s update rule (Equation
1), when Q(s,a) approaches 1 for any (s,a), the effect of the
feedback r on the Q value of other actions a’ at the same state
s diminishes. In other words, once the AS-learner has devel-
oped a strong belief for a specific action a at a state s, it be-
comes harder for the learner to change its belief if the teacher
decides to teach a new action. This indeed poses a challenge
when the teacher wants to "undo” what the learner has learned
before, e.g., once the dog reaches the leftmost tile, or when a
wrong policy was learned. In contrast, the Qy—¢ learner does
not suffer from this complication.

Conclusions

In this paper, we investigated how people taught learners to
solve the exploration-exploitation tradeoff, which is a com-
mon problem in everyday life. We did so by first formulating
it as a machine teaching problem. Our first contribution was
a theoretical result showing that, from the point of view of
the computational difficulty, both the Q-learner and the AS-
learner considered were equally hard to teach regardless of
their internal parameters (e.g., learning rate, ). We then ran
a behavioral experiment of an idealized scenario to see how
well people trained artificial agents to solve the exploration-
exploitation tradeoff when the teaching goal was an entire
policy. We found that people were suboptimal and that teach-
ing was the easiest with a Q-learner that had a small discount
factor y. Future work is required to clarify the generalizability
of our findings.
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Appendices

Proof of Theorem 1. First, we denote O, = Q; if Q,(s,a) >
0, (s,d’) if and only if Q) (s,a) > Q;(s,d') forall s € §, a,d’ €
4. The proof is based on a key technical lemma:

Lemma 3. For any teaching policy ¢ for teaching instance
(M,L,Q0,%"), there exists a matching teaching policy ¢ for
teaching instance (M,L', Qf,,="), such that for any time t, if
0 =Q,and & =&}, then Q141 = Q;+1~

Lemma 3 implies that with the same random seed, for L,L’ €
L, the relationship Q1 = Q;, ; will remain invariant through
teaching when ¢ is used on (M,L,Qo,n") and ¢’ used on
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(M,L',Q},n"). Thus, Q; € Q' if and only if Q] € Q. There-
fore, if there exists an optimal ¢ that achieves the teaching di-
mension for (M, L,Qq,n"), then the matching ¢ also achieves
the same teaching dimension for (M,L’,Q),n"). Thus, the
T D for both teaching instances must match. What remains is
to prove Lemma 3. m

Proof of Lemma 3. Given a particular Q; and an experience
tuple & = (s;,a,s,), the Q-learning will only modify the
value of Q;(s;,a,) based on the teacher provided reward r; =
0(&;). Define the rank of (s;,a;) in Q; as rankg, (s;,a;) =
[{a|O: (s a) > Or(sr,a:)}|. On the other hand, while the
AS update rule changes the O, (s;,a) for all actions, the rank
among all the other actions a # a, remains unchanged be-
cause their values are only renormalized with a shared de-
nominator. Therefore, under either the Q-learning update rule

Or+1(st,ar) = (1 — ) O (57,a;) + 01y +Ym§th(St+l 7‘1/))a
a
or the AS-learner update rule
Qs a)elean®
Yoea Q1 (st b)el[b:“’]m ’
it is obvious that there exist r, such that the rank of (s;,a,) in
Q41 can be any of 0,1,...,A — 1. Assume now that the rank
of (s¢,a;) in Q41 becomes k after updating with r; = ¢(&;).
Define ¢’ such that r, = ¢/(€) will also update the rank of
(ss,a;) in Q) | to be k. Then, since Q; = Q; and for both Q; 1

and Q;H the rank of (s;,a,) becomes k, we have O, = Q;H'
This concludes the proof. m

Oi+1(st,a) Va c A.

Deriving the Optimal Teaching Policy

To derive the optimal teaching policy, we used Twin De-
layed DDPG (TD3) (Fujimoto, van Hoof, & Meger, 2018),
a state-of-the-art Deep Reinforcement Learning (DRL) algo-
rithm that solved continuous control problems. The hyper-
parameters for TD3 were described in Table 1. The hyperpa-
rameters were selected via grid search on the Dog MDP. Each
experiment was run for 5000 episodes, where each episode is
200 iterations long. The learned policy was evaluated for ev-
ery 50 episodes, and the policy with the best evaluation per-
formance was used for the computation of the teaching di-
mension. In the computation of the teaching dimension, we
ran the best-found TD3 policy for 1000 episodes, and took
the average number of steps to teach the target policy. This
gave 11.0.

Parameters Values Description

exploration noise 0.5 Std of Gaussian exploration noise.

batch size 100 Batch size for both actor and critic

discount factor 0.99 discount factor for the attacker problem.

policy noise 0.2 Noise added to target policy during critic update.
noise clip [=0.5,0.5]  Range to clip target policy noise.

action L2 weight 50
buffer size 107
optimizer Adam

Weight for L2 regularization added to the actor network loss function.
Replay buffer size, larger than total number of iterations.
Use the Adam optimizer.

learning rate critic 1073 Learning rate for the critic network.
learning rate actor 54 Learning rate for the actor network.
T 0.002 Target network update rate.

policy frequency 2 Frequency of delayed policy update.

Table 1: Hyperparameters for TD3.





