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Daniel J. Navarro (daniel.navarro@adelaide.edu.au)
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Abstract

Tversky and Kahneman (1974) described an effect they called
‘insensitivity to prior probability of outcomes’, better known
as base rate neglect (Bar-Hillel, 1980). This describes peo-
ple’s tendency to underweight prior information in favor of
new data. Probability theory requires these prior probabilities
to be taken into account, via Bayes’ theorem, when deter-
mining an event’s posterior probability. The fact that most
people fail to do so has been taken as evidence of human ir-
rationality and, by other authors, of a mismatch between our
cognitive processes and the questions being asked (Cosmides
& Tooby, 1996; Gigerenzer & Hoffrage, 1995). In contrast to
both views, we suggest that simplistic Bayesian updating us-
ing given base rates is not always a rational strategy. Instead,
we reconsider Bar-Hillel’s original relevance theory, and ar-
gue that, since base rates differ in their perceived degree of
trustworthiness they are, accordingly, rationally discounted by
people.

Keywords: base rate neglect; Bayesian updating; cognitive
bias; decision-making

In the closing remarks to A Philosophical Essay on Proba-
bilities, Laplace (1814/1951) argues that “the theory of prob-
abilities is at bottom only common sense reduced to calculus;
it makes us appreciate with exactitude that which exact minds
feel by a sort of instinct without being able ofttimes to give a
reason for it”. Using probability theory, Bayes’ rule provides
the mechanism by which a set of prior beliefs can be updated
in light of evidence, as follows: given a hypothesis, h, which
we believe has some prior probability of being correct p(h),
if we then observed some data, x, Bayes’ theorem tells us
how to find p(h|x), the posterior probability that h is true
given that we have now seen x.

p(h|x) = p(x|h)p(h)/p(x) (1)

As to whether Laplace’s claim provides a plausible account
of human reasoning, one of the principal sources of dis-
cussion is base rate neglect, a phenomenon that seems to
contradict the assertion that analytic probabilities are merely
formalized versions of people’s intuitions about chance. The
general finding is that, when people are provided with prior
information (in the form of a base rate) along with new ev-
idence, they typically weight the evidence provided by data
far more heavily than the base rates (Tversky & Kahneman,
1974). This tendency to downgrade the value of the prior rel-
ative to the likelihood is taken to imply that: firstly, Bayes’
theorem does not provide a complete account of the rea-
soning employed by people (Villejoubert & Mandel, 2002);

and, secondly, that people are therefore suboptimal or bi-
ased in their judgments, and may be taken to be acting ir-
rationally. Note, however, that there are two distinct claims
here. Clearly, underweighting the base rate information will
lead people to make judgments that differ from those pro-
vided by a simplistic application of Equation 1. However,
the charge of irrationality is a stronger claim, and a more
questionable one.
Traditional approaches to the study of human decision

making have tended to assume that rational behavior is best
operationalized in terms of strict adherence to an externally-
provided optimality criterion, such as expected utility. Any
deviations from these criteria are deemed to be irrational.
However, this approach has been criticized for the assump-
tion that it is always rational to conduct exhaustive calcula-
tions, rather than to make a far swifter decision that leads
to a satisfactory outcome (Todd & Gigerenzer, 2000); and
though the critique is based on Simon’s (1956) notion of
bounded rationality, much of the framework can be recon-
ciled very neatly with the classical Bayesian view (e.g., Lee
& Cummins, 2004). In this spirit, this paper discusses the
question of how one might appropriately weight base rates
and novel information in order to make predictions in real
environments.

The Existence of Base Rate Neglect

The research on base rate neglect is heavily polarized. The
‘heuristics and biases’ school of thought argues that base
rate neglect is robust – resulting from people’s inability to
update in a Bayesian manner (Kahneman & Tversky, 1996)
– while their opponents argue that the effect disappears un-
der experimental conditions better suited to human cognition
(Cosmides & Tooby, 1996; Gigerenzer, 1996). In particular,
it is suggested that questions phrased in a frequency format
rather than in terms of probabilities are more easily dealt
with by people and thus less susceptible to base rate neglect.
The reasoning behind this argument is the claim that fre-
quencies of events are easily observed whereas the probabil-
ity of a single event is intrinsically unobservable (Cosmides
& Tooby, 1996). Thus people would be expected to have
cognitive abilities suited to counting events and comparing
these absolute frequencies rather than determining one-off
probabilities.
Initial support for this was found by a number of re-

