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Abstract 
In some contexts, human learning greatly exceeds what the 
sparsity of the available data seems to allow, while in others, it 
can fall short, despite vast amounts of data. This apparent 
contradiction has led to separate explanations of humans being 
equipped either with background knowledge that enhances 
their learning or with suboptimal mechanisms that hinder it. 
Here, we reconcile these findings by recognising learners can 
be uncertain about two structural properties of environments: 
1) is there only one generative model or are there multiple ones 
switching across time; 2) how stochastic are the generative 
models. We show that optimal learning under these conditions 
of uncertainty results in learning trade-offs: e.g., a prior for 
determinism fosters fast initial learning but renders learners 
susceptible to low asymptotic performance, when faced with 
high model-stochasticity. Our results reveal the existence of 
optimal-paths-to-not-learning and reconcile within a coherent 
framework, phenomena previously considered disparate. 

Keywords: optimal learning; volatility; background 
knowledge; structural uncertainty; prior for determinism 

Introduction 
One of the most striking aspects of human learning is the 
speed with which learning proceeds in some situations. 
Indeed, learning rates often exceed what the available data 
would allow, even if the learner was making maximum use 
of each data point (Carey & Bartlett, 1978; Chomsky, 1980; 
Feldman, 1997; Jern & Kemp, 2013; Ward, 1994; Xu & 
Tenenbaum, 2007). These findings suggest that humans use 
background knowledge when approaching novel learning 
problems (Lake et al., 2017; Tenenbaum & Griffiths, 2001). 
This type of generalization can allow an individual in a new 
learning situation to either show an immediate high level of 
performance, to have a faster learning rate, or both (Harlow, 
1949; Kattner et al., 2017; Spelke et al., 1992). Yet, at the 
same time, human learning performance can sometimes be 
substantially lower than what the data would allow, even in 
seemingly simple tasks (Baker et al., 2014; Findling & 

Wyart, 2021; Wang et al., 2017; Wyart & Koechlin, 2016).  
Such failures of learning are typically attributed to 
completely different mechanisms than those supporting 
surprisingly fast learning.  For instance, studies using 
sequence learning paradigms have found a proportion of the 
subjects to be “weak” learners of statistical properties of 
sequences (Baker et al., 2014) or to fall short of the expected 
optimal learning performance (Wang et al., 2017).  

While current views rely on separate explanations for these 
two aspects of human learning: where “fast learning” 
assumes people use prior knowledge and optimal inference 
computations and “poor learning” assumes ad hoc 
suboptimal mechanisms (e.g., memory leakage, inattention, 
demotivation), we posit that these seemingly unreconcilable 
findings are in fact to be expected from optimal learning 
agents. First, the agents must have the ability to learn quickly 
(i.e., to discover the generative models, the causal 
explanations of their observations). This requires that 
learners have, from the start, a set of candidate generative 
models of  the observations. Second, we posit that agents 
must use their observations to update their prior expectations 
of two sources of structural uncertainty about the 
environment: a) uncertainty about the stochasticity of each 
candidate model and b) uncertainty about the volatility of the 
environment. In other words, learners need to infer the extent 
to which the observations must be explained by their putative 
generative model, and the probability with which the 
underlying generative model could switch onto a different 
one from one moment to the next. 

We argue that uncertainty about the structural properties of 
the environment in human learning tasks is much more 
pervasive than is currently recognised. Structural uncertainty 
is bound to occur in laboratory settings whenever instructions 
are unclear or incomplete, in ecological settings (where 
instructions are non-existent and goals may be unclear), and 
in many real-life scenarios where the context of the 
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environment is ambiguous (Acuña & Schrater, 2010; Beck et 
al., 2012; Behrens et al., 2007; Courville et al., 2006). Think 
for example about turning the radio on when an unknown jazz 
piece is playing. Try to predict what notes will be played next. 
Your predictions may differ, for instance, depending on 
whether there is a single player who is playing a recurring 
pattern of notes with some variations (i.e., random excursions 
from the main melody) or multiple players taking turns 
playing distinct melody pieces. The way we interpret this 
novel musical piece, and how well we are able to predict the 
forthcoming notes, will largely hinge on the nature of our 
background knowledge (based perhaps on similar prior 
experiences). At the core of this learning problem lies an 
inherent ambiguity for attributing the causes of unexpected 
observations. Should an unexpected stimulus be attributed to 
a switch in the true generative model (i.e., a switch to a new 
musician)? Or should it be attributed to a single non-
deterministic true generative model (i.e., one musician who 
introduces stochastic variations)? 

