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A Probabilistic Incremental Model of Word L earning in the Presence of
Referential Uncertainty

Afsaneh Fazly, Afra Alishahi and Suzanne Stevenson
Department of Computer Science
University of Toronto
{afsaneh,afra,suzanp@cs.toronto.edu

Abstract Many computational models of word learning have been

S used to simulate and account for the observed patterns such
We present a probabilistic incremental model of early word f - d th bul H
learning. The model acquires the meaning of words from ex- &S ast mapping and the vocabulary spurt. However, most
posure to word usages in sentences, paired with appropriate of these models use input data that consists of pairings of a
semantic representations, in the presence of referemeairy single word and its semantic representation, and ignore the
tainty. A distinct property of our model is that it continiyate- roblem of finding the right referent for each word in an utter
vises its learned knowledge of a word's meaning, but oveetim P _ gtheng
converges on the most likely meaning of the word. Another ance (Regier, 2005; Li et al., 2004; Xu & Tenenbaum, 2007).

key feature is that the model bootstraps its own partial know  Other models simulate learning the meaning of words in the
edge of word—meaning associations to help more quicklylear f but th ith ificial i
the meanings of novel words. Results of simulations on nat- Contextof an utterance, but they either use artificial infaia

uralistic child-directed data show that our model exhibi¢s with controlled referential uncertainty, which may deeiat

haviours similar to those observed in the early lexical &igu from children’s naturalistic learning environments ($isk

tion of children, such as vocabulary spurt and fast mapping. . . . . .
1996), or rely on cognitively implausible learning straé=sg

. and ignore the problem of referential uncertainty (Yu, 2005

Early Word Learning These properties make the existing computational modls st

Acquiring the meaning of words is a challenging task forchil jnadequate for a careful investigation of the patterns déich
dren: For an utterance that describes a scene, a child mugbrd learning in a realistic setting.

align each word with the right referent in the scene. Over e propose a novel incremental model of early word learn-
time, such alignments must be used to extract a meaning fgry in the face of referential uncertainty. Our computa-
each word that is consistent across all of its usages. Orte wekional model proposes a probabilistic interpretation afssr
known problem in word learning is that céferential uncer- g ational learning, and bootstraps its own partiallgrieed
tainty, that is, the child may perceive many aspects of th§qyledge of the previously-observed words to accelerate
scene that are unrelated to the perceived utterance (QUingorq learning over time. We evaluate our model on naturalis-
1960; Gleitman, 1990). For example, a child may hear thgjc child-directed data, and show that the overall behavidu
sentencelo rolled the ball but observe that “Jo is happily he model is reminiscent of the general patterns observed in
touching a red ball with her hand and slowly rolling it while cpiigren. Moreover, our experimental results show thatiea
her mother is talking to her”. However, over time, the child ing the meaning of words is a much harder task when the
can establish an association between the word “ball” and thﬁ]put contains referential uncertainty, illustrating ihepor-
round object that the word refers to. tance of modeling this aspect of word learning. Our model
Learning the meaning of words has been suggested to Rgs provides an appropriate testbed for investigatingrthe
based on cross-situational observation (Pinker, 1989F Thyt of referential uncertainty on the word learning preces
meaning of a word is consistent across multiple usages, and
can be learned by detecting the set of meaning elements that Related Computational Models
are common across all situations in which a word occurs. In
its original form, this hypothesis is not precisely spedfie The rule-based model proposed by Siskind (1996) is the first
moreover, it does not provide the flexibility needed for wordto simulate the process of learning word meanings in the pres
learning, especially in handling noisy or ambiguous data. Aence of referential uncertainty. The model relies on a set
detailed account of this mechanism is needed in order to exef principles to constrain hypotheses about the meaning of
plore the possibility of learning word meaningsin a natisral words, such as the principle of contrast and the principle of
tic environment, and to account for many general patterns ohinclusivity. The model is tested on artificially generateplit
served in child experimental data. These patterns incluiele t consisting of highly controlled referential uncertainty.is
vocabulary spurt (i.e., a slow stage of learning, followgd b shown that under these circumstances the meaning of words
a sudden increase in the learning rate), fast mappingtfie., can be learned, and certain types of noise can be handled by
ability to map a novel word to a novel object in a familiar con- detecting and ruling out the inconsistent input. Howewes, t
text), and the effect of the age of acquisition of words otirthe rule-based nature of the model limits its adaptability ttuna
processing speed. Computational modeling is a powerflil toaal data. For example, it is not possible to revise the meanin
for precise investigation of the hypothesized mechanisins cof a word once it is considered as ‘learned’, which prevents
word learning, and for studying the suggested patterns. the model from handling highly noisy or ambiguous data.
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Another computational model that uses cross-situational'he L earning Algorithm
inference is proposed by Yu (2005), which is also used t0 €xpy,r model combines probabilistic interpretations of cross

