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Abstract 

Recent connectionist models and theories of embodied 
cognition offer new perspectives on language comprehension. 
We review the latest accounts on the issue and present an SRN-
based model, which incorporates ideas of embodiment theories 
and avoids (1) vast architectural complexity, (2) explicit 
structured semantic input, and (3) separated training regimens 
for processing components. 
Keywords: language acquisition, comprehension, production; 
sentence processing; language-vision integration; visual 
attention; embodied cognition; connectionist modeling; SRNs. 
 

Introduction 
'Gavagai!' If we heard a native speaking a foreign language 
utter this word upon seeing a rabbit, we would be faced with 
the problem Quine described in Ontological Relativity 
(1968): How do we know what exactly an utterance refers to 
in an infinitely rich set of objects, events and relations our 
environment provides? But this problem appears almost 
trivial compared to a human child confronted with the task to 
acquire its mother's language. Several sub-tasks have to be 
solved simultaneously to achieve this grounding of speech to 
referential meaning: there is the problem of a highly complex 
world rich in details, happenings and relations. There is the 
problem of a continuous stream of words. There is the large 
problem of relating the one to the other. And there is the 
problem that there is no previously given language to help 
finding this relation. 

In other words, the task is to bind a holistic situation to a 
sequential series of related linguistic expressions. This affords 
to integrate representations of language and the outside world, 
both represented in distinctive forms, following completely 
different rules and depending on different hierarchical and 
causal relations. A central aspect of models of language 
comprehension and acquisition is how they account for these 
questions. In connectionist models, language interpretation 
and integration of situational context is based on mechanisms 
of association and self-organization. 

Theories in embodied cognition research offer an account 
for assignment of linguistic structures to constructions of 
coherent semantic interpretations. Language comprehension 
is considered to be a simulation of perceptual experiences of 
the hearer, and the linguistic structure serves as an instruction 
for the correct construction of the situation. Due to its 

analogical nature this could be a guideline for subsymbolic 
accounts for grounding language comprehension. 

Connectionist models of language comprehension 
Several connectionist architectures deal with the task of 
language comprehension and integration of language and 
events, proposing different realizations of semantic 
representation and implementations of the integration process. 

Rohde (2002) introduced the Connectionist Sentence 
Comprehension and Production Model, an architecture based 
on extended simple recurrent networks (SRNs, Elman, 1990) 
which is capable of comprehending and producing complex 
sentences, covering a wide range of well-known empirical 
phenomena. The model clearly focuses on scalability, 
however possibly at the expense of explanatory power and 
psychological plausibility. Especially relevant for our issue is 
the realization of the semantic component: Rohde's model is 
trained with explicit propositional representations prior to the 
corresponding target sentence. This greatly assists the 
network, leaving no way to tell whether it simply succeeds 
because the semantic representation provided all crucial 
information explicitly. Learning of the propositions is 
achieved through a query mechanism, inquiring each of its 
parts, a process questionable in its cognitive adequacy. 

The problem of explicit information holds similarly for the 
Incremental Nonmonotonic Self-organization of Meaning 
Network (Mayberry, 2003). The semantic representations 
used in the model are based on Minimal Recursion Semantics 
(Copestake et al., 2005), which makes them very powerful 
and complex information carriers. The model is capable of 
parsing natural language corpora, an impressive achievement, 
reached at the expense of a highly complex, opaque 
architecture and pre-fabricated semantic content. In a more 
recent study Mayberry, Crocker and Knoeferle (2005) 
introduced the Coordinated Interplay Account Network 
which integrates a scene representation with the incremental 
input of a sentence description, enabling adaptive use of 
context information. Since the presented scenes are externally 
segmented into agent, action and patient, the major part of 
semantic interpretation is provided to the model explicitly. 