Here, we follow a Bayesian solution to learning under this 
type of structural uncertainty about the environment and 
report a series of counterintuitive learning trade-offs. First, a 
trade-off exists between: the speed of initial learning (and of 
adaptation to changes), and the ceiling or final performance 
under any one assumed model (Brand, 1999; Jaynes, 1982). 
We show that a learner’s prior expectation towards 
deterministic models is simultaneously conducive to the 
fastest identification of the underlying model and of changes 
of the underlying models. However, such a prior for 
determinism also leads learners to quickly assume a change 
in models when in fact the observations may simply be 
stochastic departures within a single true model. Similarly, 
prior expectations for a stable (as opposed to volatile) 
environment lead to higher levels of final performance for all 
the observations that arise from a single model. However, 
such a prior for stability also precludes detecting possible 
changes in the underlying models. A second learning trade-
off is linked to the size of a learner’s set of candidate models. 
Intuitively, a bigger set of assumed models is more likely to 
contain the true model for a series of observations, and thus 
to yield higher performance levels. However, a bigger set of 
assumed models can make it harder to identify the true model 
(from a subset that makes few disjoint predictions), thus 
reducing the speed of learning. Together, we show that these 
learning trade-offs predict the existence of optimal-paths-to-
not-learning for agents that aim to learn fast. Specifically, a 
prior for determinism can lead a learner to quickly identify 
the true model for a series of observations, and quickly 
identify a true change in model, at the cost of hindering 
learning when a single true model with higher stochasticity 
generates the observations. 

Results 
We analyse the learning consequences for agents that: i) have 
a set of candidate models for their observations (which allow 
them to learn at rates that exceed what the observations alone 
would allow), ii) have uncertainty about how stochastic each 

of the models may be and iii) have uncertainty as to the 
likelihood that a model can be overtaken in time by a different 
one. The last two points capture the agents’ uncertainty about 
the structural properties of the environment. Although the 
general framework works for a broad set of learning 
environments, here we ground our work onto a specific case 
of learning in a sequence prediction task. Some of the 
assumptions made in the specific example are made for 
allowing completeness of information on the side of the 
learners, but we clarify what the minimal assumptions are 
that support generalizing our results. 

Definitions, Notation and Assumptions 
Briefly, we assume an environment that consists of the 
sequential presentation of one stimulus (at each time point) 
out of a fixed set (e.g., and unordered set of symbols). Agents 
have to predict at each time point what stimulus will come 
next, requiring in essence the agents to learn the predictive 
transition patterns. We describe the both the environment and 
the agents in more detail, and in turn, in the following 
subsections. 

Environmental model The stimulus sequence is controlled 
by a specified set of generative models which 
probabilistically determine the next stimulus as a function of 
the last one. Each of the generative models is a first order 
Hidden Markov Transition model. Furthermore, the complete 
set of generative models that obey a set of rules form a 
generative family. In general, we assume that the size of the 
model space  is finite. 

