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A Probabilistic Incremental Model of Word Learning in the Presence of
Referential Uncertainty

Afsaneh Fazly, Afra Alishahi and Suzanne Stevenson
Department of Computer Science

University of Toronto
{afsaneh,afra,suzanne}@cs.toronto.edu

Abstract

We present a probabilistic incremental model of early word
learning. The model acquires the meaning of words from ex-
posure to word usages in sentences, paired with appropriate
semantic representations, in the presence of referential uncer-
tainty. A distinct property of our model is that it continually re-
vises its learned knowledge of a word’s meaning, but over time
converges on the most likely meaning of the word. Another
key feature is that the model bootstraps its own partial knowl-
edge of word–meaning associations to help more quickly learn
the meanings of novel words. Results of simulations on nat-
uralistic child-directed data show that our model exhibitsbe-
haviours similar to those observed in the early lexical acquisi-
tion of children, such as vocabulary spurt and fast mapping.

Early Word Learning
Acquiring the meaning of words is a challenging task for chil-
dren: For an utterance that describes a scene, a child must
align each word with the right referent in the scene. Over
time, such alignments must be used to extract a meaning for
each word that is consistent across all of its usages. One well-
known problem in word learning is that ofreferential uncer-
tainty, that is, the child may perceive many aspects of the
scene that are unrelated to the perceived utterance (Quine,
1960; Gleitman, 1990). For example, a child may hear the
sentenceJo rolled the ball, but observe that “Jo is happily
touching a red ball with her hand and slowly rolling it while
her mother is talking to her”. However, over time, the child
can establish an association between the word “ball” and the
round object that the word refers to.

Learning the meaning of words has been suggested to be
based on cross-situational observation (Pinker, 1989): The
meaning of a word is consistent across multiple usages, and
can be learned by detecting the set of meaning elements that
are common across all situations in which a word occurs. In
its original form, this hypothesis is not precisely specified;
moreover, it does not provide the flexibility needed for word
learning, especially in handling noisy or ambiguous data. A
detailed account of this mechanism is needed in order to ex-
plore the possibility of learning word meanings in a naturalis-
tic environment, and to account for many general patterns ob-
served in child experimental data. These patterns include the
vocabulary spurt (i.e., a slow stage of learning, followed by
a sudden increase in the learning rate), fast mapping (i.e.,the
ability to map a novel word to a novel object in a familiar con-
text), and the effect of the age of acquisition of words on their
processing speed. Computational modeling is a powerful tool
for precise investigation of the hypothesized mechanisms of
word learning, and for studying the suggested patterns.

Many computational models of word learning have been
used to simulate and account for the observed patterns such
as fast mapping and the vocabulary spurt. However, most
of these models use input data that consists of pairings of a
single word and its semantic representation, and ignore the
problem of finding the right referent for each word in an utter-
ance (Regier, 2005; Li et al., 2004; Xu & Tenenbaum, 2007).
Other models simulate learning the meaning of words in the
context of an utterance, but they either use artificial inputdata
with controlled referential uncertainty, which may deviate
from children’s naturalistic learning environments (Siskind,
1996), or rely on cognitively implausible learning strategies
and ignore the problem of referential uncertainty (Yu, 2005).
These properties make the existing computational models still
inadequate for a careful investigation of the patterns of child
word learning in a realistic setting.

We propose a novel incremental model of early word learn-
ing in the face of referential uncertainty. Our computa-
tional model proposes a probabilistic interpretation of cross-
situational learning, and bootstraps its own partially-learned
knowledge of the previously-observed words to accelerate
word learning over time. We evaluate our model on naturalis-
tic child-directed data, and show that the overall behaviour of
the model is reminiscent of the general patterns observed in
children. Moreover, our experimental results show that learn-
ing the meaning of words is a much harder task when the
input contains referential uncertainty, illustrating theimpor-
tance of modeling this aspect of word learning. Our model
thus provides an appropriate testbed for investigating theim-
pact of referential uncertainty on the word learning process.

