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Abstract 

Prior studies have shown that learning by problem solving in 
an intelligent tutoring system such as the Cognitive Tutor can 
be even more effective when worked examples are added in 
comparison to problem solving alone. Introducing self-
explanation prompts additionally improves learning. 
Furthermore, recent findings indicate that fading out worked 
examples according to students’ performance during learning 
(i.e., adaptive fading) is even more beneficial than fading 
worked examples in a predefined procedure (i.e., fixed 
fading). In this contribution we investigate the relationship 
between potential indicators for learning progress, which can 
be used for adapting fading and, thereby, fostering learning 
outcome. We found a stronger relationship of learning 
outcomes to self-explanation performance than to problem-
solving performance during learning. Additionally, self-
explanation performance is a stronger predictor for learning 
outcome than prior knowledge. Hence, adaptation, not only of 
the example fading procedure but potentially of other aspects 
of student learning (e.g., individualized problem selection) 
might better be based on self-explanation performance and 
not, or at least not only, on problem-solving performance, as 
it is typical of intelligent tutoring systems. 

Keywords: Scaffolding, Worked Examples, Intelligent 
Tutoring Systems, Adaptive Fading 

Introduction 
Nowadays individualized instruction is a catchphrase that is 
becoming more and more important. Cognitive Tutors and 
other intelligent tutoring systems have proven to be very 
effective in supporting individual students’ learning in a 
variety of domains such as mathematics or genetics (for an 

overview, see Koedinger & Corbett, 2006). Cognitive 
Tutors are used in more than 2600 schools across the United 
States as part of the regular curriculum. Based on an online 
assessment of students’ learning, Cognitive Tutors provide 
individualized support for guided learning by problem 
solving (doing). Specifically, the Tutor selects appropriate 
problems, gives just-in-time feedback, and provides hints.  

Introducing self-explanation prompts to the Cognitive 
Tutor made the Tutor even more effective (Aleven & 
Koedinger, 2002). However, from a cognitive load 
perspective the introduction of self-explanation activities in 
addition to problem solving places fairly high demands on 
students’ limited cognitive capacity, particularly in the early 
stages of skill acquisition (e.g., Sweller, van Merriënboer, & 
Paas, 1998), notwithstanding the load reducing aspects of 
Cognitive Tutors, such as making subgoals and intermediate 
steps explicit. The additional load posed by self-
explanations can be reduced by scaffolding the learning 
process with worked examples (e.g., Salden, Aleven, Renkl, 
& Schwonke, 2009). Meanwhile, there is ample empirical 
evidence showing that learning from worked examples leads 
to superior learning outcomes as compared to problem 
solving (for an overview, see Renkl, 2011). 

Although studying worked examples has proven to be 
effective, this is true only during early stages of skill 
acquisition (e.g., Kalyuga, Chandler, Tuovinen, & Sweller, 
2001). During that phase, scaffolding with worked examples 
reduces the cognitive demands of problem solving and 
allows the learner to focus on understanding domain 
principles. As expertise increases, worked examples not 
only lose their effectiveness but can even impede learning 
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progress (expertise reversal effect; Kalyuga, Ayres, 
Chandler, & Sweller, 2003). The more students know about 
a subject matter the more emphasis should be put on 
problem-solving activities which lead to an increase of 
speed and higher accuracy of performance (Renkl & 
Atkinson, 2003). Therefore, Renkl and Atkinson (2003) 
proposed a fading procedure in which problem-solving 
elements are successively integrated into example study 
until the students are able to solve problems on their own, 
that is, scaffolding is reduced according to students´ 
expertise.  