While these models certainly achieved good results 
concerning their aims, they show several shortcomings 
making them unsuitable for our approach. Firstly, extensive 
use of different layers and components makes it impossible 
to deduce responsible structures and working mechanisms 
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from internal states of the model, prohibiting analysis of 
ongoing processes. Secondly, reliance on explicit, extremely 
powerful semantic representations that do most of the work 
of semantic processing prevents clear assignment of 
performance properties to inherent connectionist 
mechanisms. Thirdly, the use of separated training for the 
components (e.g., pre-training of the semantic layer before 
coupling it with sequential linguistic input) reduces 
integration to an interface between independent modules. 
This contradicts the idea of grounded language acquisition, 
inhibiting examination of mutual and synergetic effects 
between syntactic and semantic components. 

The Distributed Situation Space model (Frank et al., 2007) 
does not use explicit propositions. It uses Self Organizing 
Maps (Kohonen, 1995) to represent simple and combined 
events in a microworld and maps descriptive sentences on 
corresponding situation vectors using SRNs. The model 
implements the idea of non-propositional semantic 
representations, preserving analogy of internal representations 
to external states on the dimension of transition and 
combination probabilities of events. Frank, Haselager and 
van Rooij (2009) explored the capability of this model to 
capture semantic systematicity beyond simply implementing 
symbolic computation. They concluded that connectionist 
systematicity emerges from interaction with the environment, 
reflecting the observed and derived structural correlations. 
Considered from an embodied cognition perspective, the 
model preserves analogy in its internal representations. But 
it still waives central qualities that need to be explored: it 
reduces semantic content to co-occurrences of events and 
does not aim at modality at all, thereby leaving out 
inferences on behalf of event-internal relations. 

Embodiment theories of language comprehension 
Embodied cognition posits that the structure of embedded 
systems emerges as a consequence of interaction with the 
environment. This leads to an alternative perspective on 
cognitive processes and conceptualizations, which is highly 
compatible with recent connectionist and emergentist 
assumptions and enables the development of proposition-free 
comprehension systems. 

With the Perceptual Symbol Systems framework, Barsalou 
(1999) emphasizes cognition to be grounded in perception, 
operating on modal and analogue symbols. These are derived 
directly as neural substrates of activations corresponding to 
perceptions of the external world and share the same 
functional brain areas. This is claimed to obviate the 
grounding and transduction problem. Language 
comprehension is seen as a mental simulation process of 
perceptual states of neural activation, triggered by linguistic 
input. Joyce et al. (2003) proposed connectionism as a 
suitable framework for closing some explanatory gaps 
concerning the question, how such a system could actually 
be implemented. Based on an SRN-model of perceptual 
symbol formation they drew further specifications of the 
required mechanisms and how they come to work. 

 

Zwaan (2004) introduces an explicit framework for 
embodied language comprehension that integrates several 
empirical findings. In his Immersed Experiencer Framework, 
situational entities correspond to activated functional neural 
webs instantiated by lexical items. These webs become 
integrated to construals by means of constraint-satisfaction 
mechanisms, representing events corresponding to clauses. 
The approach claims to replace propositional representations, 
which are stated to be merely illustrative shorthand. 

Modeling situated language comprehension 
Our model directly addresses the discussed issues by 
imposing restrictions on the architecture, the nature of 
representations and tasks. Basically we assume that meaning 
is not an inherent feature of language, but must be assigned 
by grounded language acquisition: the meaning of a linguistic 
expression is the activated mental simulation of the 
corresponding event. Interpretation processes are guided by 
mechanisms of constraint-satisfaction, naturally inherent in 
artificial neural networks. Our focus lies on the integration of 
sequential linguistic and static situational information. The 
network is trained to achieve the simultaneous completion of 
different tasks: prediction of the sequential succession of 
linguistic units and recognition and classification of visual 
patterns related to the linguistic input. The tasks pose 
different requirements: extraction of sequential structures and 
their probabilities as well as extraction and generalization of 
diverse static patterns. Our aim is to explore the ability of the 
model to integrate these tasks, the mechanisms to map the 
contents of the differing information systems, and the usage 
of corresponding information of the respective system as an 
additional source of constraints. 

Architecture and flow of information 
We tried to avoid the inflationary use of hidden layers and 
different modules to keep functional assignments transparent 
and interrelated effects of the components analyzable. The 
base architecture is an SRN, with different input and output 
layers for linguistic and visual/situational information 
processing (Figure 1). 

