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Learning Patterns in Noise: Environmental Statistics Explain the Sequential Effect 
 

Friederike Schüür (fs62@nyu.edu), Brian Tam (bpt218@nyu.edu), Laurence T. Maloney (ltm1@nyu.edu) 
Department of Psychology, 6 Washington Place 

New York, NY 10003 USA 
 
 

Abstract 
 
Effects of trial history, or sequential effects, are typically 
observed in perceptual, motor, and decision making tasks and 
explained by subjects’ irrational sensitivity to local patterns in 
stimulus history. We propose that in 2 alternative forced 
choice reaction time tasks (2AFC), sequential effects are a 
consequence a rational agent engaging in probability learning 
but with an inappropriate world model for 2AFC. We 
manipulate subjects’ world model and show expected changes 
in sequential effects. Sequential effects are at least in part 
driven by subjects’ beliefs about their environment. 
 
Keywords: sequential effects; two alternative forced choice 
reaction time tasks; Bayesian modeling 

 
Sequential Effects 

Subjects display sensitivity to local patterns in stimulus 
history in perceptual (Howarth & Bulmer, 1956; Maloney, 
Martello, Sahm, & Spillmann, 2005), motor (Cho et al., 
2002; Remington, 1969; Soetens, Boer, & Hueting, 1985), 
and decision making tasks (Ayton & Fischer, 2004; 
Gilovich, Vallone, & Tversky, 1985). In two alternative 
forced choice reaction time tasks (2AFC), for example, 
subjects’ reaction times (RTs) depend not only on the 
current stimulus but also on the sequence of preceding 
stimuli (Cho et al., 2002; Remington, 1969), a phenomenon 
known as sequential effects (SQE). In addition, participants 
typically respond faster to an alternation of stimuli after a 
run of alternations compared to a repetition of stimuli after a 
run of repetitions (Soetens, et al., 1985). We refer to this 
finding as alternation bias in SQE. While alternation bias 
seems more common, repetition bias has been observed, too 
(Cho et al., 2002). We here ask what processes give rise to 
biased SQE. 
SQE are in part determined by the time interval between 
subsequent stimuli (inter-trial interval). If this interval is 
short (< 500 ms), SQE are driven by automatic facilitation 
(Bertelson, 1961; Soetens et al., 1985). Responses to 
repeated stimuli benefit from residual activation left by 
previous stimulus-response cycles and consequently, RTs to 
repeated stimuli are faster while responses to alternating 
stimuli are slower (Soetens et al., 1985). If the inter-trial 
interval is long (> 500 ms), SQE are driven by subjective 
expectancy. Subjects use the sequence of preceding stimuli 
to predict the next, upcoming stimulus and consequently, a 
run of alternations induces expectancy for more alternations 
while a run of repetitions induces expectancy for more 
repetitions (Soetens et al., 1985).  
But in typical 2AFC tasks, the sequence of preceding 
stimuli does not predict the next, upcoming stimulus – a 