In a number of experiments, Renkl and colleagues 
provided empirical evidence for the effectiveness of a 
smooth transition from example study to problem solving 
(e.g., Atkinson, Renkl, & Merrill, 2003; Renkl, Atkinson, & 
Große, 2004). The specifics of the sequence in which 
worked examples are faded are crucial for the optimization 
of learning. Although these studies indicate that worked 
examples faded in a fixed procedure were superior to 
example-problem pairs, similar like in classical research 
about scaffolding (e.g. Wood, Bruner, & Ross, 1976), 
fading worked examples adaptively to the individual 
learner’s progress should be even more successful. By 
assessing the learning progress one can avoid the negative 
effects of worked examples, also known as the reverse 
worked example effect (Kalyuga et al., 2001). The 
Cognitive Tutor with its online assessment provides an 
appropriate framework for fading worked examples 
adaptively. 

Evidence for the effectiveness of adaptively fading 
worked examples was first found in one of our previous 
experiments (Salden et al., 2009). In this laboratory study, 
we compared three conditions: a problem-solving condition, 
a fixed-fading condition, and an adaptive-fading condition, 
in order to test effects of faded worked examples over 
problem-solving alone and adaptive fading over fixed 
fading of worked examples (see also Method section in this 
paper). As expected, Salden et al. (2009) found a monotonic 
trend of adaptive fading over fixed fading over problem 
solving. Effects were found in both posttest (Z = 2.03, p < 
.05) and delayed posttest (Z = 1.83, p < .05). Additionally, 
contrasts calculated to compare the adaptive-fading 
condition with the non-adaptive conditions (fixed fading 
and problem solving) revealed a significant superiority of 
the adaptive-fading condition in both immediate posttest 
(t(54) = 1.74, p < .05, d = .49) and delayed posttest (t(49) = 
2.04, p < .05, d = .59). These findings could be largely 
replicated in a field experiment (Salden et al., 2009). Taken 
together, these results indicate that not only are faded 
examples superior to example-problem pairs, as already 
found in earlier studies (e.g., Schwonke, Renkl, Krieg, 
Wittwer, Aleven, & Salden, 2009), but also adapting the 
fading procedure according to students’ performance is 
superior to a fixed sequence. 

Typically, Cognitive Tutors adapt instruction based on the 
learner’s problem-solving performance (Corbett, 
McLaughlin, & Scarpinatto, 2000). Unlike this widely used 

approach, the adaptation (here: of fading) in our experiment 
could not be based on problem-solving performance while 
working in the Cognitive Tutor, because problem-solving 
steps were worked-out in the beginning. Hence, we used 
self-explanation performance, that is, a type of meta-
cognitive performance (Aleven & Koedinger, 2002), for 
adaptation. Against this background, the questions arise 
whether it is sensible at all to rely on self-explanation 
performance or whether this might be even the better 
indicator for learning progress. The finding of Salden et al. 
(2009) on the superiority of adaptive fading suggests that 
self-explanation performance is a sensible indicator for 
learning progress that can be used for adaptation, even if 
these self-explanations are prompted and supported by 
menus. However, in order to gain deeper insight in the 
potential of self-explanation performance as an indicator for 
adaptation and in the potential of different indicators, we 
performed a re-analysis of our laboratory study. 

We assumed, that students who have difficulties in 
gaining deeper understanding make more mistakes while 
working with the Tutor (e.g., Aleven, McLaren, & 
Koedinger, 2006). Higher proportions of incorrect entries 
for both numerical entries (answers) and self-explanation 
activities (reasons) should therefore be associated with 
inferior learning outcomes (in terms of transfer 
performance). This (negative) relationship should be 
especially strong for self-explanation (i.e., reason) steps as 
we assume that they reflect a deeper understanding. 
Therefore, self-explanation performance in addition to the 
traditionally used problem-solving performance should be 
predictive of learning outcomes. More specifically, we 
addressed the following hypotheses: 

(1) There is a negative relationship between 
performance (i.e., incorrect entries) on problem-
solving (i.e., answer) and self-explanation (i.e., 
reason) steps while working with the Tutor and 
learning outcomes. 

(2) The negative relationship is stronger for 
performance on self-explanations steps. 

