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Abstract 

A computational model of selective attention is implemented 
to account for findings from an experiment on selective 
attention that was conducted. The model successfully 
reproduces the latency data of human participants by relying 
on the interaction between a bottom-up saliency map and the 
top-down influences from spatial and semantic goals.  The 
model offers a biologically-plausible way of operationalizing 
perceptual load and provides insights about the possible brain 
mechanisms that underlie related empirical findings.  

Keywords: selective attention, perceptual load, coincidence 
detector, neural synchronization. 

Introduction 

At every moment of conscious life a person experiences a 

plethora of information that is present in the environment. 

As processing all available stimulation would represent a 

daunting task for the perceptual apparatus, a person selects 

only a subset of information from what is available and 

discards the rest. The process of focusing mental resources 

on part of the visual stimulation to allow further processing 

while ignoring everything else is commonly referred to as 

selective attention.  

Over the years a theoretical debate arose over the locus of 

selection in the information processing stream. On one 

hand, early-selection theories of attention (Broadbent, 1958) 

had posited that selection occurs at an early stage of 

processing based on the physical characteristics of the 

stimuli (e.g., intensity, tone). According to these theories, 

unattended stimuli are discarded from further processing 

with only some of their physical characteristics being 

registered. These stimuli are therefore discarded prior to any 

semantic analysis. On the other hand, late-selection theories 

(Deutsch & Deutsch, 1963) have placed selection at a later 

processing stage. These theories have argued that all stimuli 

enter short-term memory and are thus processed 

semantically.  Those stimuli that are deemed as more 

important or relevant to the task are then selected and guide 

response execution.  

More recently, Lavie (1995) provided results showing that 

selection may be early or late depending on task 

characteristics. In one of Lavie’s studies participants were 

asked to determine whether a presented stimulus was the 

letter x or the letter z. In one condition, termed the high-

load, the letter was flanked by 5 other letters. In another 

condition, termed the low-load condition, the target was 

presented accompanied by no flanking letters. In both 

conditions a distractor letter was presented nearby the target. 

In a subset of trials the distractor was incompatible to the 

target designating the alternative response (i.e., if the target 

was x the distractor was z and vice-versa). In other trials, the 

distractor was a neutral letter. Results revealed that the 

interference exerted by the incompatible distractor, 

evidenced as increased latency for identifying the target, 

was greater in the low than the high load condition. Lavie 

accounted for these findings by arguing that in the high-load 

condition all attentional resources are consumed by the main 

task leaving no spare resources to process the distractor; that 

is, the distractor is discarded at an early stage of processing.  

In contrast, in the low-load condition the task does not 

exhaust all available resources leaving spare resources to 

process the distractor. In this case, the distractor is discarded 

at a later-stage.   

Although the Perceptual Load theory offers an appealing 

account for how selection of information can occur either 

early or late, it has been recently criticized and challenged.  

For example, Johnson, McGratth, and McNeil (2002) have 

shown that an endogenous cue priming the location of the 

target (i.e., a central arrow presented prior to the target 

display) eliminates any distractor interference in the low-

load condition. As the presentation of a cue does not alter 

the amount of spare resources, this result is problematic for 

at least a strong version of the Perceptual Load theory. 

Furthermore, Elitti, Wallace, and Fox (2005) provided 

evidence that the critical variable might be the saliency of 

distractors and not perceptual load per se. In their 

experiments that manipulated the onsets and offsets of 

targets and distractors, Elitti et al. showed that interference 

can be present with high-load provided that the distractor is 
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made more salient. Finally, Torralbo and Beck (2008) have 

criticized the Percepetual Load theory on two grounds. First, 

they argued that the term perceptual load is not clearly 

defined. Second, they claimed that the concept of exhausted 

capacity of attentional resources cannot be reconciled easily 

with what is known about brain mechanisms. Torralbo and 

Beck (2008) proposed that the neural basis for perceptual 

load is the extent of competition among stimuli to gain 

representation in the visual cortex and the strength of a top-

down biasing mechanism that is needed to resolve the 

competition and select a stimulus.   

Although Torralbo and Beck (2008) offer a more concrete 

definition of what constitutes perceptual load, their proposal 

still seems vague. For example, it is not clear what the 

nature of the top-down biasing mechanism is and how 

exactly it operates. In the present study we adopt a 

computational modelling approach to provide a 

biologically-plausible account of how perceptual load 

effects may arise in behavioral experiments. Computational 

modelling offers an appealing approach towards 

understanding psychological phenomena as the level of 

specificity it requires hinders the formulation of vague 

theories. We have implemented a coincidence detector 

neural network model of selective attention that accounts for 

the basic pattern of results obtained in perceptual load 

experiments, explains how cues may interact with 

perceptual load, and takes into account the effects of 

salience. The model is based on recent findings about the 

neural synchronization between cortical areas during the 

execution of attentional tasks (Fries, Reynolds, Rorie, & 

Desimone, 2001) and it also provides for competitive 

interactions among stimuli at an early stage of processing as 

suggested by Torralbo and Beck (2008). We compare results 

from simulations with behavioral data obtained from a 

perceptual load experiment that involves high and low 

perceptual load visual searches executed with and without 

spatial cues. To preview our findings, the model succeeds in 

accounting for behavioral results, providing thus insights 

about the possible nature of the neural mechanisms that 

underlie the perceptual load findings and selective attention 

in general.  