The syntax component1 gets linguistic input (at Input I) in a 
sequential manner – sentences word by word – and is trained 
to predict the next input (at Output I), thereby extracting word 
classes, word transition probabilities and exploring structural 
relations in the input. Activation is forwarded from Input I 
over the Integration Layer to Output I. Learning of sequential 
structures is enabled through a context layer, which provides 
information about previous states of activation by copying the 
hidden layer and returning it at the next cycle. 

The situational component propagates compressed simple 
static situations and is trained to reproduce its crucial 
information. The actual representations of the situational 
component are provided by the visual input and teaching 
examples: Input II presents static situations with simple 

                                                           
1 The labels syntax and semantics are used as abbreviations for 
sequential linguistic vs. situational semantic component. 

828



objects on a two-dimensional grid, constituting a retina-like 
interface for the model. Activation is forwarded to the 
Integration Layer through an additional hidden layer 
(Encoder: Semantics) encoding a distributed representation of 
Input II and reaches Output II via a second additional hidden 
layer (Decoder: Semantics). Output II provides a prototype 
version of the scene, forcing the network to extract crucial 
information about space and objects. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Extended SRN-architecture for integration of 
linguistic and situational information. 

 
Both types of information – static situation and 

corresponding sequential linguistic input – are presented 
simultaneously. The situation is maintained as long as 
linguistic processing is in progress. The information from 
both components is integrated in the Integration Layer – 
allowing generalization over co-occurrences of incremental 
linguistic and static situational input. The network is forced to 
find common representations to solve the differing tasks of 
both components. In contrast to other connectionist models 
covering sequential tasks, we did not use a separated training 
regimen for the syntax and semantics components, but trained 
the complete network in a holistic fashion on the different 
information sources. 

Semantics and situational representation 
Following the idea of embodied language comprehension 
theories, conceptualization is assumed to be modal and 
analogue, encoded as schematic abstractions of events and 
objects in the environment. Meaning is assigned to linguistic 
units on different levels by mapping the units onto the internal 
structure that simulates the corresponding object, action or 
event structure. We can distinguish between a non- or pre-
linguistic representation that conceptualizes the perceived 
world independently of linguistic labeling and a linguistic 
semantics that is constituted by assignment processes, 
corresponding to the relation between prototype theory and 
prototype semantics (Rosch, 1978). So, semantics is seen as a 
process rather than a state, led by constraint-satisfaction 
mechanisms, which dynamically adjust categories based on 
new experiences. We assume an intertwined development of 

positively interacting systems, as proposed in syntactic and 
semantic bootstrapping theories. 

Visual patterns. To generate visual patterns, we used four 
discrete distinctive objects, named minus (-), pipe (|), slash (/) 
and backslash (\), distributed freely on a two-dimensional 
grid. Up to three of these objects were placed in different 
locations on that grid. Our situations differ in the number of 
involved objects, the identity of the selected objects, the exact 
location of these objects, and, as a consequence, in the spatial 
relation between those objects. The left panel of Figure 3 in 
the results section provides an example of an input situation 
depicting a backslash positioned roughly above the minus and 
slightly left above the pipe (this is obviously just one of 
several equally possible descriptions). 

Output I: Syntax Output II: 
Prototyped situations 

Decoder: Semantics 

Concerning the retina-like implementation: our intention is 
not to provide a cognitively plausible model of visual 
processing, as for example realized by Coventry et al. 
(2005) in the Functional Geometric Framework. The retinal 
grid merely provides an intuitive and simplistic presentation 
format and offers several advantages: orientation towards 
modal features, analogy on the spatial dimension on the 
situational level and sparsely structured, non-explicitly 
encoded access to information about the situations. 