amine the role of various factors, such as syntax (Yu, 2006)i,,ational learning (Quine, 1960) and a variation of the-pr
in word Iearmng. Howevgr, the quel uses the original formciple of contrast (Clark, 1990) through an interaction be-
of the automatic translation learning algorithm of Brown ety can two types of probabilistic knowledge acquired and re-

al. (1993), which lacks cognitive plausibility: It is non- gneq over time. Given an utterance—scene pair received at
incremental and learns through an intensive batch prawgssi ;,at e (U, M®), the model first calculates an align-

of a whole training data. Moreover, it is tested on limited ex o probabilitya for eachw € U® and eact € M®), using
perimental _data conta_lnlng a very small vocabulary, ant wit meaningp(.|w) of all the words in the utterance prior to
no referential uncertainty. . _ this time. The model then revises the meaning of the words in
Most of the eX|§tlng models rely ona pairing ofa semaptlcu(t) by incorporating the alignment probabilities for the cur-
representation with a single word form (or its phonological .o ¢ input pair. This process is repeated for all the inpirspa

representation)—as opposed to full utterances—as tining o ot 4 time.

data. Connectionist models have been proposed for learn-

ing such associations, and investigating various patterns Step 1. Calculating the alignment probabilities: For a
the process of learning. For example, Li et al. (2004) simufeaturef € M) and a wordw € U®, the higher the prob-
late vocabulary spurt and age of acquisition effects, waere ability of f being part of the meaning of (according to
Horst et al. (2006) examine the role of fast mapping. Regiep(f|w)), the more likely it is thaff is aligned withw in the
(2005) proposes an associative exemplar-based modetthat aurrent input. In other wordsa(w|f, UV, M) is propor-
counts for the changes observed in children’s word learningional to p*=%(f|w). In addition, if there is strong evidence
pattern, such as fast mapping and learning synonymy, withthat f is part of the meaning of another word iftJ—i.e.,
out a change in the underlying learning mechanism. Théf pt—2(f|w) is high for somew, € U other thannv—the
Bayesian model of Xu and Tenenbaum (2007), on the othelikelihood of aligning f to w should decrease (principle of
hand, focuses on how humans generalize and learn categoggntrast). Combining these two requirements:

meanings from examples of word usages.

. . © a0 p D (fw)
Overview of the Computational M odel a(wif, U, M%) = S Pt @
Our word learning model is an adaptation of a model of auto- W=t

matic translation between two languages, proposed by Brown

et al. (1993). Unlike the original model (as used by Yu, General features such agTIFACT or ENTITY are part of
2005), ours is incremental and does not require a batch prdhe meaning of, and thus co-occur with, many words in lan-
cess over the entire data. We explain the details of our mod@uage. Therefore, in an input pair, they are usually aligned

in the following subsections. with more than one word in the utterance. Over time, the
) ) model correctly learns a relatively strong associatiowben
Utterance and M eaning Representations such features and the appropriate words, although their ass

The input to our word learning model consists of a set ofciation is less strong than those of more specific features.

utterance—scene pairs that link an observed scene (what the _ _

child perceives) to the utterance that describes it (what thStep 2: Updating theword meanings:  We need to update
child hears). We represent each utterance as a sequence!3¢ probabilitiesp(.|w) for all wordsw e ue, based on the

words, and the corresponding scene as a set of semantic fegiidence from the current input pair reflected in the alignine

tures (including features irrelevant to the utterancej; e. probabilities. We thus add the current alignment probtsii
for w and the feature§ € M to the accumulated evidence

from prior co-occurrences off and f. We summarize this

Scene: { ANIMATE, JOE, ACT, MOTION, ROLL, ARTIFACT, ituational evid in the f ¢ it
OBJECT GAME EQUIPMENT, MOTHER, HAND, TALK } cross-situational evidence in the form of an associationesc
which is updated incrementally:

In the Experimental Setup section, we explain how the utter-
ances and the corresponding semantic features are selectetissofl) (w, f) = assot Y (w, f) +a(w|f, UO, M®)  (2)
and how we add referential uncertainty.