A model of selective attention 

Overview 

The model is based on evidence that attention is guided by 

both bottom-up and top-down information (Corbetta & 

Shulman, 2002).  As seen in Figure 1, information in the 

model is processed at two stages. During the first stage a 

pre-attentive saliency map is created to represent the low-

level features of incoming visual stimuli. At a second stage, 

the firing rates of neurons in the saliency map are modulated 

by top-down goals regarding spatial expectations. In 

addition, a correlation control module assesses the degree of 

semantic correlation between stimuli and endogenous goals 

and gradually causes synchronization in neural activity. It 

should be noted that, in the literature of attention, rate-based 

selection and synchronization of neural activity are often 

proposed as the underlying neural mechanisms of perceptual 

selection (Buehlmann & Deco, 2008; Niebur, Hsiao, & 

Johnson, 2002). 

 
Figure 1. A coincidence detector model of selective 

attention 

Encoding of Stimuli 

Encoding in the model is implemented on the basis of the 

temporal coding hypothesis, that is, the idea that the nervous 

system uses information about the timing of neural spikes. 

Synthetic spike trains (i.e., a streams of binary events where 

the presence or absence of an action potential is represented 

by 1’s and 0’s) were produced based on the algorithm 

proposed by Mikula and Niebur (2008) and Niebur (2007). 

Reference spike trains were defined to represent the 

targets (i.e., letters X and Z). When a visual stimulus 

entering the receptive field coincided with a target letter, the 

spike trains of its neurons exhibited a strong correlation 

with the reference spike train and were therefore more likely 

to switch their state to that of the reference spike.  

Saliency Map 

The first stage of processing is responsible for the 

adjustment of the output firing rate of each neuron in the 

corresponding receptive field. This is performed based on 

the salience value of each stimulus in a pre-attentive 

saliency map that is created on the basis of bottom–up 

information as suggested by Zhaoping (1999a, 1999b, 

2002). According to Zhaoping and Dayan (2006) this 

saliency map is created in the primary visual cortex (V1) 

with the receptive field of the most active neuron defining 

the location that will most likely be selected. This proposal 

is compatible with findings from the literature showing that 

the response of a V1 neuron is significantly suppressed by 

contextual inputs outside but nearby its receptive field 

(Nothdurft, Gallant, & Van Essen, 1999; Sillito, Grieve, 

Jones, Cudeiro, & Davis, 1995; Wachtler, Sejnowksi, & 

Albright, 2003). That is, the response of a neuron to its 

preferred input feature, (e.g., a specific orientation, color, 

motion direction etc.), is suppressed when similar inputs are 

present nearby (Zhaoping & Dayan, 2006). Examples of 

such suppressions have been documented for a variety of 

features, e.g., iso-orientation suppression (Knierim, 
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Gerstner, & van Hemmen, 1998), iso-color suppression 

(Wachtler et al., 2003), and iso-motion-direction 

suppression (Jones, Grieve, Wang, & Sillito, 2001). Based 

on the idea of a pre-attentive saliency map, Zhaoping (2002) 

implemented a biologically-plausible computational model 

of V1. The model was successful in simulating performance 

on a variety of tasks including parallel and conjunctive 

visual search.  Following the proposal of Zhaoping (2002), a 

bottom-up saliency map in which inhibitory interactions 

among neurons take place was included in the present 

model. 

Top-down influence and synchronization of neural 

activity 

The firing rates of neurons in the salience map represent 

biddings of stimuli for attention.  However, as shown in 

Figure 1 the rates of neurons in the saliency map are 

modulated by top-down factors. We argue that endogenous 

goals referring to expectations about the possible location of 

the upcoming target may modulate the rate of neurons in the 

saliency map (see also Poghosyan & Ioannides, 2008). This 

is compatible with recent evidence showing that activity in 

V1 may appear before the presentation of the stimulus when 

its position is primed by a cue (Shibata et al., 2008; Silver, 

Ress, & Heeger, 2007). 

In addition to influence from top-down spatial goals, the 

neural activation of each stimulus is progressively 

modulated by top-down signals of semantic information. 