repetition of stimulus X does not increase the probability of 
stimulus X compared to stimulus Y. In other words, 
stimulus history has no predictive value and should not 
affect  subjects’ expectancy (or RTs if the inter-trial interval 
exceeds 500ms). Why do we find persistent SQE (after > 
4000 trials) (Soetens et al., 1985) in 2AFC tasks? 
Previously, SQE in 2AFC tasks with long inter-trial 
intervals were cast as instances of irrational sensitivity to 
local patterns in stimulus history, presumed to give rise to 
other suboptimal behavior, like the gambler’s and hot-hand 
fallacy in decision making (Ayton & Fischer, 2004; 
Gilovich et al., 1985). Instead, we propose that SQE effects 
are driven by subjects’ attempts to learn the probability of 
occurrence of the two stimuli in 2AFC with a world model 
that, while ecologically plausible, does not match the true 
generative model of the task. 
In 2AFC tasks, which out of two stimuli is going to appear 
on each trial is sampled from a Bernoulli distribution. With 
probability  p  one stimulus will appear and its alternative 
with probability   1− p . In common 2AFC, probability  p  is 
constant throughout the experiment (or at least throughout 
an experimental block). The true generative model is thus a 
Bernoulli distribution with constant probability  p . 
Participants could learn probability  p  by using stimulus 
history to update estimated probability   p̂  using, for 
example, Bayesian updating (Gerhard, Wolfe, & Maloney, 
under review). 
But participants may believe that instead, probability  p  
changes over time. In other words, instead of a stable world 
with constant probability  p  – the true generative model of 
2AFC – participants may believe in a dynamic world with 
changing probability  pt . We propose that such belief could 
give rise to biased SQE: biased SQE are a consequence of 
an agent engaged in probability learning with an incorrect 
world model. As participants cannot possibly know the 
correct world model of 2AFC prior to taking part in 2AFC, 
a belief in a changing world is, while incorrect, not 
irrational. Under this account, SQE are a consequence of 
conditionally rational behavior: given one incorrect 
assumption – an inappropriate world model – subsequent 
behavior (SQE) is rational (see Green, Benson, Kersten, & 
Schrater (2010) for a similar approach to explain probability 
matching). 
Two previous studies suggested that SQE may be due an 
inappropriate world model and developed a computational 
model to explain commonly observed SQE in 2AFC 
(Wilder, Jones, & Mozer, 2009; Yu & Cohen, 2009). We 
developed a modified 2AFC task to test for effects of an 

3378



inappropriate world model on SQE accompanied by a 
Bayesian model. Participants took part in a 2AFC task 
before and after a training session (Figure1). Participants 
were instructed to press a left or right button with their left 
or right index finger in response to a stimulus, which 
appeared either left or right to central fixation. On each trial, 
stimuli were equally likely to appear left or right (  pLR = 0.5 ) 
and were equally likely to repeat or alternate (  pRA = 0.5 ). 
Crucially,  pLR  and  pRA  did not change over time.  
 
 

 
Figure 1: Experimental design. a Participants completed a 
2AFC task. The stimulus could appear left or right of 
fixation and participants were instructed to press a button 
with their left or right index finger. During pre- and post-
measurement, the probability of left / right and of repetition 
/ alternation was 0.5. During training, repetition probability 
was resampled on 18% of all trials. Each change was 
signaled to the subjects. b The probability of repetition was 
resampled from a Beta-distribution biased towards 
repetition c (high values, green) or biased towards 
alternation d (low values, orange). 
 
During training, we put participants into an environment 
with changing  pRA . Participants continued responding to 
stimuli presented to the left or right of central fixation with 
a left or right index finger button press but 18% of all trials, 

 pRA  was (re-)sampled from a Beta-distribution   Β(a,b)
,which was biased either towards repetitions (a = 12, b = 6) 
or alternation (a = 6, b = 12). Each change in  pRA  was 
explicitly signaled to the subject. Belief in change was 

induced to produce SQE and belief in a biased world after 
change (or biased “re-set prior”) was induced to produce 
biased SQE (see Computational Model & Hypotheses). 
We expected to find biased SQE before and after training, 
given the numerous reports of biased SQE in 2AFC. We 
aimed to change participants’ bias in SQE in line with the 
bias they received during training – towards alternation bias 
for alternation training and repetition bias for repetition 
training. Such change would suggest that biased SQE are – 
at least in part – driven by participants’ (inappropriate) 
world model: manipulating their world model during 
training changes biased SQE in the expected direction in a 
post- compared to pre-measurement. 
 