searchers (Cosmides & Tooby, 1996; Gigerenzer & Hoffrage,
1995) but subsequent research has found that relative fre-
quencies, such as percentages, give an equal or greater reduc-
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tion in base rate neglect (Harries & Harvey, 2000; Sloman,
Over, Slovak, & Stibel, 2003). Sloman et al. further argue
that, rather than a difference in the underlying cognition, the
effect described by earlier work results from nesting proba-
bilities to make it clear to participants which values need to
be compared and that the same benefit can be achieved in
probability formats if the data are presented equivalently.
Even accepting that the method works, however, base rate

neglect is generally reduced by using frequency formats, not
eliminated. Even where people are given direct experience
of a sample, rather than merely summary statistics, base rate
neglect persists (e.g., Goodie & Fantino, 1999; Gluck &
Bower 1988) and an analogous effect has been observed in
pigeons (Zentall & Clement, 2002), suggesting that the effect
is not simply an artifact of experimental design.

Unstable Base Rates

In some respects, this debate seems somewhat confusing.
As the proponents of bounded rationality, Gigerenzer and
Todd (1999; Todd & Gigerenzer, 2003) have argued that we
should seek to understand cognitive processes in light of the
environments in which they are designed to operate. Given
the preponderance of data illustrating the robustness of the
effect (e.g., Kahneman & Tversky, 1996), rather than attempt
to force the effect to disappear, it seems more productive
to consider the ecological reasons that might suggest that
neglecting base rates is the right thing to do.
The tendency within the literature has been to treat base

rates as eternal and unchanging truths given unto people and
which, therefore, it is irrational to ignore. This is not, how-
ever, generally the case. The value of base rate data is lim-
ited, or bounded, in a number of important ways. Goodie
and Fantino (1999) touch on this, arguing that people need
to be sensitive not just to base rates but also to the how base
rates change. In the classic “taxicab” problem they argue that
the base rates given for taxicab colors and eyewitness relia-
bility are specific to one place at one time and thus subject
to change. Indeed, in advocating a relevance-based account
for the base rate neglect effect, Bar-Hillel (1980) examined
variants of the taxicab problem in which the source of infor-
mation for the base rate is varied, and notes corresponding
effects on the strength of the phenomenon.
In this paper, we expand on the perceived-relevance view

of base rate neglect. Our approach can be motivated by con-
sidering the following example, adapted from one commonly
used by philosophers and originating in the work of David
Hume (1739/1898).

Imagine that you have been calculating the proportion
(base rate) of white swans amongst the general swan
population. You have been across Europe and observed
999 swans – all of which were white. You then take a
plane to Australia and continue your survey. Your first
observation is of a black swan. You have now observed
one thousand swans and have a base rate of 99.9% for
white swans. As you plan to continue your survey, what
is the probability that the next swan you observe will
be white?

In a naive statistical sense, one would expect the next swan to
be white with a 99.9% probability, as the base rate indicates.

Rationally, however, you are aware that there is such a thing
as regional variation and that your observations from Europe
are less likely to be predictive in Australia. Accordingly, a
belief in regional variation provides a strong justification for
a decision to neglect the base rate.
When deciding how much faith to place in a base rate, at

least four environmental factors would appear to be relevant.

• Location. Even if you genuinely believed that 99.9%
was the true, world-wide base rate of white swans, the
existence of regional variations implies that the single
black swan observed in Australia should be more highly
weighted. Therefore, when changing from one location to
another, a rational person will discount prior observations
against current ones – that is, they will neglect the base
rate in favor of new data.

• Age. Old data are less likely to be relevant to a new pre-
diction than more current data as base rates change over
time. Consider, for example, the proportion of land preda-
tors that are dinosaurs. If you were relying on base rates
incorporating data from the last 170 million years, you
might predict a fairly high proportion of observations. A
more current analysis, however, would yield a lower fig-
ure. While this is a deliberately extreme example, this
“information aging” effect is observed in library curves
that track the frequency with which books are borrowed
as a function of age, which have a similar shape to human
forgetting curves, suggesting that disregarding old infor-
mation is a rational adaptation to changing environments
(Anderson & Schooler, 1991).