Related Computational Models

The rule-based model proposed by Siskind (1996) is the first
to simulate the process of learning word meanings in the pres-
ence of referential uncertainty. The model relies on a set
of principles to constrain hypotheses about the meaning of
words, such as the principle of contrast and the principle of
inclusivity. The model is tested on artificially generated input
consisting of highly controlled referential uncertainty.It is
shown that under these circumstances the meaning of words
can be learned, and certain types of noise can be handled by
detecting and ruling out the inconsistent input. However, the
rule-based nature of the model limits its adaptability to natu-
ral data. For example, it is not possible to revise the meaning
of a word once it is considered as ‘learned’, which prevents
the model from handling highly noisy or ambiguous data.
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Another computational model that uses cross-situational
inference is proposed by Yu (2005), which is also used to ex-
amine the role of various factors, such as syntax (Yu, 2006),
in word learning. However, the model uses the original form
of the automatic translation learning algorithm of Brown et
al. (1993), which lacks cognitive plausibility: It is non-
incremental and learns through an intensive batch processing
of a whole training data. Moreover, it is tested on limited ex-
perimental data containing a very small vocabulary, and with
no referential uncertainty.

Most of the existing models rely on a pairing of a semantic
representation with a single word form (or its phonological
representation)—as opposed to full utterances—as training
data. Connectionist models have been proposed for learn-
ing such associations, and investigating various patternsin
the process of learning. For example, Li et al. (2004) simu-
late vocabulary spurt and age of acquisition effects, whereas
Horst et al. (2006) examine the role of fast mapping. Regier
(2005) proposes an associative exemplar-based model that ac-
counts for the changes observed in children’s word learning
pattern, such as fast mapping and learning synonymy, with-
out a change in the underlying learning mechanism. The
Bayesian model of Xu and Tenenbaum (2007), on the other
hand, focuses on how humans generalize and learn category
meanings from examples of word usages.

Overview of the Computational Model
Our word learning model is an adaptation of a model of auto-
matic translation between two languages, proposed by Brown
et al. (1993). Unlike the original model (as used by Yu,
2005), ours is incremental and does not require a batch pro-
cess over the entire data. We explain the details of our model
in the following subsections.

Utterance and Meaning Representations
The input to our word learning model consists of a set of
utterance–scene pairs that link an observed scene (what the
child perceives) to the utterance that describes it (what the
child hears). We represent each utterance as a sequence of
words, and the corresponding scene as a set of semantic fea-
tures (including features irrelevant to the utterance), e.g.:

Utterance: Joe rolled the ball
Scene: { ANIMATE , JOE, ACT, MOTION, ROLL, ARTIFACT,
OBJECT, GAME EQUIPMENT, MOTHER, HAND, TALK }

In the Experimental Setup section, we explain how the utter-
ances and the corresponding semantic features are selected,
and how we add referential uncertainty.

Given a corpus of such utterance–scene pairs, our model
learns the meaning of each wordw as a probability distribu-
tion, p(.|w), over the semantic features appearing in the cor-
pus. In this representation,p( f |w) is the probability of fea-
ture f being part of the meaning of wordw. In the absence of
any prior knowledge, all features can potentially be part ofthe
meaning of all words. Hence, prior to receiving any usages of
a given word, the model assumes a uniform distribution over
semantic features as its meaning.

The Learning Algorithm

Our model combines probabilistic interpretations of cross-
situational learning (Quine, 1960) and a variation of the prin-
ciple of contrast (Clark, 1990),1 through an interaction be-
tween two types of probabilistic knowledge acquired and re-
fined over time. Given an utterance–scene pair received at
time t, i.e., (U(t)

, M(t)), the model first calculates an align-
ment probabilitya for eachw∈ U(t) and eachf ∈ M(t), using
the meaningp(.|w) of all the words in the utterance prior to
this time. The model then revises the meaning of the words in
U(t) by incorporating the alignment probabilities for the cur-
rent input pair. This process is repeated for all the input pairs,
one at a time.

Step 1: Calculating the alignment probabilities: For a
feature f ∈ M(t) and a wordw ∈ U(t), the higher the prob-
ability of f being part of the meaning ofw (according to
p( f |w)), the more likely it is thatf is aligned withw in the
current input. In other words,a(w|f , U(t)

, M(t)) is propor-
tional top(t−1)(f |w). In addition, if there is strong evidence
that f is part of the meaning of another word in U(t)—i.e.,
if p(t−1)( f |wk) is high for somewk ∈ U(t) other thanw—the
likelihood of aligning f to w should decrease (principle of
contrast). Combining these two requirements:

a(w|f , U(t)
, M(t)) =

p(t−1)(f |w)

∑
wk∈U(t)

p(t−1)(f |wk)
(1)

General features such asARTIFACT or ENTITY are part of
the meaning of, and thus co-occur with, many words in lan-
guage. Therefore, in an input pair, they are usually aligned
with more than one word in the utterance. Over time, the
model correctly learns a relatively strong association between
such features and the appropriate words, although their asso-
ciation is less strong than those of more specific features.