We propose that a correlation control mechanism that 

includes coincidence detector neurons determines the 

correlation between semantic goals (e.g., to locate an X or a 

Z) and the neural activity representing semantic information 

in processed stimuli (Figure 2). Coincidence detectors 

represent neurons that fire only if two inputs fire temporally 

close to each other. This is analogous to the synchronous 

generation of post synaptic potentials by two input neurons 

in the brain, which pushes the membrane potential of a 

target neuron over the threshold required to create an action 

potential.  Based on the degree of correlation between 

stimuli and semantic goals, an amplification or suppression 

is exerted on the neural activation of the corresponding 

stimulus.  

The operation of the correlation control module leads to 

the gradual synchronization of neural activity between 

neurons representing stimulus information and relevant 

endogenous goals. The direct connection of top-down 

attention with synchronization is supported by many recent 

studies (Gross et al., 2004; Niebur et al., 2002). For 

example, Saalmann, Pigarev, and Vidyasagar (2007) 

recorded neural activity in the posterior parietal cortex and 

area V4 of the brain of macaques  while they were 

performing a visual matching task and observed 

synchronization in the timing of neural activity in the two 

regions when the animal selectively attended to a location. 

This has provided evidence that parietal neurons which 

presumably represent neural activity of the endogenous 

goals may selectively increase activity in earlier visual 

areas. 

The neural activation of each stimulus after the first and 

second stage of processing will provide the input to working 

memory. A response will be selected based on the stronger 

activation. The level of activation also determines the 

latency for selecting the response. To that purpose, working 

memory consists of recurrent nodes that fire continuously 

until the activation of one stimulus reaches to a threshold 

that is needed to select a response. 

 

 

 
Figure 2. The correlation control module 

 

To implement the model in a perceptual load task, we 

have conducted a behavioral experiment. The experiment is 

described next followed by the results from the 

computational simulations. 

Experiment: the effects of perceptual load 

A behavioral experiment was carried out in an attempt to (1) 

replicate the basis pattern of findings obtained with 

perceptual-load experiments, (2) examine the interaction 

between cuing and perceptual load, and (3) to generate data 

that would allow a comparison with the model’s output.  

The experiment conducted was similar to that of Johnson et 

al., (2002) with the exception that an 80%-valid peripheral 

cue was used. In their experiment Johnson et al. (2002) have 

used a 100%-valid central cue.  

Method 

 

Participants Twenty-four undergraduate students from the 

University of Cyprus participated in this experiment in 

exchange of course credit. 

 

Materials and Design A 2 (perceptual load: high, low) × 3 

(cue: no cue, valid, invalid) × 3 (distractor compatibility: 

neutral, compatible, incompatible) within-subject design 

was used. The experiment was designed and presented using 

the E-Prime software package. During testing participants 
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were seated approximately 50-60cm from a computer 

screen. 

 

Procedure Participants were asked to perform a visual 

search task in which 6 letters arranged in a circular array in 

the center of the screen were presented after a fixation cross. 

In the high load condition, the search array comprised of the 

target (X or Z) and 5 letters (M, K, N, H, W) that shared 

features with the two possible targets (Figure 3).  In the low 

load condition the target appeared among 5 O’s (Figure 4).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: High-load trial with incompatible distractor
1
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Low-load trial with compatible distractor
1
. 

 

In both conditions, a larger distractor letter (X, Z or L) 

appeared simultaneously on the left or on the right of the 

circular array and it was compatible (identical to the target), 

incompatible (calling for the alternative response) or neutral 

(the letter L) in 1/3 of the trials. Participants were requested 

to ignore the distractor letter and focus on identifying the 

target (X or Z) in the 6-letter search array. They were 

instructed to press “0” for X and “2” for Z as fast as possible 

using their thumb and their index finger respectively on the 

numeric keyboard. The search array remained onscreen for 

200 ms and was replaced by a mask. Participants were 

allowed to enter their response for up to 2000 ms after the 

offset of the search array.  

In cue-present trials an asterisk was presented for 150 ms 

after the offset of the fixation point. The cue was located 

either in the same location as the target letter (valid cue), or 

in another position in the circle (invalid cue).  

                                                           
1 Error bars represent standard errors 

Each participant carried out 216 experimental trials, 50% 

in the low load condition and the other 50% in the high load 

condition. In each load condition there were 96 valid cue 

trials (i.e., 80% of the total cue present trials), 96 no cue 

trials, and 24 invalid cue trials.  Reaction time (RT) and 

accuracy scores were recorded and were used for data 

analysis.  

Results and Discussion 

A Repeated Measures ANOVA on median RTs
2
 with load 

(high vs low), cue (valid cue vs no cue) and compatibility 

(compatible, incompatible, neutral) as factors was carried 

out. Invalid cue conditions were excluded from the analysis 

due to their proportionately small number of experimental 

trials.  