 
Computational Model and Hypotheses  
If participants believe that probability  pt  changes over time, 
they should estimate current probability   p̂t  based on the 
outcome of all trials since the final change in probability 
and discard the outcome of all trials prior to this change. 
The decision which trials to include in estimating   p̂t  is easy 
when participant know when change happened, or 
alternatively, when they know the run length  r  since 
change. But in most situations, change is not explicitly 
signaled to participants and participants need to estimate 
change  c  or alternatively run length   r̂  (Wilson, Nassar, & 
Gold, 2010).  
The full Bayesian model of probability updating in changing 
environments requires maintaining a distribution over all 
possible  r , which grows as participants complete more 
trials. In addition, participants need to estimate the hazard 
rate  ht  – the probability of change on trial  t  - and maintain 
a distribution across all possible hazard rates (and functions) 
for optimal Bayesian probability updating in a changing 
world (Nassar, Wilson, Heasly, & Gold, 2010). Probability 
updating can very quickly become computationally 
expensive if not intractable. 
Nassar and colleagues (2010) developed a reduced Bayesian 
model to make probability-updating algorithms more 
tractable. They designed their model for probability 
updating in a changing environment with constant 
probability of change (or constant hazard rate  h ) and in 
their model, trial outcomes were supposed to be generated 
from a normal distribution. We adapted their reduced model 
to fit our task with an increasing hazard rate   hr̂  and a 
Bernoulli distribution with  pRA  (see Appendix for details). 
We used this model to compute probability estimates   p̂RA  of 
an agent that beliefs in a changing world (incorporated in 
the model) and completes a 2AFC task (incorporated in the 
input to the model). Based on the agent’s   p̂RA  we 
subsequently computed his expectation  γ t  (or posterior, see 
Appendix) for the upcoming trial. We then grouped  γ t  
based on preceding trial history: whether it was preceded by 
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three alternations AAA, three repetitions RRR, or any of the 
six other possible combinations: AAR, ARA, …  
In Figure 2 we plot   1−γ t  grouped by preceding trial history 
(x-axis). The curves depend on three parameters: the 
probability of change  pc  and   a0  and   b0  of the Beta-
distribution   Β(a0 ,bo ) , which incorporates the agents belief in 
what the world is like after change prior to new, incoming 
evidence. Simulations show that if   a0 > b0  and   pc > 0  SQE 
are repetition biased and if   a0 < b0  and   pc > 0  SQE are 
alternation biased. During training, we lead participants to 
believe that   pc > 0  and either   a0 > b0  (repetition bias group) 
or   a0 < b0  (alternation bias group) and expected to observe a 
corresponding change in bias from pre- to post-
measurement. 
 

 
 
Figure 2: Effects of an agent’s belief in frequency of 
change (solid, dashed, and dashed-dotted lines represent 
increasing frequency) and bias in its environment after 
change (green: repetition biased / orange: alternation biased) 
determined by  pc ,   a0 , and   b0 . 

 
Methods 

 
Participants  
25 participants took part in the experiment (12 female, mean 
age: 22.3 years, age range: 19 - 24 years, 2 left handed) and 
completed a single session of 60 minutes. They were 
compensated for time and effort ($10) and received an 
additional bonus of $4. Participants were told they would 
get rewarded for fast responses but we rewarded all 
participants for their fastest 25% of all trials so they all 
received the same bonus, unbeknownst to them. Informed 
consent was obtained prior to testing. An internal ethics 
review board at New York University approved of 
experimental procedures. 
 
Procedure and Apparatus 
Participants were randomly allocated to receive either 
repetition training (N = 12) or alternation training (N = 13). 
They were seated at approximately 40 cm viewing distance 
from a 19’’ Dell computer screen in a dimly lit room and 

asked to wear BOSE QuietComfort 15 Acoustic Noise 
Cancelling headphones to reduce background noise and to 
allow them to listen to incorporated auditory feedback. The 
experiment was run on a Mac Mini (Mac OS X Version 
10.7.5) programmed in MatLab 7.5 
(http://www.mathworks.com/) and Psychtoolbox 3 
(Brainard, 1997; Pelli, 1997). Participants responded by 
pressing the c-key with their left index finger or the m-key 
with their right index finger on a standard QWERTY 
keyboard. 
 
Experimental design 
Participants completed a pre-training, training, and post-
training (Figure 1). During the pre- and post-training, 
participants took part in a 2AFC task based on the arcade 
game “Whack-a-Mole (elMo)!”. At trial onset, participants 
saw a box with two holes – a gray square with two black 
circles equidistant from a white, central fixation cross. 
250ms after trial onset, the white fixation cross turned red 
and then, after an additional 250ms, blue. Once the fixation 
cross had turned blue, the stimulus – Sesame Street’s Elmo 
– appeared to the left of right of fixation with probability 