For grounding our results, we assume an environment 
where the generative family is defined by six possible 
generative models parameterised by , a level o stochasticity. 
The six permutation matrices over a set of four symbols (four 
stimulus identities) span the full space stimulus-to-stimulus 
transitions and capture the most essential part of the 
generative models: the set of dominant transitions, i.e., the 
most likely next stimulus from any given stimulus. All 
dominant transitions for a model can be described by a 
dominant transition matrix  . A stochasticity parameter, , 
describes the probability with which a dominant transition 
will occur under a given model. Within our chosen generative 
family, self-transitions do not occur (i.e., the stimulus is 
never the same on two consecutive time points). Finally, the 
two non-dominant transitions under a model for any given 
stimulus (i.e., all transitions that are not dominant or self-
transitions) occur with equal probability (splitting the 
compliment of  over the two possibilities).  

The environment is also characterised by a level of 
volatility which reflects the probability of switching between 
generative models across time. Importantly, the volatility is 
affected by the frequency of model switches and depends 
upon the number of models which can be visited in a given 
environment (i.e., six in our case). 

Agent model An important conceptual distinction exists 
between an environmental model (i.e., a true model 
generating the stimulus) and an agent’s assumed model of 
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how the stimuli are generated.  However, we often use simply 
the word model when we mean either the true model of the 
environment or the agent’s assumed model. Furthermore, and 
for completeness, we assume agents have the full set of 
generative models contained in the environment’s generative 
family; yet, the generality of our findings hinges only on the 
agent having a set of two or more distinct models (i.e., 
assumed models that make disjoint predictions), and not 
necessarily on having the complete set of possible ones. We 
assume agents perfectly know the generative family at the 
level of the structural assumptions, that is, they know the 
possible dominant transition matrices, , but they do not 
know the level of stochasticity in the models or the volatility 
in the environment. This assumption allows us to simplify the 
treatment of the agents’ assumed models to be matched to the 
generative family but is not essential, and our results do not 
rely on the agents having perfect knowledge of the generative 
family (they rely solely on the agent having at least two 
competing candidate models as well as having uncertainty 
about the stochasticity of the models and having uncertainty 
about the volatility of the environment). 

In general, we let  be the set of  parameters 
in model  assumed by an agent. For the specific 
environmental model described in the previous section, we 
can approximate any of the models assumed by an agent as a 
transition matrix, , composed of a weighted sum of three 
parts: , where  is 
any one of the six dominant transition matrices,  is a matrix 
that identifies all the transitions that cannot be observed 
within the environment (i.e., self-transitions),  is a matrix of 
all ones, such that  identifies all transitions that can be 
observed with high likelihood under any of the models within 
the environment, and  is a matrix that ensures the rows 
add up to 1, with the constraints that  and  
that . Note that the actual transition 
probabilities of an environmental model need not coincide 
with the transition probabilities assumed by an agent. Finally, 
the parameters can be seen as mixing parameters that capture 
the assumed probability with which the stimulus, at each time 
point, will follow the dominant transition under the  
model ( ), will follow the dominant-transition under any of 
the other models ( ), or will follow a transition for which 
no evidence has been given ( ). When we use  without 
indexing we refer to  for practicality. 

We assume the process is fully observable (i.e., that the 
agent’s observations correspond to the true stimulus identity), 
thus, we use stimulus and observation interchangeably. At 
any given time point , the agent observes the stimulus  and 
is tasked with making a prediction  of what they think the 
next stimulus will be . Across all time points, the agent 
tries to maximize the total number of choices that match the 
forthcoming observation . To achieve this, the 
agent needs to continuously infer: i) which model is in control 
of the stimulus, ii) the level of stochasticity of the models, 
and iii) the volatility of the environment. Despite the process 
being fully observable, a lapse rate (e.g., in the form of a 
noisy identity emission matrix) might be desirable. More 

concretely, if  ,  and , then for 
the following dominant transition matrix, 

 
we can express an agent’s model in the form of the following 
transition probability matrix:

 
Thus, the parameters of an agent’s internal model 

simultaneously determine its predicted probability of 
observing each of the possible transitions of the stimuli, as 
well as each of the predictive choices from the agent (i.e., the 
predicted stimulus transition for the next trial). 