(3) Performance on problem-solving and self-
explanation steps is both predictive of learning 
outcomes. 

(4) Performance on self-explanations steps is a 
predictor of learning outcomes, beyond the 
predictive power of performance on problem-
solving steps and prior knowledge.  

Method 

Sample and Design 
We recruited 57 students (19 in 9th grade and 38 in 10th 
grade) from a German “Realschule”, which is equivalent to 
an American high school. The participants (age: M = 15.63, 
SD = .84) were randomly assigned to one of the three 
conditions with 19 participants each. In two conditions 
students were given worked examples for problem-solving 
(i.e., answer) steps which were either faded out according to 
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a fixed procedure (fixed fading condition) or according to 
the student’s individual skill level and self-explanation 
performance (adaptive fading condition). The third 
condition did not receive any worked examples (problem 
condition) and served as a control condition. Students in all 
conditions had to provide prompted self-explanations (i.e., 
reasons) for all problem-solving steps and all students had 
to solve at least some problem steps (Aleven & Koedinger, 
2002). As the aim of our reanalysis was to investigate 
relationships between performance on problem and reason 
steps while working with the Tutor and performance on 
posttest independent of condition, the following results refer 
to all 57 participants of the study.  

Learning Environment – The Cognitive Tutor 
In order to provide feedback and adapt to students’ skill 
acquisition, Cognitive Tutors are based on so called 
production rule models. Different production rules for 
knowledge components can be learned independently. In the 
present case, a knowledge component represents specific 
ways of applying principles, for example, angle addition, 
that are to be learned by the student.  

The assistance in the Geometry Cognitive Tutor is based 
on two algorithms: model tracing and knowledge tracing 
both of which are grounded in the idea of knowledge 
components in the production rule model. This model 
enables the tutor to simulate the problem solving process, to 
decide whether a student’s action is right or wrong and to 
provide intelligent feedback (model tracing) as well as to 
estimate the student’s learning progress on the level of 
knowledge components (knowledge tracing; Koedinger & 
Corbett, 2006). On this basis, the Cognitive Tutor can adapt 
the assistance given to students to their learning progress. 
Hence, we were also able to fade out worked examples 
adaptively in the adaptive fading condition. The type of 
problems that were presented in our study was held constant 
across conditions.  

Learning Materials Students were asked to work on fifteen 
problems in a Cognitive Tutor lesson on geometry, together 
covering four geometry principles. The first eight problems 
required the application of only one geometry principle. The 
last seven problems combined different principles and were 
therefore more complex. In the problem condition, solving a 
problem required students (a) to enter numerical values such 
as the measure of an angle (i.e., the answer) and (b) to self-
explain each given numerical answer (i.e., the reason). The 
self-explanation consisted of entering the name of the 
principle applied into a text entry field. The principle could 
be entered either by typing the name of the relevant 
principle or by selecting the principle from a glossary that 
contained a list of all principles used in the unit. For 
example, if angles AB and AC are complementary angles 
and the measure of angle AB is 60 degrees, then the 
measure of angle AC is 30 degrees, because the sum of the 
measures of complementary angles is equal to 90 degrees. 
The student would be required to either enter “90-60” or 

“30” on the answer step and “complementary angles” on the 
reason step. 

In the two example conditions, students were asked to 
study a sequence of worked steps corresponding to the 
answer steps in the problem condition. Worked examples 
provided the numerical solutions of a problem step and 
necessary calculations. Students were then asked to provide 
a reason for the answers provided by the worked examples. 
The worked examples were gradually faded out according to 
either a fixed fading scheme or adaptively according to 
students’ performance on self-explanation steps. Self-
explanation activities were held constant across the three 
experimental conditions.  

Instruments 

Pretest The pretest was implemented in the Cognitive Tutor 
and consisted of four geometry problems related to the 
lessons taught later during the learning phase with the 
program. All Cognitive Tutor help facilities (e.g., hints) 
were disabled during pretest. All participants completed the 
same pretest.  