  pLR = 0.5  and with repetition probability   pRA = 0.5  after a 
time interval chosen from a truncated exponential 
distribution (mean = 500ms, max. 2000ms). We chose the 
exponential to reduce temporal expectancy (Luce, 1991). 
The initial color change of the fixation cross – or count 
down – ensured that inter-trial intervals exceeded 500ms to 
ensure that we measured subjective expectancy and not 
automatic facilitation (Soetens et al., 1985). 
During training, participants completed the same task with 
one important modification. The probability of repetition 

 pRA  was resampled on 18% of all trials from a Beta-
distribution with a = 12 and b = 6 in the repetition biased 
group and a = 6 and b = 12 in the alternation biased group. 
Each time  pRA changed, this change was signaled explicitly 
to the subjects. The word ‘CHANGE’ was displayed on the 
gray box prior to each trial with a new re-sampled 
probability. Participants were not told  pRA  after change.  
We chose to manipulate the probability of repetition versus 
alternation, instead of the probability of left versus right, for 
two reasons. First, studies on SQE typically look at effects 
of trial history coded in as repetition versus alternations 
instead of left versus right (Cho et al., 2002; Remington, 
1969; Soetens et al., 1985; Yu & Cohen, 2009). Second, by 
manipulating  pRA , we kept   pLR = 0.5  and therefore, any 
biases in SQE we find cannot be due to differences in left 
versus right hand action preparation, for example. 
 
Data analysis 
We measured RTs, defined as the time interval between 
stimulus-onset and button press, as a measure of subjective 
expectancy during pre- and post-training. Trials with 
incorrect responses (left button press for a stimulus 
presented to the right of fixation and vice versa) were 
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removed from the data (5.8%). We refrained from analyzing 
error trials, due to their small number. Reaction times were 
normalized for each participant and the pre- and post-
training separately. We then classified each trial according 
to its current stimulus and trial history. As we manipulated 
the probability of alternation and repetition, trials were 
classified according to whether a trial was a repetition R or 
alternation A trial and whether a trial was preceded by three 
alternations AAA, three repetitions RRR, or any of the six 
other possible combinations: AAR, ARA, … We computed 
the mean RTs for each trial group and analyzed mean RTs 
using a 2 x 2 x 2 x 8 mixed design ANOVA with bias as a 
between subject factor (repetition vs. alternation), and 
measurement (pre- vs. post), final event (R vs. A) and trial 
history (AAA, AAR, ARA, …, RRR) as within subject 
factors.  
 

Results 
We found a significant 3-way interaction between group, 
measurement, and final event (F(1,24) = 6.39, p = 0.012). 
Prior to training, we found a bias towards alternations A 
(mean = -0.132, SE = 0.022) compared to repetitions R 
(mean = 0.124, SE = 0.024; final event: F(1,24) = 24.26, p < 
0.001; Figure 3). After training, bias was different for each 
group (final event * training group: F(1,24) = 8.89, p = 
0.005). If repetition trained participants experienced an 
alternation, then it took them longer to respond (mean = 
0.076, SE = 0.063), compared to alternation trained 
participants (mean = -0.092, SE = 0.045; t(24) = -2.23, p = 
0.036). And conversely, repetition trained participants 
marginally significantly responded faster when they 
experienced a repetition (mean = -0.011, SE = 0.057) 
compared to alternation trained participants (mean = 0.118, 
SE = 0.043; t(24) = 1.86, p = 0.076). Experiencing a 
dynamic environment with a bias either towards repetitions 
or alternations determines the bias in SQE in a subsequent 
stable environment. 
 

 
 