Given a corpus of such utterance—scene pairs, our modethere assdt V) (w, ) is zero ifwandf have not co-occurred
learns the meaning of each wondas a probability distribu- before. The association score of a word and a feature is ba-
tion, p(.|w), over the semantic features appearing in the corsically a weighted sum of their co-occurrence counts: In-
pus. In this representatiop( f|w) is the probability of fea- stead of adding one each time the two have appeared in a
ture f being part of the meaning of word In the absence of pair together, we add a probability (a value between zero and
any prior knowledge, all features can potentially be pathef ——— _ o _ _
meaning of all words. Hence, prior to receiving any usages of Ve assume that a feature in a scene is highly associated with

. . AR only one of the wordsn the corresponding utteranceT his differs
a given word, the model assumes a uniform distribution ovefom what is widely known as principle of contrast, in that fatter
semantic features as its meaning. assumes contrast across the entire vocabulary.

Utterance: Joe rolled the ball
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one) that reflects the confidence of the model that their co- | va

— GAME EQUIPMENT#1

occurrence is indeed becaulsés part of the meaning of. — EQUIPMENT#1
K i — INSTRUMENTALITY #3, INSTRUMENTATION#1

The model then uses these association scores to update the ISR S

meaning of the words in the current input, as in: — OBJECHL, PHYSICAL OBIECTL
— ENTITY#1
(t) (f |W) _ 33506) (fv W) + )\ (3) ball: { GAME EQUIPMENT#1 EQUIPMENT#1 INSTRUMENTALITY #3 ARTIFACT#1,
p - Z assoéf) (f W) + B % )\ WHOLE#2 ,0BJECH1 PHYSICAL ENTITY#LENTITY#1 }
K
fier Figure 1: Semantic features fball from WordNet.

where7 is the set of all features seen so fars a smoothing . |
factor for allowing a small probability for unseen featyres Experimental Set-UP

andp is the expected number of feature types. The denomiThe Input Corpora

nator is a normalization factor to get proper probabilities The training data for our model consists of a sequence of ut-

Handling Referential Uncertainty terances, each paired with a set of semantic features. We ex-
] ~_tractutterances from the Manchester corpus (Theakstdn et a
Our model updates the meaning of a word every time it i)001) in the CHILDES database (MacWhinney, 1995). The
heard in an utterance. This flexibility, in addition to thelpr  \anchester corpus contains transcripts of conversatidths w
abilistic nature of the learning, allows the model to handlechiidren between the ages of 1;8 and 3:0. We use the mother’s
referential uncertainty. Recall that we simulate refeednin- speech from transcripts of 6 children, remove punctuatich a
certainty in the form of additional semantic features that a |emmatize the words, and concatenate the corresponding ses
irrelevant to the meanings of the words in an utterance. Wgjons as our test data.
expect that the irrelevant features do not regularly caiocC  There is no semantic representation of the correspond-
with a given word (in contrast to the relevant features). §hu ing scenes available from CHILDES. Therefore, we auto-
the overaI_I association score between an irrelevant featun matically construct a scene representation for each uttera
the word is expected to be lower than that of a relevant feapaseq on the semantic features of the words in that utterance
ture. Thi_s in turn will lower the probability of the irrelend  For nouns and verbs, we extract the semantic features from
features inp(.|w). _ _ WordNe# as follows: We take all the hypernyms (ancestors)
Another strategy we adopt for handling referential uncer<oy the first sense of the word, where each hypernymis a set of
tainty is the addition of a dummy word to every utterancesynonym words (or synsets), tagged with their sense number.
when updating the alignment probabilities. This is to allow gy each hypernym, we add the first word in its synset to the
the possibility of aligning the irrelevant semantic fe@ito et of the semantic features of the target word (see Figure 1
the dummy word, hence lowering their alignment probabilityfor an example). For adjectives and closed class words (e.g.
with the words in the utterance. Note, however, that nOth'”Ebronouns), we extract the semantic features using thersyste
indicates to the model a priori which features are relevadta f Harm (2002). Other words not found in either of the two
which are irrelevant. resources (e.g., adverbs) are removed from the utterances.
We need to evaluate our model on input that includes ref-
erential uncertainty. That is, the representation of trenec
To evaluate our model, we need to verify how accurately thenust contain semantic features that do not come from the per-
model learns the meaning of words. We thus define a comeeived utterance. To simulate such data, we use every other
prehension score (w), for each wordw at timet, which  sentence from the original corpus (preserving their chrono
compares the learned meaningvgfor p(.|w), to the word’s  |ogical order), paired with its own scene representation as
correctmeaning,7. The correct meaning of a word is the well as that of the following sentence. The extra semantic
set of semantic features for that word in our input-genenati features that are added to each utterance thus correspond to