Decision model Learning agents make forecast choices by 
forming the predictive distribution over next possible stimuli, 
given their model uncertainty.  Given the focus on learning, 
these equations need to be written in recursive form to 
understand how choices vary in time as a function of history 
and priors. 

We introduce two types of history—stimulus history and 
choice history. Specifically,   is the 
history of stimuli up to, but excluding the  timestep, while 

 is the history of choices up to, but excluding, the  
timestep.  These equations are defined so that the histories at 
time  are consonant with the information the observer would 
have available for making their forecast of the stimulus , 
and allow us to handle the history and the latest stimulus (or 
choice) separately which simplifies our equations. 

The agent maintains a dynamic belief about which model 
is currently controlling the stimulus, represented by a random 
variable  which indexes the model.  The model belief is the 
probability .  The agent also has an internal model 
for how the environmental model changes from one trial to 
the next,  which represents their assumptions 
about the volatility of the environment (i.e., the probability 
that the model currently controlling the stimulus will 
continue to do so on the next trial, versus that other models 
will take over).  To simplify, we parameterize this matrix 
with the continuity probability of  on the diagonal, and 

 on the off-diagonal (i.e., all other models are 
equally likely to take over). 

The forecast equation performs a weighted average of the 
models by their reliability to obtain its posterior probabilities: 

 
 

(eq. 1) 

The model posterior  represents the 
confidence that the agent has on the model  being in control 
of the stimulus at time . Note that the confidence is a 
normalized distribution over the set of models and will vary 
as a function of the history. The confidence in a model 
reflects its ability to explain the observed sequence of stimuli, 
given its parameter uncertainty. Our parametrization of 
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agents’ assumed models allows us to expand the model 
posterior as a function of its parameters (see below). 

Choices are modelled as a soft-max selection of the most 
likely prediction.  We can write this in many equivalent 
forms.  Using  provides the most familiar form as: 

 
 

(eq. 2) 

Particular choices of the agent are assumed to be sampled 
from this distribution (here,  is a temperature parameter). 

Confidence  is the most important indicator of the 
agent's understanding of the process at the level of structural 
assumptions. Each model has its own parameters, and the 
model’s parameterization affects the confidence in important 
ways. 

We can thus express confidence in a model in terms of the 
probability of the history (of stimuli and choices) under the 
model, as follows: 

 
 

(eq. 3) 

We can express the above equation, up to a normalization 
constant , by expanding the stimulus history,  into two 
parts: the history up to the previous stimulus , and the 
latest stimulus : 

  (eq. 4) 

The above equation marginalizes over the possible values 
that the latent variable had in the previous trial , by 
expanding it we obtain: 

 
 

 
(eq. 5) 

The expansion is useful because it allows us to express the 
confidence as the product of three components: 

 
 

 
(eq. 6) 

The three components are:  i) the confidence in the models 
at the previous timestep, i.e., the prior belief over models up 
to the previous timestep given the stimulus history at the 
previous timestep , ii) the model-to-model 
transition probability, i.e. the probability of a model at the 
current timestep given the model at the previous timestep

, and iii) the likelihood of the stimulus, i.e., the 
probability of the latest stimulus transition under the model 
at the previous timestep  . 

We can rewrite the equation to express confidence as 
follows: 

   (eq. 7) 

Where  is the confidence on the model at the 
previous timestep,  is the volatility matrix, and  is the 
responsibility that a model bears on having produced the 
latest stimulus.  

Each model gets to marginalize over its internal parameters 
to make a forecast, so: 

  (eq. 8) 

Equation 7 shows that confidence at trial , , is 
proportional ( ) to the product of two components: the new 
evidence for the model, , and the previous confidence, 

. 
We can now expand  using the model parameters.  

Here we make our first approximation, namely, that the 
parameter uncertainty’s effect on the terms in  can be 
handled separately.  This will be justified by conditioning on 
separate maximum likelihood estimates of the parameters for 
time steps  and . This assumption bounds the true 
probability if the sequence of estimates converges. Given that 
the underlying process is stationary, convergence holds.  