Discussion 
SQE are a pervasive phenomenon in 2AFC and are typically 
explained by an irrational sensitivity to local patterns in trial 
history, which is supposed to give rise to other suboptimal 
behavior, too, such as the gambler’s and hot-hand fallacy in 
decision making. We propose instead that SQE are 
conditionally rational: they arise because subjects attempt to 
learn the probability of occurrence of the two stimuli in 
2AFC but with an inappropriate world model. Instead of 
constant stimulus probability, they believe in change. We 
trained participants in a changing world with a repetition or 
alternation bias and observed a change in participants’ 
repetition or alternation bias in SQE consistent with the 
repetition or alternation training they received. Our data 
support the conclusion that biased SQE are at least in part 
driven by an inappropriate world model: SQE are 
conditionally rational. 
Two previous studies proposed that participants’ belief in a 
changing world gives rise to SQE. Yu and Cohen (2009) 
developed a Bayesian model of probability updating. Like 
our model, probability updating was based on stimulus 
repetitions and alternations (2nd order) in trial history. Their 
model produced SQE similar to the one’s described in the 
literature, primarily Cho and colleagues (2002). Crucially, 
the authors did not explicitly measure the effects of training 
participants to believe in a particular world model on SQE 
and their model could account for bias in SQE only through 
ad hoc choice of a reset-prior (a prior belief in what the 
world will most likely be like after change) skewed towards, 
in their case, repetitions. Our results indicate that such 
biases can be altered by relatively small amounts of training. 
Wilder and colleagues (Wilder et al., 2009) also developed a 
Bayesian model of probability updating to explain 
previously observed SQE based on stimulus repetitions and 
alternations (2nd order) and stimulus location (1st order). 
Like Yu and Cohen (2009), Wilder and colleagues (2009) 
explained bias in SQE through ad hoc choice of a biased 
reset-prior. They state that bias in SQE changes from 
experiment to experiment, is difficult to predict, and should 
not be cast as part of a computational theory of SQE. 
Instead, it reflects attentional and perceptual mechanism. 
We assume they hereby mean that bias reflects automatic 
facilitation and not subjective expectancy, to use Soetens’ et 
al. terminology (Soetens et al., 1985). We observed a 
predicted chance in bias after a manipulation of participants’ 
world model, which speaks against this interpretation. The 
bias in SQE should be part of a computational theory of 
SQE. 
Cho and colleagues (2002) conducted a 2AFC experiment 
and developed a computational model to explain the 
repetition biased SQE they observed. Their model explains 
SQE as the consequence of special pattern detectors. 
According to the authors, subjects have two detectors: (a) a 
relatively simple repetition detector, which increases our 
expectation to observe a stimulus again when it has just 
occurred and (b) a more complex alternation detector which 
counts observed alternations and increases the expectation 

Figure 3: Results. a Prior to training, we find alternation 
biased SQE. b After training, we find a change in bias 
from alternation to repetition in repetition trained 
participants (green lines). Alternation trained participants 
(orange lines) maintained their alternation bias. c bias in 
SQE prior to training and d bias in SQE after training 
averaged across trial history t-1 to t-3. 
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to another alternation in proportion to the number of already 
observed alternations. But other than being able to account 
for their data, the model does not explain why we have 
certain pattern detectors and not others (Cho et al. (2002) 
list six possible detectors). Crucially, their model cannot 
easily explain why the training participants received in our 
experiment altered bias in SQE. 
Green and colleagues took a similar approach to ours to 
explain a different phenomenon, namely probability 
matching in sequential binary decision tasks (2010). They 
proposed that participants’ belief in an inappropriate world 
model for sequential binary decision tasks causes 
probability matching. In sequential, binary decision tasks, 
participants have to choose one of two options. One option 
has a higher probability of winning (70% versus 30%). The 
optimal strategy for this task is to determine which option 
has a higher probability of winning and then choose that 
option exclusively. Instead, participants tend to choose the 
option with 70% success probability 70% of the time and its 
alternative 30% of the time. While this probability matching 
behavior is suboptimal, Green and colleagues showed that 
given a particular albeit inappropriate world model for the 
task, probability matching is optimal. The authors asked 
participants to complete sequential, binary decision tasks 
and manipulated them to believe in different world models. 
This manipulation changed probability matching behavior – 
a strong support for their claim. Probability matching is 
conditionally rational. We conclude similarly that biased 
SQE are conditionally rational. 
Simpler models, exponential down-weighting of trial history 
(Anderson & Carpenter, 2006), for example, can explain 
SQE but cannot explain the change in bias in SQE that we 
observed. SQE indicate that subjects are sensitive to recent 
but not distant trial history. The change in bias in SQE, 
however, indicates that subjects are sensitive to what they 
experienced many trials back (during training), too. 
Exponential down weighting of evidence cannot explain this 
dependence on temporally distant and at the same time 
recent information. One could augment a model that 
explains SQE by exponential down weighting of trial 
history with a bias but, to compete with our explanation, 
there would have to be a rational explanation for this bias. 
 