• Source. In general, people trust the evidence of their own
senses to a greater extent than they do that of another
person. Thus, a sample that a person has collected them-
selves is likely to be weighted more heavily than data
given to that same person from an outside source. This
is, of course, quite rational in that, with outside data, the
degree of certainty over its veracity and how it was col-
lected will tend to be lower than that regarding one’s own
observations.

• Quantity. Sample size must also be considered for both
the prior and current samples. The former is often ignored
in base rate neglect experiments but must be considered
as sample size partially determines a base rate’s reliabil-
ity. Empirically, a “base rate” can only be discovered via
observation: in the real world, base rates are simply prior
samples. As a consequence, the decision-maker should
consider how much data contributes to the base rate itself.

Experiment 1
As an initial examination, we consider the impact of varying
the location, age, source and quantity of the data that pro-
vides a base rate. The approach is similar to, but more sys-
tematic than, the variations considered by Bar-Hillel (1980).

Method

Participants. Participants were twenty university students
and members of the general public, 10 males and 10 females,
with a mean age of 30.4 (SD = 12.1). Each was paid for
their participation with a $10 bookstore voucher.
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Experimental Design. The scenarios used in our experi-
ment were designed to maximize the extent to which people
recognize a need to combine two sources of information, by
explicitly placing the base rate data on a scale commensurate
with a second source of evidence. To do so, both sources
of evidence are described as samples of data (prior sample
and new sample) that need to be taken into account. In this
experiment we chose to examine the effect of varying sample
size, while combining the source, age and location variables
into a general cover story. Under the “high trust” cover story,
the prior sample was described as recent data, collected by
the participant, in the same location. Under the “low trust”
cover story, the data was old, collected by someone else, and
in a different location. Sample sizes were varied for both the
prior data (20 or 200 data points) and for the new data (4,
8 or 12 data points). Moreover, the implied base rate could
be either 25% or 75% (with the new data implying the alter-
nate). With all factors fully crossed, this gave 24 (2x3x2x2)
conditions in total.

All of the scenarios used variations on the same cover
story: that the participant was part of a survey team exploring
an alien planet and reporting on the proportion of some native
life form or natural event that met a particular criterion. In
every case, the participant was given a prior sample and then
told what they had observed. Finally they were asked for an
estimate combining both sets of information to be included
in their report. For example:

You are currently classifying predators according to
whether they pose a threat to humans. Your team, work-
ing at this location recently collected 200 observations
and found that 50 (25%) of them met this criterion. This
week, you have made another 4 observations, of which
3 (75%) met the above criterion. What proportion of
predators in the area do you estimate pose a threat to
humans?

This example shows a prior sample size of 200 with a base
rate of 25%. The current sample has a size of 4 and a rate of
75%. The prior is trustworthy in that it is described as recent,
local and self-collected. Twenty-four scenarios were created
so each participant would see a scenario in each condition.

Procedure. All scenarios were incorporated into a GUI and
presented in random order. Participants sat at the computer
and read the introductory cover story before proceeding to the
first randomly determined scenario. During each scenario, all
of the information remained visible on the screen until the
participant had entered a predicted rate of future occurrence.
No time limit was imposed and most participants completed
the 24 scenarios within an hour.

Descriptive Model. To analyze the data, we will adopt
a heavily simplified model for how a “rational” decision-
maker might solve this kind of induction problem. Suppose
the participant (implicitly) makes the assumption that the
observed data reflect some unknown Bernoulli probability
θ, and reports the expected value for θ given the data. In
this situation, a straightforward choice of prior might be a
Beta distribution with parameters estimated from the prior

sample.1 So, for instance, in the example given in the method
section, the observer might specify a Beta(50,150) prior. In
general, if n0 denotes the number of observations that make
up this prior and x0 is the number of those observations
that meet the criterion, then the prior is Beta(x0, n0 − x0),
and the expected prior value for θ is given by the base rate,
E[θ|x0, n0] = x0/n0 = r0. In the event that the new data
are assumed to have exactly the same distribution as the
prior data, then x1|n1 ∼ Binomial(θ, n1). Given this, the
posterior distribution over θ is Beta(x0 + x1, n0 + n1 −
x0 − x1), and the observer would report the obvious choice,
E[θ|x0, x1, n0, n1] = (x0 + x1)/(n0 + n1).2
This model assumes that the observer assigns equal weight

to all data. However, this is highly unlikely. Firstly, the sce-
narios encourage participants to assume that the prior sample
may be less closely related to the quantity of interest θ than
the new data. Accordingly, if each prior datum is “worth”
only t new data, then a natural description of the prior is
a Beta(tx0, tn0 − tx0).