Posttest A posttest that consisted of the same problems as 
the pretest was implemented in the Tutor. Additionally, all 
participants were asked to complete a paper-pencil test 
immediately after working with the Tutor and one week 
later (delayed posttest). Both posttests were identical. The 
items in the paper-pencil tests differentiated between near-
transfer and far-transfer problems (four items for near 
transfer and four items for far transfer). Near-transfer 
problems were isomorphic to the problems in the Tutor; far-
transfer problems were structurally different but based on 
the same concepts. As in the example shown in Figure 1, 
students were given a structurally similar figure like in the 
Tutor for near-transfer items. They were then asked (in this 
example) to calculate angle IGT and angle TGH. Figure 2 
shows an example for a far-transfer item. In this item 
students were given a cover story of a sailor who is 
navigating by the stars, in this case, the Southern Cross. 
Then they were asked to calculate angle CXD given that 
angle AXD is 45 degrees to find out in which angle the 
destination island was to the sailor’s ship.  

 

 
Figure 1: Example for a Near-Transfer Problem 
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Figure 2: Example for a Far-Transfer Problem 
 

Procedure 
The experimental sessions lasted, on average, 90 minutes 
and were divided into three parts: pretest and introduction, 
tutoring, and posttest. First, students´ general prior 
knowledge was assessed by their mathematics grade 
together with some additional demographic data such as age 
and gender. Then they received a brief introduction on how 
to use the Cognitive Tutor followed by a short pretest 
implemented in the Tutor measuring their prior knowledge. 
After completing this pretest, students read an instructional 
text providing information about the rules and principles 
that were later addressed in the Cognitive Tutor. In the 
tutoring part, students worked with their respective version 
of the Cognitive Tutor. This learning phase was followed by 
the posttests.  

Results 
Table 1: H1 & 2: Relationship of Performance on Answer 
and Reason Steps and Learning Outcomes 

 
  Answers Reasons  

  r r N 

Posttest Near 

Transfer -.34* -.65*** 57 

Far 

Transfer -.18 -.48*** 57 

Delayed 

Posttest 

Near 

Transfer -.16 -.41** 52 

Far 

Transfer -.12 -.49*** 52 

Note. * p < .05, ** p < .01, and *** p < .001 (two-tailed). 
 

To test hypotheses 1 and 2 we determined Pearson´s 
correlations between the proportion of incorrect answers in 
relation to all answer steps executed (i.e., problem-solving) 
as well as the proportion of incorrect reasons (i.e., self-
explanation) on the one hand and immediate as well as 
delayed posttest scores on the other hand (Table 1). Posttest 
scores reflect the percentage of points students received for 
their posttest of the total of points to be achieved. The 
performance on reason steps was significantly and 
substantially related to scores on near and far transfers items 
on both immediate and delayed posttest. In contrast, the 
performance on answer steps was only reliably related to 
scores on near transfer items in the immediate posttest. In 
fact, the relationships to learning outcomes were 
significantly stronger for reason steps than for answer steps 
as corresponding comparisons (Olkin) shows, z (near 
transfer) = 2.69, z (far transfer) = 2.29, z (delayed near 
transfer) = 1.87, z (delayed far transfer) = 2.81 (with zcrit = 
1.65 for a one-tailed significance test with α= 5%). In 
summary, the pattern of results only partly confirmed 
hypotheses 1: Performance on reason steps (i.e., self-
explanation), as indicator of deep understanding, was 
significantly related to posttest scores (i.e., learning 
outcomes), while performance on answer steps (i.e., 
problem solving) were not significantly related to posttest 
scores (except for near transfer on immediate posttest). 
Hypothesis 2 was confirmed: The negative relationship 
between performance on reason steps and learning outcome 
was significantly stronger than that for performance on 
answer steps and learning outcome. 