Our goal is to take the joint distribution on both  and on 
 and then unpack the model updates.   
First, note that each transition model depends on its own 

parameters . Including those parameters, we write 
 as  .  To update the parameters, 

we form the posterior for each model given the history up to 
.  Assume we have an independent set of priors for each 

model . 
The posterior probability of the  model after observing 

the latest stimulus is proportional to the likelihood of the 
stimulus transition under that model, conditioned on whether 
that model was active.  Here we assume that  forms a 
“one-hot vector”, which allows us to write the likelihood of 
the transition as:   

 
 

(eq. 9) 

We can use Bayes’ rule to express the probability of the 
model parameters as a function of the stimulus history 
(partitioning history into the last stimulus and previous 
stimuli as before).  Let the set of parameters for all models be 

. Then, 

  (eq. 10) 

Note that this equation shows that if the  probability is 
concentrated on one model at the previous timestep, then only 
that model is updated upon observing the new stimulus and 
all other models maintain their posteriors over parameter 
values.  Model uncertainty thus “gates” parameter updates 
according to the model’s responsibility for previous 
transitions. Despite the gating, the model is explicitly full 
memory—it does not include any forgetting. Forgetting can 
be modelled by adding transition dynamics on the model 
parameters. None of our key predictions require this 
complication. 

The update equation can be parameterized in order to 
provide better intuitions for how the key concepts affect 
model learning.  First, we can distinguish the first model as 
the true generator (of a series of stimuli generated by a single 
true generative model). In accordance with the true 
generative family of our environment, for dominant 
transitions , self-transitions are zero, and all 
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others are , where  is the 
number of unique stimuli. Assuming a Dirichlet form for the 
prior,  for some positive integers 

, . Let, 

 
 

(eq. 11) 

Then, the update for dominant transitions is: 

 
 

 (eq. 12) 

In expectation, the count  is updated by  

the expected value of the first component of  . This means 
the effective rate of model learning is proportional to 
confidence, in other words learning is gated by confidence. 

The effects of priors on learning There are several ways to 
see how learning depends on the priors. Here we start by 
rewriting the mixture dynamics as a larger Markov model and 
then use Large Deviations Theory to get a convergence rate.  

First we enlarge the state space  which is a 
 sized state space.  The overall transition matrix is 

, which provides the joint 
. This can also be 

viewed as a hidden Markov model, with observation 
, such that  is the emission 

matrix and  is the hidden transition matrix.  In the 
hidden Markov model formalism, the emission is a doublet 

 and we track counts over these observed transitions. 
Given this larger matrix, the empirical cumulative count 

induces a probability measure over the observations that 
converges to the true distribution. The convergence 
(learning) rate can be shown to be the differential relative 
entropy between the true distribution and the prior.  This acts 
as the time constant of learning. 

Simulations 
We ran simulations to illustrate how learning depends upon 
the structural assumptions of the learner. An environment can 
be described by a pair of environmental parameters: i) the 
environment volatility (i.e., the probability with which the 
model switches onto a different one from one time point to 
the next), and ii) the model stochasticity (i.e., the probability 
that within a model an observation will occur that departs 
from the dominant transitions). Our simulated learning agents 
are also defined by two parameters (conceptually related to 
the environmental parameters): i) a prior for model 
determinism  (i.e., the agent’s prior belief about the model 
stochasticity), and ii) the prior for volatility, ɣ (i.e., the 
agent’s prior belief about the frequency switches of model). 
Note that the agent’s belief may not always be consistent with 
the true structural properties of the environment in which it is 
trying to learn. We ran a series of simulations to show the 
effects of agents’ prior beliefs on learning trajectories (Fig. 
1). For each simulated learning agent (defined by its values 
of  and ɣ) and for each simulated environment, we ran one 

thousand independent and random instantiations of 
sequences and computed the corresponding learning 
trajectories (following equations above). We report the 
average performance across the different instantiations. 