Step 2: Updating the word meanings: We need to update
the probabilitiesp(.|w) for all wordsw ∈ U(t), based on the
evidence from the current input pair reflected in the alignment
probabilities. We thus add the current alignment probabilities
for w and the featuresf ∈ M(t) to the accumulated evidence
from prior co-occurrences ofw and f . We summarize this
cross-situational evidence in the form of an association score,
which is updated incrementally:

assoc(t)(w, f ) = assoc(t−1)(w, f )+a(w|f , U(t)
, M(t)) (2)

where assoc(t−1)(w, f ) is zero ifw and f have not co-occurred
before. The association score of a word and a feature is ba-
sically a weighted sum of their co-occurrence counts: In-
stead of adding one each time the two have appeared in a
pair together, we add a probability (a value between zero and

1We assume that a feature in a scene is highly associated with
only one of the wordsin the corresponding utterance. This differs
from what is widely known as principle of contrast, in that the latter
assumes contrast across the entire vocabulary.
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one) that reflects the confidence of the model that their co-
occurrence is indeed becausef is part of the meaning ofw.

The model then uses these association scores to update the
meaning of the words in the current input, as in:

p(t)(f |w) =
assoc(t)(f , w) + λ

∑
fj∈F

assoc(t)(fj , w) + β×λ
(3)

whereF is the set of all features seen so far,λ is a smoothing
factor for allowing a small probability for unseen features,
andβ is the expected number of feature types. The denomi-
nator is a normalization factor to get proper probabilities.

Handling Referential Uncertainty

Our model updates the meaning of a word every time it is
heard in an utterance. This flexibility, in addition to the prob-
abilistic nature of the learning, allows the model to handle
referential uncertainty. Recall that we simulate referential un-
certainty in the form of additional semantic features that are
irrelevant to the meanings of the words in an utterance. We
expect that the irrelevant features do not regularly co-occur
with a given word (in contrast to the relevant features). Thus
the overall association score between an irrelevant feature and
the word is expected to be lower than that of a relevant fea-
ture. This in turn will lower the probability of the irrelevant
features inp(.|w).

Another strategy we adopt for handling referential uncer-
tainty is the addition of a dummy word to every utterance
when updating the alignment probabilities. This is to allow
the possibility of aligning the irrelevant semantic features to
the dummy word, hence lowering their alignment probability
with the words in the utterance. Note, however, that nothing
indicates to the model a priori which features are relevant and
which are irrelevant.

Word Comprehension Score

To evaluate our model, we need to verify how accurately the
model learns the meaning of words. We thus define a com-
prehension score,c(t)(w), for each wordw at timet, which
compares the learned meaning ofw, or p(.|w), to the word’s
correct meaning,Tw. The correct meaning of a word is the
set of semantic features for that word in our input-generation
lexicon.2 The comprehension score is calculated as in:

c(t)(w) = ∑
fj∈Tw

p(t)(fj |w) (4)

where 0≤ c(t)(w) ≤ 1. Ideally, a word is accurately learned
when most of its probability massp(.|w) is concentrated
around its true features (those inTw). We thus consider a
word as learned when its comprehension score exceeds a pre-
defined threshold,θc. In our experiments reported in the fol-
lowing sections, we examine the behaviour of our model by
looking into the comprehension scores.

2Note that the model does not have access to this lexicon for
learning; it is used only for input generation and evaluation.

ball
→ GAME EQUIPMENT#1

→ EQUIPMENT#1
→ INSTRUMENTALITY #3, INSTRUMENTATION#1

→ ARTIFACT#1, ARTEFACT#1
→ WHOLE#2, UNIT#6

→ OBJECT#1, PHYSICAL OBJECT#1
→ PHYSICAL ENTITY#1

→ ENTITY#1

ball: { GAME EQUIPMENT#1,EQUIPMENT#1,INSTRUMENTALITY #3,ARTIFACT#1,
WHOLE#2,OBJECT#1,PHYSICAL ENTITY#1,ENTITY#1 }

Figure 1: Semantic features forball from WordNet.