Integration layer 

Encoder: Semantics 

Input I: Syntax 
Input II: Visual grid
for 2-D situation 

The target grids contain prototype versions of 
corresponding input situations, reduced in several ways: they 
represent only two objects of an arbitrary number of initially 
presented objects, reflecting attentional focus on selected 
entities. It reduces the spatial expansion and idealizes the 
relative positions of considered objects to a prototypical 
spatial relation. Again using Figure 3 as illustrative example, 
the selected prototype for the input situation is the backslash 
positioned directly above the minus, blinding out the pipe. 
Mapping onto prototypes forces the network to instantiate 
self-organized internal representations of the situations that 
are selective and schematic in nature, extracting relevant 
information. This enables the model to distinguish the objects 
and to develop the concept of relative spatial positions, a 
presupposition for the mapping of corresponding linguistic 
input. Dominey (2003) demonstrated such a purely 
associative mechanism to be sufficient to inductively acquire 
productive grammatical constructions. 

 
Table 1: Syntactic inventory for situation description. 

 
object-A  be-located  deictic-particle  eos 
deictic-particle  be-located  object-A  eos 
object-A  be-located  location-relative  object-B  eos 
object-B  be-located  inverse-location-relative  object-A  eos 
location-relative  object-A  be-located  object-B  eos 
inverse-location-relative  object-B  be-located  object-A  eos 
 
We used a very limited microlanguage for situation 

description (Table 1). The linguistic input consists of 
sentences presented sequentially word by word. The 
vocabulary contains lexical units for the distinguishable 
objects, for relative positions of the objects in space, a state 
verb, a deictic particle and an end-of-sentence marker. It is 
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encoded in a localist fashion, each active unit representing 
one word. Visual situations are complex in that they entail 
several possible spatial relations between several objects. By 
expressing one of these relations between exactly two objects, 
the network is forced to direct its focus of attention. 

Hypotheses on network performance 
We expect language to have a positive effect on the 
discrimination and categorization of the components 
establishing the corresponding situations. Vice versa, we 
expect beneficial effects of the visual input on word 
prediction, based on the assumption that the network makes 
use of mutual informative cues. This is not as obvious as it 
may appear, since one could just as well assume that the tasks 
interfere with each other due to their different representation 
formats and the narrow resource of representational space. 

In the test phase the network should be able (1) to derive 
the situational prototype without relying on the information of 
the situational input by exclusively using the sequential 
linguistic input and (2) to derive a coherent and correct 
sequential linguistic output, exclusively using the information 
of the static situation input. Furthermore the network is 
expected (3) to show systematic performance when coping 
with ambiguous cases occurring several times. When tested 
on the complete information including vision and language, 
we expect the network (4) to use the integrated crossover 
information to draw inferences on the correct output and to 
rule out irrelevant possibilities. 

Materials and simulations 
We ran the simulations on LENS (Rohde, 1999). Language 
input and output layers consisted of 16 units each, vision 
input had a grid size of 9 x 9 (= 81) units, prototyped vision 
output had a grid of 7 x 7 (= 49) units. Hidden layers 
consisted of 40 units each. The presented visual scenes 
showed up to three out of four different objects (minus, 
pipe, slash, backslash), forming complex spatial relations. 
The training sets contained 60% randomly chosen situations 
of the 130708 possible constellations of objects. 

The training regimen consisted of three different stimuli 
settings. (1) trainComplete provides visual and linguistic 
stimuli in parallel, (2) trainProduction provides only visual 
stimuli to force the network to perform language production 
for observed scenes, (3) trainComprehension provides only 
linguistic stimuli forcing the language comprehension 
process. The target information always included both visual 
scene and corresponding linguistic description. The three 
training conditions were presented in an alternating manner. 

The networks were trained for 10 epochs, but already 
showed very good performance on early epochs. We used the 
backpropagation-through-time algorithm, applying 
momentum 0.3, an initial weight range of 0.3 and a learning 
rate of 0.2, which was incrementally decreased by a factor of 
0.02 per epoch.2 The language output layer received a 

                                                           
                                                                                                 

2 We ran several sets of networks, varying learning rate (0.05 to 
0.2), momentum (0.0 to 0.6) and initial weight range (0.1 to 1.0). 

softmax function to enforce output activation complying with 
an interpretation of word probability. The test set used a 
sample of scene constellations excluded during the training 
phase. It was constructed corresponding to the training 
stimuli, providing full or single-sided reduced information: 
testComplete, testProduction and testComprehension. 