Word Comprehension Score

lexicon? The comprehension score is calculated as in: meaningful semantic representations, as opposed to rdpdom
® ® selected features. The resulting corpus has a high raté-of re
cw) =3 pY(fiw) (4) i i isdbai
f J erential uncertainty, where on average an utterance isgair
jG’Z’W

with twice as many semantic features as there are in its-origi
where 0< c(w) < 1. Ideally, a word is accurately learned nal meaning set.

when most of its probability masp(.|w) is concentrated

around its true features (those ). We thus consider a Parameters

word as learned when its comprehension score exceeds a pi#&e set the parameters of our learning algorithm using a de-
defined thresholdic. In our experiments reported in the fol- velopment data set which is similar to our test data, but-s se
lowing sections, we examine the behaviour of our model bylected from a non-overlapping portion of the Manchester cor
looking into the comprehension scores. pus. The expected number of semantic feat@g@sEqn. (3),

S is set to 7000 based on the total number of distinct features
2Note that the model does not have access to this lexicon for—
learning; it is used only for input generation and evaluatio Shttp://wordnet. princet on. edu/
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book(f=54) car (f=148) fish(f=31) kiss(f=14)

i Figure 3: Comprehension scores of four words over time.

Proportion of learned words
4

N “ﬁﬁ'?i Figure 2 displays three learning curves including only vgord
RO which are heard at least twice, three times or five times.
T e T A comparison of the curves shows that the more frequent
Figure 2: Proportion of learned words over time. a word is, the more likely it is to be learned. These results

confirm our hypotheses that in the presence of RU, the model
é’l_eeds more instances of a word usage to learn it with high
confidence. Nonetheless, even for words with a minimum
frequency of 5, the learning is still more difficult when ther

extracted for the development data. The smoothing param
ter A in Eqgn. (3) is set to a very small value, 70 We set
the comprehension threshoR, in Eqn. (4), to a reasonably . , X

high value, 07 (recall that comprehension scores are betweelt referential uncertainty.

0 and 1). This was a value with which our model showed reaconvergence and L earning Stability
sonable performance on development corpus. Moreovér, 0
is a reasonably large portion of the probability mass, give
that only a small fraction of the semantic features appear
part of the correct meaning of a word.

Our learning algorithm revises the meaning of a word every
;{ime it is heard in an utterance (in contrast, e.g., to Siskin
'f996’s model). This is a key property that makes our model
flexible so it can handle noise by revising an incorrectly
Experimental Results Iearngd r_neaning. It is .howe_ver important tlo.ensure that the
learning is stable despite this constant revision—thathis,
In the following sections, we provide a qualitative anadysi  meaning of earlier-learned words is not corrupted as atresul
our model through examination of its learning patterns. Weyf |earning new words (the problem of catastrophic interfer
train the model on the input corpus with referential uncer-gnce often observed in connectionist models). If the learni
tainty, as explained in the previous section. In order tavexa s stable, we expect the comprehension scores for words gen-
ine how adding referential uncertainty affects word leagni ~ ergjly to increase over time as more and more examples of the
we repeat most of the reported experiments on the input witky,qrq usages are encountered in the input.
no referential uncertainty, and compare the results. Figure 3 shows the change in the comprehension scores
of four sample words over time. As expected, the compre-
hension scores show some fluctuation at the beginning, but
As noted before, one of the main challenges of word learnthey converge on a high value as more examples are ob-
ing is the uncertainty inherent in the children’s learningie  served. We also examine the average comprehension score
ronment. To better understand the effect of referentiabinc of all words, as well as of those which have been learned
tainty (RU) in learning, here we compare the behaviour of outat some point (i.e., their comprehension score has sumpasse
model in two conditions, without RU and with RU. Figure 2 the thresholdd.). The average comprehension score of all
shows the change in the proportion of learned words (thos@ords increases rapidly and becomes stable around 0.7 after
whose comprehension scores exceed the specified thresholstbcessing almost,800 input pairs, reflecting the stability
over time, where time is measured as the number of inpuh learning. As expected, the average comprehension score
utterance-scene pairs processed. The bottom curve shews #6f the learned words increases more quickly and reaches a
learning pattern for input with RU, and the top one shows thenigher value (around 0.8). With no RU, the average com-
results for data without RU. As expected, in both cases, th@rehension scores show similar increasing patterns, leut ar
proportion of learned words increases over time, with adrapi generally higher, reflecting easier learning.
pace at early stages of learning, and a more gradual pace late ]
In addition, Figure 2 shows that the task of word learning isVocabulary Growth and Fast Mapping
much easier in the absence of RU, reflected in the sharp va-ongitudinal studies of early vocabulary growth in childre
cabulary growth, as well as in the high proportion of learnedhave shown that vocabulary learning is slow at earlier stage
words (above 90%) in this condition. of learning, then proceeds to a rapid pace, and finally be-
To further elucidate the notable drop in the proportion ofcomes less active (Carey, 1978)—a phenomenon often re-
learned words when there is RU, we look into the relation beferred to as “vocabulary spurt”. Here, we look at the change
tween a word’s frequency and how easily the model learns itin the learning rate over time to see whether the pattern of
We examine the learning curves when low frequency wordsocabulary growth in our model matches this observation.
are removed. (Note that low frequency words are only re- Figure 4 depicts the proportion of learned words against
moved from the evaluations, and not from the input data.Yhe number of word types heard at each time, both without