Although, the performance on answer steps and on reason 
steps differed substantially in their predictive power with 
respect to the posttest measures, we found a medium 
correlation between them (r = .45, p < .001). This 
association can be expected because answer steps and 
reason steps are not independent but rather measure 
understanding on different levels. Moreover, performance 
on reason steps might be influenced by the Tutor’s support 
received on the respective answer step. 

 
Table 2: H3: Performance on Reason Steps as Predictor for 
Learning Outcomes (Final Regression Model) 

 
   B SE 

B 
β 

Posttest Near 
Transfer 

  Reasons -.24 .03 -.73*** 
 

Far 
Transfer 

  Reasons -.18 .04 -.50*** 
 

Delayed 
Posttest 

Near 
Transfer 

  Reasons -.12 .04 -.41** 
 

Far 
Transfer 

  Reasons -.19 .05 -.49*** 

Note. Posttest, Near Transfer: R² = .54; Posttest, Far 
Transfer: R² = .25; Delayed Posttest, Near Transfer: R² = 
.17; Delayed Posttest, Far Transfer: R² = .24. 
** p < .01 and *** p < .001. 
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To test hypotheses 3 and to decide if problem-solving or 
self-explanation activities or both in combination are 
presumably best for adapting support in intelligent tutoring 
systems, we calculated a stepwise linear regression with 
performance on reason and answer steps as predictors. As 
the correlations from Table 1 suggest, the predictive power 
of error rate on answer steps (i.e., problem-solving) was 
very low. Accordingly, regression models including only 
significant predictors omitted error rate on answer steps 
(Table 2). Hence, Hypothesis 3 was not confirmed, that is, 
only performance on reason steps but not on answer steps 
had significant predictive power for learning outcome.  
 
Table 3: H4: Prior Knowledge and Performance on Answer 
and Reason Steps as Predictors for Learning Outcomes 
 

   B SE 
B 

β 

Posttest Near 
Transfer 

Step 1 
  Reasons 
Step 2 
  Reasons 
  Math. 
Grade 

 
-.20 
 
-.18 
-.04 

 
.03 
 
.03 
.02 

 
-.65*** 

 
-.59*** 
-.26* 

Far 
Transfer 

Step 1 
  Reasons 
Step 2 
  Reasons 
  Math. 
Grade 

 
-.17 
 
-.14 
-.05 

 
.05 
 
.05 
.02 

 
-.44** 

 
-.37** 
-.27* 

Delayed 
Posttest 

Near 
Transfer 

Step 1 
  Math. 
Grade 

 
-.08 

 
.02 

 
-.53*** 

 
Far 

Transfer 
Step 1 
  Reasons 
Step 2 
  Reasons 
  Math. 
Grade 

 
-.24 
 
-.21 
-.05 

 
.05 
 
.05 
.02 

 
-.55*** 

 
-.49*** 
-.27* 

Note. Posttest, Near Transfer: R² = .42 for Step 1, ΔR² = .06 
for Step 2 (p < .05); Posttest, Far Transfer: R² = .19 for Step 
1, ΔR² = .07 for Step 2 (p < .05); Delayed Posttest, Near 
Transfer: R² = .28; Delayed Posttest, Far Transfer: R² = .30 
for Step 1, ΔR² = .07 for Step 2 (p < .05). 
* p < .05, ** p < .01, and *** p < .001. 
 

To test Hypothesis 4 we calculated stepwise linear 
regressions with general prior knowledge measured by 
mathematics grade, specific prior knowledge measured by 
the pretest, performance on answer steps (i.e., problem-
solving), and performance on reason steps (i.e., self-
explanation) as potential predictors for learning outcome. 
Distributional assumptions were met by all dependent 
variables, that is, residuals could be assumed to be 
independent and distributed normally. Furthermore, 
heteroscedasticity could be assumed. (Multi-)Collinearity 
among predictors was not an issue, given tolerance values 
well above .2 and VIF values well below 10 (VIF values 

close to 1 for all predictors). Additionally, collinearity 
diagnostics showed that all predictors included in the 
models loaded highly on different dimensions.  