First, we show that a learner’s prior for determinism is 
directly related to the speed with which they will converge 
onto (i.e., learn) the true generative model of a series of 
observations (Fig. 1A). For these simulations, each simulated 
sequence started by choosing randomly (i.i.d) one of the 
possible environmental models as the true generative model 
for that sequence’s complete series of deterministic 
observations. All instantiated learners started with a uniform 
prior over the possible assumed generative models, and knew 
that there was a single generative model for all observations 
(i.e., associated with ɣ=1) but we systematically varied the 
learners’ prior for determinism (one hundred different and 
equidistant  values between the values of 1/3 and 1).  
Critically though, learning trajectories are not solely 
determined by the agents’ prior for determinism and prior for 
volatility, but also by the environmental properties and the 
interactions between the them (Fig. 1B). We focus on two 
prototypical environments (often used in laboratory settings) 
that lie along each of the axes of the space of environmental 
properties: i) a “prototypical single task learning paradigm” 
(big blue open circle), and ii) a “prototypical task switching 
paradigm” (big red open circle).  

Figure 1: Trade-offs as a function of candidate models,  
beliefs in model stochasticity and environment volatility 
during optimal learning. (A) Convergence speed is 
dominated by the prior for determinism ( ): a stronger prior 
for determinism (redder curves) results in sharper 
identification of the true underlying cause of a series of 
observations. (B) The structural properties of an environment 
can be described in terms of the “model stochasticity” and of 
the “environmental volatility” (number of models that can be 
switched onto and frequency of switching). Two prototypical 
environments frequently used in laboratory settings: i) a 
“single task learning paradigm” (blue star along y-axis) 
where there is a single true model to be learned and 
observations can stochastically differ from the model’s 
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dominant transitions; and ii) a “task switching paradigm” (red 
star along y-axis)  where multiple models deterministically 
generate the observations but frequent switches of the models 
occur. Learners’ priors (arrow tails, projected in the 
environment for which they are best adapted) result in 
specific paths of learning (coloured arrows in the direction of 
updating when immersed in the environment). The colour of 
learners denotes the environment where they are immersed. 
The expected convergence solution depends on the region 
where the initial prior falls. Shaded coloured regions mark 
regions of near-zero expected update for agents in each 
environment. (C) In a “single task learning” environment, a 
trade-off exists between the priors that allow a fast 
identification of the underlying cause and susceptibility, in 
the long-run, to the stochasticity of observations. (D) The 
same priors that protect learners from stochasticity in 
observations (“a prior for a single stochastic task”, blue 
curve), can prevent them from adapting to actual switches in 
the models that generate the observations. A learner’s prior is 
parameterised as a Dirichlet distribution (for visualization 
only, we index learners by the max of their prior distribution). 

Learners and their expected learning trajectories (and 
gradients) can be projected onto the same space for which 
their priors are best adapted. Learning depends both upon the 
environment in which they are immersed (difference between 
blue and red arrows) and upon the prior with which learners 
start. Ideally, learners immersed in an environment should 
converge to the solution maximally aligned with the 
environment, marked with the  blue and red star for the  
“single task learning paradigm” and the “prototypical task 
switching paradigm”, respectively. While learning 
trajectories are influenced by the actual stochasticity of the 
sampled stimulus (not shown), we can also compute the 
expected average gradients. The blue and red shaded areas 
represent expected gradients that are close to zero in either 
environment. Indeed, the ideal solutions for each 
environment are surrounded by shaded areas of their 
respective colours, revealing attractors. Attractors are a 
consequence of learning being gated by confidence and the 
preferential attachment of observations onto generative 
models (Equation 12), which can lead some learners with a 
“wrong” prior to convergence onto a solution that is wrong 
for the environment (i.e., red shaded area along the top part 
of the y-axis and blue shaded area towards the right part of 
the x-axis). 