Effects of Referential Uncertainty
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Figure 4: Rate of vocabulary growth as new words are heard.

and with referential uncertainty. Without RU, the learning
rate is immediately high, rather than a period of slow growth
followed by a spurt as in children. The expected vocabulary
growth pattern is more pronounced with RU: There is little
learning prior to hearing about 150 words. This can be at-

tributed to the property of our model that uses its own ledrne e e © 00 m@ w0
knowledge of word meaning to facilitate the learning of new . R .
words. After this sudden increase in the number of learned (b) With referential uncertainty.

words, the learning proceeds with a nearly constant rate. III:igure 5: Number of usages needed to learn a word vs. the
is important to note that since we test our model on realisti%me of fi.rst exposure for that word '
data, we do not have a fixed vocabulary, and therefore, new '

words are heard continually. The learning thus does not stop Studying the AoA effect in a computational model such as

but it gradually becomes slower, perhaps mainly due to a COBurs offers the advantage of having direct access to thd exac

responding decrease in the rate of hearing new words. 546 gt which the model has acquired each word. More impor-

The observed shift from slow to fast word learning is SOMe+antly, different interpretations of the age of acquisitéan be
times tied with a phenomenon referred to as fast mapping,yestigated: Whether AoA refers to the time of the fist
(Carey, 1978). Fast mapping states that once children hayg,syreto a word, or the age at which the model/child can cor-
learned a repository of words, they can easily link novelrecﬂy comprehenar producethe word. Moreover, most of
words to novel objects in a familiar context based only onine reported studies on AoA effects in humans, as well as the
a single (or few) exposures. Many researchers believe thalymputational modeling of these effects, have been focused
the delay in the onset of fast mapping in children is not due tQyjiher on the association between the phonological form of
a change in the underlying learning mechanisms, but is a re; word and the corresponding written form (as in the word
sult of processing more input data (Regier, 2005; Horst et al naming task), or on the familiarity of a written form (as in
2006). To examine this hypothesis in our model, we 00k akne exical decision task). Few studies have been performed
the interaction between the number of usages that the modg, whether similar AoA effects can be observed in tasks that
needs to learn a word, and the word'’s age of exposure, dgg|y on the association between a word form andriesaning
fined as the first time the word is heard. Figure 5 depicts th‘?but see Li et al., 2004). Our model provides an appropri-
plots (for the words that are learned at some point in time)gte testbed for investigating whether AoA effects can be ob-
both without and with RU. In both cases, the model showsseryed in the context of learning word meaning, especially i
clear fast mapping behaviour: Words received later in timene presence of referential uncertainty.

on average, require fewer usages to be learned. With refer- 1, gimjate AoA effects in our model, we need to estimate
ential uncertainty, fast mapping occurs much more graguall . factors. We estimate the processing speed of a word

These resul_ts show that our model exhibits fast mapping pat;; 5 timet as its comprehension scoc) (w), as given in
terns once it has been exposed to enough word usages, agfly (4) (assuming that words that have a higher comprehen-
that no change in the learning mechanism is needed. sion score can be accessed and processed faster). We conside
two different estimations for the age of acquisition of a dor
First, the onset of the word in the training data, or its age
Recent studies have suggested that age of acquisition (AoAYf ‘Exposure’; and second, the first time the model correctly
independently of word frequency, affects the speed of prolearns the word, or its age of ‘Learning’.