Results and discussion 
The proposed architecture has the potential to simulate and 
predict behavior relevant to research areas ranging from 
language acquisition to visual attention. What we present here 
are preliminary results of network performance using a subset 
of the possible training and test variations. The results are 
reported in three sections, treating (1) vision/comprehension, 
(2) word prediction and (3) language production, including 
relevant aspects concerning their interaction. 

Vision/Comprehension  In the testComplete condition with 
two objects in the input the model manages to produce the 
correct vision prototype at time step 1 already, without 
showing wrong objects. Over successive time steps, already 
clear objects get activated even stronger receiving additional 
support from the linguistic input. In ambiguous visual 
situations the vision output provides a preferred reading (due 
to slightly different frequencies in the training set). If the 
interpretation is falsified by the linguistic input, it adjusts the 
visual image to the linguistically referred position 
immediately. 

In the three objects condition, the vision output first 
provides a diffuse but by no means arbitrary activation 
pattern: it contains all possible objects in their possible 
relations, in most cases with preferences for one constellation. 
During the time course of the incoming sentence, affirmation 
of the selected constellation by the linguistic description 
guides the vision output to adjust the pattern to the 
predetermined state, using at each step the available 
information at hand. New information reducing the possible 
constellation leads directly to a correction. At the last step 
only the requested pattern is produced, leaving no deviant 
activation (compare Figure 2). Importantly, at the final steps 
in both conditions the vision output contains only the 
activation of the correct predetermined constellation. 

For the two-objects condition, this adjustment process 
could best be described in terms of disambiguation and 
discrete categorization. The process for the three-objects 
condition is rather a shift of attentional focus. Corresponding 
to the linguistic information, irrelevant aspects of the scene 
are shifted out of the focus of interpretation, while the 
relevant information receives highlighting by exclusive 
activation (Figure 3). This high context sensitivity emerges 
from implicit constraint-satisfaction mechanisms of the 
network, inherently establishing a frame-of-attention 
mechanism not built into the system artificially. 

 
Results were largely robust for most combinations of parameters, 
showing slight performance loss for some combinations, but 
preserving the qualitative systematicity of performance. 
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In the testComprehension condition we can observe the 
same behavior of direct correspondence between provided 
linguistic information and constructed scene prediction. 
Slightly different from the testComplete set, it produced even 
clearer constellation predictions, since input is less distorted 
by competing relations. The comprehension process succeeds 
incrementally, using all new information to construct a scene 
prediction as complete as possible. As soon as all relevant 
information is provided by the linguistic input, a stable visual 
scene prediction is constructed, containing only correct 
activations. This proves that the comprehension mechanism 
works independently from provided visual information and is 
able to construct complete visual scenes from linguistic 
descriptions, when no visual information is provided. 

           
Figure 2: Comprehension and inference effect. 

 
During the incremental construction of the situation model 

one can observe different strategies for using given and 
inferring missing information. As soon as a spatial relation is 
referred to, the vision component displays placeholders for 
the respective positions. In some cases, these take the shape 
of some object, indicating an expected default. If an object is 
already given, it is positioned correctly, leaving the second 
underspecified. With no spatial relation given, an introduced 
object is instantiated with weak and slightly obscured 
activation on multiple positions. 

 

    
Figure 3: Comprehension and attentional focus effect. 

Word prediction. Like the vision output the linguistic output 
is highly accurate in the testComplete condition with two and 
three objects. At time step 1 the network prefers to predict the 
spatial relations. It states only possible relations according to 
the visual input. The same holds for the following time steps. 
During object prediction, the network predicts only objects 
observed at the visual retina. At functional syntactic positions 
(verb, end-of-sentence marker), the network produces optimal 
activation. 

Moreover, in successive time steps, it predicts only those 
objects and relations that can occur corresponding  to the  
descriptive sequence given before (e.g., after the object 
location 'right-of', only objects are linguistically predicted, 
that can occur in a 'right-of' constellation). So it achieves far 
more than POS-tagging or grammatical probability matching 
(as criticized by Steedman, 1999). Its predictions are sensitive 
to word transition probabilities and grammatical category, 
and at the same time sensitive to possible descriptions of the 
scenes as provided by the visual context. We interpret this as 
visual priming, determining the linguistic performance by 
pre-activation of the relevant lexical items. In the condition 
testComprehension, the word prediction component could not 
rely on additional visual information. Therefore it activated 
all possible objects and relations at the respective syntactic 
positions, which are the only constraints provided by the 
preceding linguistic information. 