3 Updating in the usual manner, we
might expect the participant to report the value,

E[θ|r0, r1, n0, n1, t] =
tr0n0 + r1n1

tn0 + n1
, (2)

where r0 = x0/n0 denotes the base rate, and r1 = x1/n1

denotes the sample rate. In this experiment, we vary the
way people weight r0 against r1 in two distinct ways. By
altering the description applied to the prior sample, we expect
to see a change in the value of t. This is a direct “cover
story” manipulation, and is expected to result in some explicit
downgrading of the usefulness of prior sample.
The second manipulation involves sample size, and is

somewhat more complex, since sample size is already built
into the naive model predictions. By altering the ratio n0/n1,
we would expect some reweighting of the two estimates.
However, in view of the widely studied “insensitivity to sam-
ple size” effect (e.g., Kahneman & Tversky, 1974), the sub-
jective “value” of a particular sample size is unlikely to be the
same as its actual value. Nevertheless, following Sedlmeier
and Gigerenzer (1997), we might reasonably expect that peo-
ple’s behavior will accord with Bernoulli’s (1713) statement
of the so-called empirical law of large numbers: “even the
stupidest of men, by himself and without any instruction
(which is a remarkable thing), is convinced that the more
observations have been made, the less danger there is of
wandering from one’s goal” (see Stigler, 1986, p.65). For
the moment, then, we make the assumption that the sub-
jective value ñ is related to the objective value n via some
unknown monotonic increasing function ñ = f(n). Given
this, we model the participants’ judgments by assuming that
they will report the value of θ to be expected when one ap-
plies Bayes’ theorem to the subjective sample values, with

1This is equivalent to starting with a non-informative Haldane
prior over θ, assuming that x0|n0 ∼ Binomial(θ, n0), and then
updating belief about θ via Bayes’ theorem (see Jaynes, 2003).

2For people of a less Bayesian persuasion, it is worth noting that
this is also equivalent to a decision-maker reporting the maximum
likelihood estimate for a pooled sample.

3The statistical model in this case involves a trivial generaliza-
tion of the Binomial distribution, straightforward to derive but not
discussed here for space considerations.
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some constant effect expected to arise due to the cover story:

E[θ|r0, r1, ñ0, ñ1, t] =
tr0ñ0 + r1ñ1

tñ0 + ñ1
. (3)

In order to fit the data from the 24 conditions, we fit 4
values for t (high and low trust for both base rates), and 4 val-
ues for subjective sample size. Assuming that f(20) = 20,
we estimate the values for ñ that correspond to f(4), f(8),
f(12) and f(200), which are expected to be more-or-less
invariant across experimental conditions. Note that, since 8
parameters are used to fit 24 data points, there is a sense
in which this model is more descriptive than explanatory.
However, it will transpire that f(·) has a very regular form,
allowing these parameters to be fixed in a sensible fashion,
and leaving only the explicit trust parameter t as truly ‘free’.

Results

Since the simplified framework discussed here makes no pro-
vision for extrapolation (i.e., participants perceiving a trend),
only those 14 participants whose data show no evidence of
extrapolation (i.e., all 24 judgments lie in the range [25, 75])
are considered in this initial investigation. Figures 1 and 2
show the mean estimates for the underlying probability given
by these participants in all 24 conditions. The triangles show
empirical data for the “high trust” cover story, and the circles
show data for the “low trust” cover story. The dashed line
shows the predictions made by the simplistic Bayesian solu-
tion (Equation 2). Overall, there is a clear base rate neglect
effect: the empirical predictions tend to be shifted away from
the Bayesian solution towards the current rate (i.e., above it
in Figure 1 and below it in Figure 2). In total, data for 23
of the 24 conditions are shifted in this direction (one-tailed
sign test gives p ≈ 1.5 × 10−6). More important, however,
is the fact that trustworthiness is having a clear effect. In
all 12 cases, the mean predictions made by participants in
high trust scenarios are closer to the Bayesian solution than
estimates made in otherwise equivalent low trust scenarios
(one-tailed sign test gives p ≈ 2.4 × 10−4).
A finer grain of analysis is possible by fitting the model.