Experimental Set-UP
The Input Corpora
The training data for our model consists of a sequence of ut-
terances, each paired with a set of semantic features. We ex-
tract utterances from the Manchester corpus (Theakston et al.,
2001) in the CHILDES database (MacWhinney, 1995). The
Manchester corpus contains transcripts of conversations with
children between the ages of 1;8 and 3;0. We use the mother’s
speech from transcripts of 6 children, remove punctuation and
lemmatize the words, and concatenate the corresponding ses-
sions as our test data.

There is no semantic representation of the correspond-
ing scenes available from CHILDES. Therefore, we auto-
matically construct a scene representation for each utterance
based on the semantic features of the words in that utterance.
For nouns and verbs, we extract the semantic features from
WordNet3 as follows: We take all the hypernyms (ancestors)
for the first sense of the word, where each hypernym is a set of
synonym words (or synsets), tagged with their sense number.
For each hypernym, we add the first word in its synset to the
set of the semantic features of the target word (see Figure 1
for an example). For adjectives and closed class words (e.g.,
pronouns), we extract the semantic features using the system
of Harm (2002). Other words not found in either of the two
resources (e.g., adverbs) are removed from the utterances.

We need to evaluate our model on input that includes ref-
erential uncertainty. That is, the representation of the scene
must contain semantic features that do not come from the per-
ceived utterance. To simulate such data, we use every other
sentence from the original corpus (preserving their chrono-
logical order), paired with its own scene representation as
well as that of the following sentence. The extra semantic
features that are added to each utterance thus correspond to
meaningful semantic representations, as opposed to randomly
selected features. The resulting corpus has a high rate of ref-
erential uncertainty, where on average an utterance is paired
with twice as many semantic features as there are in its origi-
nal meaning set.

Parameters
We set the parameters of our learning algorithm using a de-
velopment data set which is similar to our test data, but is se-
lected from a non-overlapping portion of the Manchester cor-
pus. The expected number of semantic features,β in Eqn. (3),
is set to 7000 based on the total number of distinct features

3http://wordnet.princeton.edu/
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Figure 2: Proportion of learned words over time.

extracted for the development data. The smoothing parame-
ter λ in Eqn. (3) is set to a very small value, 10−7. We set
the comprehension threshold,θc in Eqn. (4), to a reasonably
high value, 0.7 (recall that comprehension scores are between
0 and 1). This was a value with which our model showed rea-
sonable performance on development corpus. Moreover, 0.7
is a reasonably large portion of the probability mass, given
that only a small fraction of the semantic features appear as
part of the correct meaning of a word.

Experimental Results
In the following sections, we provide a qualitative analysis of
our model through examination of its learning patterns. We
train the model on the input corpus with referential uncer-
tainty, as explained in the previous section. In order to exam-
ine how adding referential uncertainty affects word learning,
we repeat most of the reported experiments on the input with
no referential uncertainty, and compare the results.

Effects of Referential Uncertainty

As noted before, one of the main challenges of word learn-
ing is the uncertainty inherent in the children’s learning envi-
ronment. To better understand the effect of referential uncer-
tainty (RU) in learning, here we compare the behaviour of our
model in two conditions, without RU and with RU. Figure 2
shows the change in the proportion of learned words (those
whose comprehension scores exceed the specified threshold)
over time, where time is measured as the number of input
utterance–scene pairs processed. The bottom curve shows the
learning pattern for input with RU, and the top one shows the
results for data without RU. As expected, in both cases, the
proportion of learned words increases over time, with a rapid
pace at early stages of learning, and a more gradual pace later.
In addition, Figure 2 shows that the task of word learning is
much easier in the absence of RU, reflected in the sharp vo-
cabulary growth, as well as in the high proportion of learned
words (above 90%) in this condition.

To further elucidate the notable drop in the proportion of
learned words when there is RU, we look into the relation be-
tween a word’s frequency and how easily the model learns it.
We examine the learning curves when low frequency words
are removed. (Note that low frequency words are only re-
moved from the evaluations, and not from the input data.)
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Figure 3: Comprehension scores of four words over time.

Figure 2 displays three learning curves including only words
which are heard at least twice, three times or five times.