We then focus on the two prototypical environments and 
show the learning trajectories of optimal learners that have 
prior beliefs that correspond with either the properties of the 
true environment in which they are immersed or the other one 
(Fig. C-D). We simulated one thousand sequences for both a 
“prototypical single task learning” environment 
(environment parameters: =0.75, ɣ=1) and for a 
“prototypical task switching” environment (environment 
parameters: =1, ɣ=0.75). Assuming a single stochastic 
generative model for all observations (e.g., =0.75 and ɣ=1; 
blue curves) conduces learners to performance which is 

resilient to unexpected observations and is desirable in 
environments that are truly controlled by a single generative 
model (Fig. 1C), but is maladaptive in environments where 
the generative models of observations are frequently 
switching (Fig. 1D). On the other hand, assuming multiple 
and frequently switching deterministic models (e.g., =1 and 
ɣ=0.75; red curves) will allow for quick identification of the 
switches (Fig. 1D) but can be maladaptive in environments 
where a single stochastic model generates observations (Fig. 
1C).  

Discussion 
Here we show the impact of an intrinsic ambiguity that 
optimal learners must navigate when interpreting the 
structural causes of stochastic observations. Together our 
results show that the prior beliefs of a learner regarding the 
properties of the environment, will result in learning that 
trades-off: i) quick learning and quick identification of 
switches, at the expense of vulnerability to within-model 
stochastic observations, against ii) resilience to stochastic 
observations which allow for high sustained performance in 
environments with a single stochastic cause for observations 
(at the expense of slower learning and identification of the 
dominant underlying cause in volatile environments).  
We note that our treatment of volatility is not the same as a 
related concept previously introduced (Behrens et al., 2007; 
Piray & Daw, 2021; Wilson et al., 2010); in our case, high 
volatility is not only related to an increased probability of a 
switch in the cause but also to a higher number of causes that 
can be switched onto. We further show that when there is 
uncertainty about the structural properties of the 
environment, optimal learning can lead, through gated 
learning, to convergence solutions that may not be well-
matched with the true properties of the environment. The 
converged solution for a learner will largely depend upon its 
background knowledge (i.e., its initial prior understanding of 
the environmental properties). We thus explain variability in 
learning outcomes in terms of variability in priors, instead of 
relying on ad-hoc suboptimal mechanisms like imperfect 
computations (Findling & Wyart, 2021) or probability 
matching (Acerbi et al., 2014; Shanks et al., 2002), without 
recognising the uncertainty about the structure of the 
environment (i.e., stochasticity vs volatility) that may have 
riddled the learners. 

We endow our agents with background knowledge to allow 
them for the quick learning that characterizes humans in some 
contexts. Our approach is agnostic as to how the agents 
acquired background knowledge. Some aspects of 
background knowledge have been shown to be mostly learnt 
from previous experiences (Jusczyk, 2003; Madole & Cohen, 
1995; Smith et al., 2002). Accordingly, in a recent study 
(Castañón et al., 2021),  humans were shown to inductively 
infer aspects of the generative family with only a handful of 
trials. Yet, background knowledge can also be include an 
important innate component (Chomsky, 1980; Keil & Sessar, 
1979; Spelke et al., 1992). While, our equations express 
agents that perfectly know the generative family from which 
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generative models are drawn, our results hold without this 
assumption; the critical assumptions are that learners: i)  must 
have a set of candidate models even if incomplete, and ii) 
must be uncertain about the stochasticity of models and about 
the volatility of the environment. Our work takes an optimal 
modelling approach to human learning when allowing agents 
to include background knowledge that allow for the quick 
learning that characterizes human learning in some settings. 
In doing so, our work also provides a rational explanation for 
the failures of learning that characterizes humans in other 
settings. In particular, a background knowledge composed of 
a suitable set of candidate models and a prior bias for 
determinism can account for both aspects of learning without 
the need to invoke suboptimal mechanisms. 

An exciting avenue of future research is to understand the 
mechanisms that drive humans to make early and fast 
inductive inferences such that their background knowledge 
can be suitably adapted to the environmental demands. 
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