Results indicate that specific prior knowledge as 
measured with the pretest did not yield additional 
explanatory power. However, general prior knowledge as 
measured with mathematics grade added predictive value to 
self-explanation activities in all models and even served as 
best sole predictor for near transfer in the delayed posttest 
(Table 3). These findings are in accordance with findings of 
strong influences of (general) prior knowledge on further 
learning (for an overview, see Dochy, Segers, & Buehl, 
1999; Shapiro, 2004). On the whole, Hypothesis 4 is 
confirmed in that self-explanation performance has 
predictive power for learning outcomes beyond prior 
knowledge and problem-solving performance. Only in the 
case of the delayed near transfer, the hypothesis did not 
hold. 

Discussion 
Contrary to the widely used approach to base adaptation of 
instruction in intelligent tutoring systems on problem 
solving performance (i.e., answer steps), in the study by 
Salden et al. (2009) adaptation was based on self-
explanation performance (i.e., reason steps). The superior 
learning outcomes of the adaptive fading condition shows 
that adapting on the basis of self-explanation is a feasible 
alternative. Our present findings indicate that it may even be 
the better alternative: Learning outcomes were better 
predicted by performance on reason steps (i.e., self-
explanation) than by performance on answer steps (i.e., 
problem solving). In addition, regression models´ predictive 
power for learning outcome was not increased by including 
performance on answer steps. Again, given that traditionally 
adaptation is based on problem-solving activities this is a 
very "provocative" finding: Did we use only a sub-optimal 
indicator for students´ learning progress up until now?  

Some students were able to write down mathematical 
values but failed to provide correct self-explanations. A 
similar discrepancy was observed by Siegler and Stern 
(1998) in strategy discovery and by Aleven, Koedinger, 
Sinclair, and Snyder (1998) for problem solving in the 
Geometry Tutor. It indicated that (in spite of the correct 
problem-solving performance) a full understanding of the 
problem-solving step is still lacking and still needs to be 
developed. Against this background, self-explanation 
performance might actually be a particularly sensitive 
indicator as to whether a student has actually understood a 
problem-solving step and should therefore be confronted 
with a higher problem-solving demand. In addition, the 
present findings suggest that a step should not be faded out 
before a "complete" understanding is achieved, that is, a 
student can also provide a correct self-explanation (i.e., 
reason) for a problem-solving step.  

Our findings have also shown that general domain 
knowledge could be worth considering as a basis for initial 
adaptation. With respect to the finding that specific prior 

88



knowledge was less important, one should consider that the 
pretest used in this study was rather short. Using a more 
elaborate pretest might lead to different results. 
Additionally, one can assume that prior knowledge and self-
explanation performance are not independent; prior 
knowledge can influence the quality of self-explanations. It 
might be argued that self-explanation performance is a more 
"proximal" indicator of specific knowledge than a pretest. 
Further studies have to clarify this issue. 

The main message of this paper is that traditional 
adaptation procedures that are based solely on problem 
solving performance are presumably sub-optimal and that 
including self-explanation performance is likely to improve 
adaptation. However, the present findings need, without 
doubt, corroboration by further research that tests more 
directly the effects of different adaptation procedures. We 
suggest a comparison of at least three conditions in future 
studies: one in which online assessment and adaptation are 
based on self-explanation performance and one in which 
online assessment and adaption are based on problem-
solving performance. A third group combining the two 
should be added to test if self-explanation as a single 
indicator is as good or even better compared to a 
combination of self-explanation and problem solving. 
Considering our results as well as those of many other 
studies, prior knowledge, especially general domain 
knowledge, should be taken into account as well.  

Our results might also have important implications for 
classroom settings. Contrary to widely used methods of 
measuring students´ understanding by examining if they are 
able to solve problems correctly, it might be reasonable to 
test for students´ ability to explain their solutions rather than 
focusing on correct solution steps only.  
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