A comparison of the curves shows that the more frequent
a word is, the more likely it is to be learned. These results
confirm our hypotheses that in the presence of RU, the model
needs more instances of a word usage to learn it with high
confidence. Nonetheless, even for words with a minimum
frequency of 5, the learning is still more difficult when there
is referential uncertainty.

Convergence and Learning Stability
Our learning algorithm revises the meaning of a word every
time it is heard in an utterance (in contrast, e.g., to Siskind,
1996’s model). This is a key property that makes our model
flexible so it can handle noise by revising an incorrectly
learned meaning. It is however important to ensure that the
learning is stable despite this constant revision—that is,the
meaning of earlier-learned words is not corrupted as a result
of learning new words (the problem of catastrophic interfer-
ence often observed in connectionist models). If the learning
is stable, we expect the comprehension scores for words gen-
erally to increase over time as more and more examples of the
word usages are encountered in the input.

Figure 3 shows the change in the comprehension scores
of four sample words over time. As expected, the compre-
hension scores show some fluctuation at the beginning, but
they converge on a high value as more examples are ob-
served. We also examine the average comprehension score
of all words, as well as of those which have been learned
at some point (i.e., their comprehension score has surpassed
the thresholdθc). The average comprehension score of all
words increases rapidly and becomes stable around 0.7 after
processing almost 4,000 input pairs, reflecting the stability
in learning. As expected, the average comprehension score
of the learned words increases more quickly and reaches a
higher value (around 0.8). With no RU, the average com-
prehension scores show similar increasing patterns, but are
generally higher, reflecting easier learning.

Vocabulary Growth and Fast Mapping
Longitudinal studies of early vocabulary growth in children
have shown that vocabulary learning is slow at earlier stages
of learning, then proceeds to a rapid pace, and finally be-
comes less active (Carey, 1978)—a phenomenon often re-
ferred to as “vocabulary spurt”. Here, we look at the change
in the learning rate over time to see whether the pattern of
vocabulary growth in our model matches this observation.

Figure 4 depicts the proportion of learned words against
the number of word types heard at each time, both without
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Figure 4: Rate of vocabulary growth as new words are heard.

and with referential uncertainty. Without RU, the learning
rate is immediately high, rather than a period of slow growth
followed by a spurt as in children. The expected vocabulary
growth pattern is more pronounced with RU: There is little
learning prior to hearing about 150 words. This can be at-
tributed to the property of our model that uses its own learned
knowledge of word meaning to facilitate the learning of new
words. After this sudden increase in the number of learned
words, the learning proceeds with a nearly constant rate. It
is important to note that since we test our model on realistic
data, we do not have a fixed vocabulary, and therefore, new
words are heard continually. The learning thus does not stop,
but it gradually becomes slower, perhaps mainly due to a cor-
responding decrease in the rate of hearing new words.

The observed shift from slow to fast word learning is some-
times tied with a phenomenon referred to as fast mapping
(Carey, 1978). Fast mapping states that once children have
learned a repository of words, they can easily link novel
words to novel objects in a familiar context based only on
a single (or few) exposures. Many researchers believe that
the delay in the onset of fast mapping in children is not due to
a change in the underlying learning mechanisms, but is a re-
sult of processing more input data (Regier, 2005; Horst et al.,
2006). To examine this hypothesis in our model, we look at
the interaction between the number of usages that the model
needs to learn a word, and the word’s age of exposure, de-
fined as the first time the word is heard. Figure 5 depicts the
plots (for the words that are learned at some point in time),
both without and with RU. In both cases, the model shows
clear fast mapping behaviour: Words received later in time,
on average, require fewer usages to be learned. With refer-
ential uncertainty, fast mapping occurs much more gradually.
These results show that our model exhibits fast mapping pat-
terns once it has been exposed to enough word usages, and
that no change in the learning mechanism is needed.

Age of Acquisition Effect

Recent studies have suggested that age of acquisition (AoA),
independently of word frequency, affects the speed of pro-
cessing a word. For example, AoA is shown to be a good
predictor of the adult’s speed in word naming (Tamminen &
Gaskell, 2006) or lexical decision (Nazir et al., 2003; Tam-
minen & Gaskell, 2006). One problem with these studies is
that they cannot accurately estimate the age of acquisitionof
a word, and mostly rely on the subjective adult AoA ratings.
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Figure 5: Number of usages needed to learn a word vs. the
time of first exposure for that word.