Language production. For the testProduction set we 
reconfigured the trained network with a copy-connection 
from the language output layer (Output I) to the language 
input layer (Input I) and equipped the output layer with a 
winner-take-all functionality.3 We have just begun analyzing 
production data, so the results are somewhat preliminary. The 
network produces mainly correct and complete sentences. 
These sequences contained only objects and relations that 
were given in the visual input, however not always expressing 
the correct constellation of objects. The network always 
instantiated linguistic starting points driven in correspondence 
to the distinctiveness of the visual input (e.g., clarity of spatial 
relation). While the network did rarely produce wrong 
sentences, it sometimes produced sentences that did not 
accurately correspond to the visual scene. Sometimes, objects 
were repeated (slash is left-of slash), or objects appeared in 
reverse order. The majority of sentences however expressed 
the correct constellation of objects. 

The successful integration of information and interaction 
between the two components is reflected in the strong 
correspondence between language and vision: even when the 
network assumes a wrong constellation (e.g., for ambiguous 
cases and for three objects with initially wrong preferred 
constellations), this is predicted consistently on the vision and 
language output. Moreover, activation strengths for the 
objects and locations in the visual output and their respective 
word nodes correspond to each other (Figure 2, second 

                                                           
3 This feedback loop triggers sequential routines to control the 
production process, providing the actual output as input stimulus 
on the next time step (e.g., Rohde, 2002). 
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pattern). Furthermore, new linguistic information can lead to 
a reconstruction of the visual prototype preferred so far, 
revising both spatial relation and concerned objects. 

One important aspect to analyze the achieved integration is 
still to be done: the examination of representational structures 
in the internal layers. This is the key to understanding the 
actual achievements of the model. Since we have ensured its 
performance quality, this will be the next step of our research. 

Conclusions 
The proposed model performed constantly well over all test 
sets in every imposed task. It comprehends language in an 
incremental manner and produced correct syntactic strings, 
even with only the mutually restricted information available. 
It showed systematic behavior for different demands and 
conditions concerning missing or ambiguous information. 
Notably, all specifics of the behavior resulted from inherent 
properties and were not imposed artificially. The model 
integrates different information sources, which enables it to 
produce context sensitive behavior, to reduce irrelevant 
information and to draw inferences on possible target states. 
This leads to effects best described in terms of visually 
induced linguistic performance and language driven shift of 
visual attentional focus. 

Our retina-like representation format clearly limits the 
possibilities of representing world situations. But it avoids the 
theoretical shortcomings of using explicitly assigned 
relations. We assume that it is an inherent and distinctive 
feature of connectionist models to extract and assign the 
relations given in the world by themselves. 

Further elaboration of the model will first of all encourage 
an independent generation of prototype situations. The 
weakest point of the model at present is the explicitly 
provided prototypicality, i.e. the supervised training of the 
situations using pre-structured prototypes. To ensure 
complete independence of the model, we need to equip it with 
an unsupervised training algorithm that self-organizes 
prototype extraction using auto-associative learning 
mechanisms. This way, the model could construct its own 
prototypical instantiations, corresponding to the achievement 
of auto-associative lexical models (e.g., McClelland & 
Rumelhart, 1985). A further improvement of the expressive 
and predictive power is the extension of situational 
complexity. The dimensional aspects of time and causality 
could be introduced by object movement and interaction. This 
will subsequently extend the vocabulary and the syntactic 
complexity of the linguistic input, enabling us to construct 
richer and more language-like descriptions. 

Embodiment theories guided the implementation of the 
connectionist model. On the other hand, explorations of the 
inherent systematic performance of artificial neural networks 
can provide a useful subsidiary explanation base to sharpen 
some opaque conceptualizations in the embodied cognition 
literature. 
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