As predicted, the analysis revealed a main effect of load, 

with participants being faster in the low load than in the 

high load condition, F(1,23) = 41.13, p< .001.  Furthemore, 

latency was shorter for valid than invalid cue trials, F(1,23) 

= 58.61, p< .001. Also, latency was shorter for trials with 

neutral than either compatible or incompatible distractors, 

F(2,46) = 6.23, p< .05.  In addition, a significant load × cue 

interaction was obtained, F(1,23) = 15.69, p< .05. More 

importantly though, a significant 3-way interaction (load × 

cue × compatibility) was found, F(2,46) = 3.43, p< .05.  

 

 
Figure 5: Median latency for high load condition 

 

 
Figure 6: Median Latency for low load condition 

                                                           
2 Accuracies were also analyzed but they are not reported here 

for the sake of brevity 

X 

M H 

K 
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O 

O 

O 

Z 
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As seen in Figure 5, no difference between the cue 

conditions was observed in the high load condition, p = .52. 

However, distractor interference in the low load condition 

was significantly reduced when a valid cue was provided 

(Figure 6). Indeed, a paired sample t-test revealed a 

significant difference between incompatible and neutral 

trials in the low load condition, t(23) = 4,04,  p< .001.  

The pattern of results obtained in the experiment 

replicated the typical pattern of findings of perceptual-load 

studies (Lavie, 1995). Furthermore, it showed that cueing 

interacts with perceptual load. Johnson et al., (2002) have 

shown that a 100% valid central cue diminished interference 

from incompatible distractors in the low-load condition, 

equating in fact the extent of interference in the low and 

high load conditions. The present experiment provided 

evidence that an 80% valid peripheral cue was similarly 

effective. The present results are incompatible with at least a 

strong version of the perceptual-load theory as they show 

that even in low-load conditions, in which spare resources 

exist to process a distractor, interference may be absent. 

Computational simulations 

The coincidence detector model of selective attention was 

used to simulate performance in all conditions included in 

the experiment. The basic pattern of the perceptual load 

findings is simulated by means of the inhibitory interactions 

among neurons representing stimuli in the saliency map and 

the top-down spatial and semantic influences.  

In the high load condition the encoding mechanisms 

adopted in model yielded similar neural activity for each 

stimulus in the circular array (i.e., target and flankers) while 

in the low load condition the neuron representing the target 

had enhanced activity relative to its flankers. This is because 

target and flankers share more features in the high load 

condition than in the low load condition; this is compatible 

with what is known about iso-feature suppression (see 

Zhaoping, 2002). There is no effect of an icompatible 

distractor in the high load condition because, although it has 

high activation from its correlation with semantic goals, the 

distractor also shares features with all stimuli on the screen. 

As a result, it competes with all other items and is therefore 

prone to inhibition from many sources. In contrast, the 

effect of an incompatible distractor in the low load condition 

is high. This is because (1) the distractor has high activation 

due to its semantic correlation with the endogenous goals, 

and (2) it only competes with the target as it shares no 

features with the flankers.  

The effects of a spatial cue were modeled by adding a 

spatial goal (i.e., “look first for the item that will appear in 

this location”). In the simulations, the item that appeared in 

the cued location received a boost in its activity due to its 

correlation with the spatial goal. All other items received 

inhibition.  

Figures 7 and 8 present the predictions of the model after 

100 runs in each condition.  

 

 
Figure 7: Simulation results for high load condition 

 

 
Figure 8: Simulation results for low load condition 

Conclusion 

The computational model of selective attention 

implemented here was able to account for the findings from 

the behavioral experiment on perceptual load which 

produced  not only the basic pattern of findings reported by 

other studies (Lavie, 1995) but also the findings on the 

interaction of spatial cueing with perceptual load (Johnson 

et al., 2002). Thus, the model offers an explicit hypothesis 

about the possible neural mechanisms that give rise to these 

findings without relying on a vague use of the term 

perceptual load. To that respect, the model is compatible 

with the conjecture of Torralbo and Beck (2008) that 

perceptual load effects are a product of the competitive 

interactions among stimuli for neural representation. In 

addition, the model suggests that the correlation between 

input and endogenous goals (spatial and semantic) may 

represent the biasing mechanism proposed by Torralbo and 

Beck (2008) as the means for resolving the competition.  

Importantly the model was designed based on what is 

currently known about the underlying neural methancims of 

selective attention. The presence of a saliency map, the 

modulation of firing rate of neurons in V1, and the 

synchronization of activity in populations of neurons during 

selective attention are all supported by research in 

psychology and cognitive neuroscience. Clearly, further 

research is needed to determine which of these mechanisms 

provide indeed an index of selective attention. Also, more 

research is needed to evaluate the validity of the presented 
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model. To that respect, it is important for future work to 

examine whether the model is capable, without any tuning, 

to account for other findings from the attention literature.  
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