Parameter estimates for t and ñ were obtained by minimizing
sum squared errors. Figure 3 shows the recovered parameter
estimates for the subjective sample size parameters, ñ. Com-
parison with the solid line makes clear that ñ ∝ log n: in this
task, subjective impressions of sample size rise logarithmi-
cally with the actual sample size. This logarithmic relation-
ship is in agreement with both the classic Weber-Fechner
law, and with other data suggesting that the mental repre-
sentation of magnitude is approximately logarithmic (e.g.,
Shepard, Kilpatric & Cunningham 1975; Dehaene 2003).
The implied trust statistics t for the cover story, shown in

Table 1, are more complex. Most importantly but not sur-
prisingly, in both the 25% base rate conditions and the 75%
base rate conditions, the estimated value for t is much higher
when the cover story suggests high trust as opposed to low
trust. Parameter estimates for low trust suggest that a prior
datum is worth only 1/4 of a new datum, in subjective (i.e.,
log) terms. When the base rate is 25%, the high trust pa-
rameter is approximately 1, suggesting that the only effect in
this condition is the logarithmic scaling of subjective sample
size effect shown in Figure 3. The inferred value of 1.4 for
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Figure 1: Participants estimated rates for the various con-

ditions in which the base rate was 25%. Triangles denote

data from conditions involving the “high trust” cover story,

and the circles show the “low trust” condition data. The

thin lines are standard error bars. The dashed lines show the

predictions of the naive Bayesian model (Equation 2), while

the solid lines show the predictions made by the descriptive

model.
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Figure 2: Participants estimated rates for the various condi-

tions in which the base rate was 75%. The format of the

plot is the same as for Figure 1.

the 75% base rate and high trust is odd, since it implies that
a prior subjective datum is treated as being worth more than
one subjective new datum. This observation, and the fact
that the corresponding empirical data for these conditions
(solid line at the top left of Figure 2) do not show strong
evidence of base rate neglect, suggests that this case may be
somewhat different to the others.

Discussion

The results paint a relatively clear and somewhat intriguing
view of base rate neglect. To a large extent, the base rates
implied by larger samples are weighted more heavily than for
small samples, in keeping with the so-called empirical law of
large numbers (Sedlmeier & Gigerenzer, 1997). In that sense,
people can be seen to adapt to the trustworthiness of the data
in a very sensible fashion. That said, a kind of “insensitivity”
to sample size is observed, since the subjective value rises
nearly logarithmically with sample size, rather than linearly.
Altering the cover story to devalue the base rate has a large
effect on trust, lowering the subjective value of the base rate
by three quarters in both the 25% and 75% conditions.
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Table 1: Estimated trust statistics for the low and high trust-

worthiness conditions, as a function of the underlying base

rate.

high trust story low trust story

25% base rate 0.94 0.25

75% base rate 1.41 0.23

Experiment 2

Method

Experiment 2 aimed to expand on the three factors that con-
tributed to the cover story in Experiment 1. The design of
the experiment was the same as for Experiment 1, and was
in fact conducted simultaneously with the first experiment
using the same 20 participants, with the various conditions
intermixed with those used in the first study. In this case, the
“base rate” was fixed at 75% using a sample of size 20 (i.e.,
15 hits), and the new data are based on a sample size of 4
with a single hit, suggesting a rate of 25%. An independent
effect model takes the same format as Equation 3, but with
separate terms for the effect of location tl, age of data ta
and source of the data ts. For reasons that will become clear
shortly, we fix the high value for trust at 1 in each case (e.g.,
when you collect the data yourself), and simply estimate the
low value. Similarly, we again extract ñ from the raw data.

Results

The basic pattern of results is shown in Figure 4. As more
reasons to distrust the prior data (distant location, old data,
collected by someone else) are added to the cover story, par-
ticipants’ ratings move away from the base rate and closer
to the new data. Moreover, a model that assumes that each
manipulation has a constant effect on trust provides a very
close fit to the data. As shown in Table 2, each manipulation
has a substantial effect. Changing the age or source of the
data lowers trust to 2/3, while changing the location lowered
trust to 1/3. Fitting the subjective value of the new data, we
obtained ñ = 4.72, suggesting that in this case participants’
subjective understanding of sample size was almost perfectly
calibrated.
The overall pattern of results is highly consistent with

results from corresponding conditions in Experiment 1 (i.e.,
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Figure 4: Actual and predicted values for participants’ es-

timates for the underlying rate in experiment 2. Empirical

values are shown by white circles with standard error bars

shown. Model predictions are shown with crosses.