cessing a word. For example, AoA is shown to be a good For each AoA condition, we compile two sets of words
predictor of the adult’s speed in word naming (Tamminen &from the training data, an ‘Early’ set, which contains words
Gaskell, 2006) or lexical decision (Nazir et al., 2003; Tam-acquired at an earlier stage of learning, and a ‘Late’ set; co
minen & Gaskell, 2006). One problem with these studies igaining words acquired at a later stage. We consider the time
that they cannot accurately estimate the age of acquisifion span 5,000-10,000 as the earlier stage, and the time span
a word, and mostly rely on the subjective adult AoA ratings. 10,000-15,000 as the later stage (we skip over the time span

o
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Low Frequency High Frequency
Condition || Early Late Early Late
Exposure || 0.65 (70)| 0.70(35) || 0.84(8) | 0.82 (1)
Learning || 0.82(38)| 0.85(32) || 0.85(18) | 0.79 (4)

ings acquired by our model. Such word categories can in turn
be used as feedback to our word learning model through a
bi-directional bootstrapping process. In future work, wié w

explore these options, and examine the impact of new factors

Table 1: Average comprehension score for Early and Lat®" the learning pattern of the model.
word sets for the Exposure and Learning conditions, con- References

trolled for frequency. Size of the sets is shown in parerghes , )
Brown, P. F., Della Pietra, S. A., Della Pietra, V. J., & Mer-

1-5,000 in order for the model to stabilize). To control for ¢, R. L. (1993). The mathematics of statistical machine
frequency, we only include words whose frequency after pro- translation: Parameter estimatiddomputational Linguis-
cessing all 15,000 input pairs falls into a certain range. tics, 19(2), 263-311.

Table 1 shows the average comprehension scores of ey, S. (1978). The child as word learner. In M. Halle,
words in the Early and Late sets after processing 15,008.pair 9 Bresnan, & G. A. Miller (Eds.)Linguistic theory and
The scores are calculated for two conditions, Exposure and PSychological realityThe MIT Press.

Learning, and for two different frequency ranges, Low Fre-Clark, E. (1990). On the pragmatics of contrasurnal of
quency (between 2 and 4) and High Frequency (between 6 Child Languagel7, 417-431. _
and 10). The results show an interesting pattern: for mor&!€itman, L. (1990). The structural sources of verb measiing
frequent words, an AoA effect can be observed, i.e., words L-@nguage Acquisitiort, 135-176. o

acquired earlier are, on average, easier to comprehend (afiR™, M. W. (2002)Building large scale distributed seman-
therefore easier to process). In contrast, for low frequenc i€ feature sets with WordNe€arnegie Mellon University.
words, an opposite effect can be observed for both condiiorst J- S., McMurray, B., & Samuelson, L. K. (2006). On-
tions, i.e., words acquired later are easier to comprehend. lIN€ Processing is essential for learning: Understancisg f
This suggests that age of acquisition mainly affects the pro Mapping and word leaming in a dynamic connectionist ar-
cessing speed of words that are well-entrenched, and that th_chitecture. IrProc. of CogSci'06. .
infrequent words can be remembered only if they have beehl: P-» Farkas, I., & MacWhinney, B. (2004). Early lexical
acquired later. However, this prediction may not be reiabl d€velopment in a self-organizing neural netwoikeural

due to the small number of the high frequency words in each N&tworks 17, 1345-1362. _
set, and further research is needed to confirm it. MacWhinney, B. (1995).The CHILDES project: Tools for

analyzing talk(2nd ed.). Lawrence Erlbaum Associates.
Nazir, T. A., Decoppet, N., & Aghababian, V. (2003). On
) the origins of age-of-acquisition effects in the percaptio
We have presented a computational model of word learn- of printed words Developmental Sciencé(2), 143-150.
ing that draws on cognitively plausible mechanisms, suclpinker, S. (1989)Learnability and cognition: The acquisi-
as cross-situational observation and the principle ofrewit tion of argument structuteThe MIT Press.
The model employs a probabilistic learning algorithm thati - Quine, W. (1960)Word and objectThe MIT Press.
crementally updates word meanings based on the observgghgier, T. (2005). The emergence of words: Attentional
pairings of utterances and scene representatlons. Our—expe |earning in form and meanin@ognitive Scienqégi 819—
imental results show that the model can successfully handle ggs.
referential uncertainty, and many general patterns id@xt  sjskind, J. M. (1996). A computational study of cross-
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