Studying the AoA effect in a computational model such as
ours offers the advantage of having direct access to the exact
age at which the model has acquired each word. More impor-
tantly, different interpretations of the age of acquisition can be
investigated: Whether AoA refers to the time of the firstex-
posureto a word, or the age at which the model/child can cor-
rectly comprehendor producethe word. Moreover, most of
the reported studies on AoA effects in humans, as well as the
computational modeling of these effects, have been focused
either on the association between the phonological form of
a word and the corresponding written form (as in the word
naming task), or on the familiarity of a written form (as in
the lexical decision task). Few studies have been performed
on whether similar AoA effects can be observed in tasks that
rely on the association between a word form and itsmeaning
(but see Li et al., 2004). Our model provides an appropri-
ate testbed for investigating whether AoA effects can be ob-
served in the context of learning word meaning, especially in
the presence of referential uncertainty.

To simulate AoA effects in our model, we need to estimate
two factors. We estimate the processing speed of a wordw
at a timet as its comprehension scorec(t)(w), as given in
Eqn. (4) (assuming that words that have a higher comprehen-
sion score can be accessed and processed faster). We consider
two different estimations for the age of acquisition of a word:
First, the onset of the word in the training data, or its age
of ‘Exposure’; and second, the first time the model correctly
learns the word, or its age of ‘Learning’.

For each AoA condition, we compile two sets of words
from the training data, an ‘Early’ set, which contains words
acquired at an earlier stage of learning, and a ‘Late’ set, con-
taining words acquired at a later stage. We consider the time
span 5,000–10,000 as the earlier stage, and the time span
10,000–15,000 as the later stage (we skip over the time span
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Low Frequency High Frequency
Condition Early Late Early Late
Exposure 0.65 (70) 0.70 (35) 0.84 (8) 0.82 (1)
Learning 0.82 (38) 0.85 (32) 0.85 (18) 0.79 (4)

Table 1: Average comprehension score for Early and Late
word sets for the Exposure and Learning conditions, con-
trolled for frequency. Size of the sets is shown in parentheses.

1–5,000 in order for the model to stabilize). To control for
frequency, we only include words whose frequency after pro-
cessing all 15,000 input pairs falls into a certain range.

Table 1 shows the average comprehension scores of the
words in the Early and Late sets after processing 15,000 pairs.
The scores are calculated for two conditions, Exposure and
Learning, and for two different frequency ranges, Low Fre-
quency (between 2 and 4) and High Frequency (between 6
and 10). The results show an interesting pattern: for more
frequent words, an AoA effect can be observed, i.e., words
acquired earlier are, on average, easier to comprehend (and
therefore easier to process). In contrast, for low frequency
words, an opposite effect can be observed for both condi-
tions, i.e., words acquired later are easier to comprehend.
This suggests that age of acquisition mainly affects the pro-
cessing speed of words that are well-entrenched, and that the
infrequent words can be remembered only if they have been
acquired later. However, this prediction may not be reliable
due to the small number of the high frequency words in each
set, and further research is needed to confirm it.

Conclusion and Future Directions

We have presented a computational model of word learn-
ing that draws on cognitively plausible mechanisms, such
as cross-situational observation and the principle of contrast.
The model employs a probabilistic learning algorithm that in-
crementally updates word meanings based on the observed
pairings of utterances and scene representations. Our exper-
imental results show that the model can successfully handle
referential uncertainty, and many general patterns in child ex-
perimental data can be observed and accounted for in our
model. A key property of the proposed model is that its pre-
viously acquired knowledge is not corrupted by processing
more input. This makes the model suitable for handling syn-
onymy and homonymy, which we plan to explore in the fu-
ture. Also, we have shown that the model is robust against
noisy data. In the future, we need to add new types of noise
to the training data (e.g., having words in the utterance whose
meanings do not appear in the scene representation), and eval-
uate the the model under these conditions.

Our model processes words in the context of a sentence, in
contrast to the majority of the existing computational models
that study words in isolation. Having access to the context of
words would enable us to embed additional cues in our learn-
ing algorithm, such as the word order of the utterance that a
word appears in. Moreover, we intend to explore syntactic
and semantic categorization of words, using the word mean-

ings acquired by our model. Such word categories can in turn
be used as feedback to our word learning model through a
bi-directional bootstrapping process. In future work, we will
explore these options, and examine the impact of new factors
on the learning pattern of the model.
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