Table 2: Estimated effect on trust for each element of the

cover story.

location age source

t 0.34 0.63 0.62

those with 75% base rate, prior sample of 20 and current
of 4): if all parameter values are multiplied by 1.41 (the
high trust value found for these conditions in Experiment 1),
we obtain ñ = 6.61 for the subjective sample size, which
is fairly close to the value of 7.82 found in Experiment 1.
Similarly, the low trust value of 0.23 from Experiment 1 is
close to prediction from Experiment 2 of: 1.41 × 0.34 ×
0.63× 0.62 = 0.18.

Discussion

It is clear that all three elements of the cover story affect
the trust that people assign to data in reasonable ways. For
example, location has a stronger effect than time or source,
corresponding with natural expectations - specifically, that
a change in continent will alter the value of a dataset more
than it being 100 years old or collected by someone else.
Moreover, the results of Experiment 2 provide insight into
the unexpected value t = 1.4 from the high trust, 75% base
rate conditions of Experiment 1. The fact that participants
in Experiment 2 showed near perfect calibration in terms of
sample size suggests that, in situations with high trust and
small, easily-added samples, people are able to weight sam-
ples in an exact (linear) fashion rather than logarithmically.
Examining the results for n1 = 4 in the left-hand plot of
Figure 2 (corresponding to Experiment 2’s conditions) one
sees that the calculated value t = 1.4 likely results from the
model assuming logarithmic weighting of sample sizes when,
under such conditions, participants updated their beliefs in
accordance with Bayes’ Theorem.

General Discussion

Together, the experiments provide an interesting perspective
on base rate neglect; overwhelmingly supporting the view
that, although the base rate neglect effect is genuine, it is
not that people simply fail to take into account all of the
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available information. On the contrary, there is evidence to
suggest that people are, in fact, discounting prior informa-
tion as less relevant than current information. Four distinct
factors are shown to influence the extent to which people
devalue prior information: geographic distance, age of the
data, the source of the information, and the amount of data
upon which the base rate is constructed. Sample size, the last
of the four factors, was investigated in some detail, and the
results suggest that people are sensitive to changes in sample
size. This is particularly interesting in that, quite incidentally
to the overall goals for the study, it suggests that many of
the results pertaining to “insensitivity to sample size” might
be best explained by supposing that people use an internal
logarithmic representation to scale sample size, in agreement
with other studies that have looked at the psychological rep-
resentation of magnitude.
An intriguing possibility is that the proposed logarithmic

law for subjective sample size may not apply in all cases. As
indicated, the parameter estimates for the two Experiments
lead to similar predictions. However, while most conditions
in Experiment 1 involve logarithmic scaling (leading to Fig-
ure 3) this appear not to be the case for the more constrained
case in Experiment 2. One explanation for the disparity may
be that in some situations (with high trust and easily manip-
ulated numbers), people mentally represent the data in terms
of a single pooled sample, rather than as two distinct sam-
ples. In this pooled case, the relative weight of the prior
data and new samples would combine linearly. It is possible
that this distinction between “pooling” and “comparing” data
sets could explain the effect, but without further data it is
difficult to do more than speculate.
Three final caveats are in order. Firstly, the proposed ac-

count only covers the weighting of two data sources. A
complete account should extend the approach to deal with
extrapolation. Secondly, no claim is made that discounting
is always conscious: people may very well have an intuitive
preference to rely on more recent data, for instance, but still
be willing to admit (post-experiment) that they “should” have
used Bayes’ theorem. An intuitive (and appropriate) distrust
of base rates not being inconsistent with the ability to follow
the logic of Bayesian updating. Finally, it should be noted
that since our experimental design used within-subject com-
parisons, it is heavy-handed in terms of the extent to which
participants are made aware of the potential variations in reli-
ability for different sources of data. Thus, although it is clear
that there are situations in which people are extremely good
at incorporating or discounting prior data in a sensible fash-
ion, it is not as clear how generally this holds. In particular,
further research is required to determine whether examples
without any markers of trustworthiness, such as traditional
base rate neglect experiments, lead people to trust or distrust
the presented base rates. Until this question has been re-
solved, however, it seems premature to base any charge of
human irrationality on previous base rate findings.
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