Our findings thus show that an inappropriate world model at 
least in part gives rise to biased SQE. This shows that in 
2AFC, participants try to learn the generative process of the 
task – the process, which determines how outcomes, in this 
case repetition versus alternation, are generated. Learning 
such a generative model is what distinguishes model-based 
from model-free learning, according to Daw and colleagues 
(Daw, Niv, & Dayan, 2005; Doll, Simon, & Daw, 2013; 
Otto, Gershman, Markman, & Daw, 2013) and Green and 
colleagues (Green, Benson, Kersten, & Schrater, 2010). We 
demonstrate that a seemingly simple behavioral 
phenomenon (SQE) is at least in part driven by model-based 
learning, which supports the recently proposed ubiquity of 
model-based learning algorithms (Doll et al., 2013). 

In summary, we proposed that biased SQE are a 
consequence of participants’ selection of an inappropriate 
world model for 2AFC. We manipulated participants’ 
beliefs and observed predicted changes in bias of SQE. Our 
predictions were based on a Bayesian model of probability 
updating, which estimates probability of change and 
estimated run length to derive trial-by-trial estimates of the 
probability of observing a repetition versus alternation.  
 

Appendix 
The predictive distribution is computed with respect to 
expected run length   r̂t  (Nassar, Wilson, Heasly, & Gold, 
2010). On each trial, the agent computes the probability that 
a change  c  occurred using Bayes rule: 
 

p(c | Xt ) =
p(Xt | c)p(c)t

p(Xt | c)p(c)t + p(Xt | p̂RA,t )(1− p(c)t )
 (1) 

 
 
In the repetition bias group p(Xt | c) = maxΒ(a0 ,b0 )  with 

  a0 > b0  for a repetition and   p( Xt | c) = 1− maxΒ(a0 ,b0 )  with 

  a0 > b0  for an alternation. In the alternation bias group  
p(Xt | c) = maxΒ(a0 ,b0 )  with   a0 < b0   for an alternation and 

  p( Xt | c) = 1− maxΒ(a0 ,b0 )  with   a0 < b0  for a repetition. p(c)t  

depends on current, estimated run length r̂t  and increases 

with increasing r̂t : 
 

  p(c) = 1− (1− pc )r̂t     (2) 
 
Change becomes more likely as participants complete more 
trials without intervening change (a uniform distribution has 
an increasing hazard function). p(Xt | p̂rep,t )  is the predictive 
distribution if a change point did not occur and depends on 
r̂t  and the number of alternations A and repetition R in r̂t . 
The expected or mean value of the predictive distribution is 
based on two possibilities: (a) a change point occurred, in 
which case 

  
p̂RA,t = maxΒ(a0 ,b0 )  with   a0 > b0  for the repetition 

bias group and 
  
p̂RA,t = maxΒ(a0 ,b0 )  with   a0 < b0  for the 

alternation bias group, or (b) no change point occurred, in 
which case the recent outcome  Xt  is used to update p̂RA,t . If 

 Xt  is a repetition, the number of repetitions  Rt  in estimated 
run length   r̂t  is increased by one:   Rt = Rt−1 +1 . If  Xt  is an 
alternation then   At = At−1 +1  and in the repetition bias group 
(note that   Rt + At = r̂t ): 
 

  

p̂RA,t = max B(a0 + Rt ,b0 + At )    (3) 
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with   a0 > b0  in the repetition bias group and   a0 < b0  in the 
alternation bias group. The posterior distribution is a 
weighted average of these two possibilities: 
 

 
  
γ t = p(c | Xt ) p(c)t + (1− p(c)t ) p̂RA,t    (4) 

 
Expected run length is updated on each trial based on the 
probability that change occurred (in which case it is reset to 
one) and based on the probability that there was no change 
(in which case it is incremented by one): 
 

  r̂t+1 = (r̂t +1)(1− p(c)t )+ p(c)t    (5) 
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