
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science 
Society

Title
Towards a Flexible, Reusable Model for Predicting Eye Movements During Visual Search of 
Text

Permalink
https://escholarship.org/uc/item/2kz126z5

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 28(28)

ISSN
1069-7977

Authors
Halverson, Tim
Hornof, Anthony J.

Publication Date
2006
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2kz126z5
https://escholarship.org
http://www.cdlib.org/


Towards a Flexible, Reusable Model for Predicting Eye Movements 
During Visual Search of Text 

 
Tim Halverson (thalvers@cs.uoregon.edu) 

Anthony J. Hornof (hornof@cs.uoregon.edu) 
Department of Computer and Information Science, 1202 University of Oregon 

Eugene, OR 97403-1202 USA 
 

 
 

Abstract 

Visual search is an integral component in many human 
activities. The eye movements produced during such activities 
can provide valuable information about people’s cognitive 
processes. This research investigates, with detailed eye 
movement data analysis and computational cognitive modeling, 
the perceptual, strategic, and oculomotor processes people use 
to visually search. A cognitive model is evolved in a principled 
manner based on eye movement data, past modeling efforts, 
and recent psychological literature. In the model, re-usable, 
parsimonious, local strategies interact with perceptual-motor 
constraints to predict the bulk of the eye movement data, 
including aspects of the data that appear to require task-specific 
global strategies in addition to fixation-to-fixation local 
strategies. The analysts evolve a base level model with a 
random strategy into a robust and reusable model with a 
flexible strategy that could work with a wide range of visual 
stimuli.  
 
Keywords: cognitive modeling; visual search; EPIC; eye 
movements 

Introduction 
The visual search strategies people employ have a substantial 
effect on the time it takes people to find a target in a visual 
layout. A fair amount of research has been done on visual 
search strategies people use. For example, Shen, Reingold, 
and Pomplun (2003) found that people tend to shift their 
visual search strategy very quickly based on which visual 
feature is most informative for a given layout. Burke, et al. 
(2005) found that people ignore the most salient objects that 
do not relate to the task, flashing banner advertisements, in 
simulated web pages. 
 One way to better understand what visual search strategies 
people use, and why they use them, is through computational 
cognitive modeling. The models instantiate the theory, make 
testable numeric predictions, and facilitate identification of 
unanswered questions. Several computational models of 
visual search have been proposed (e.g. Pomplun, Reingold, & 
Shen, 2003; Wolfe, 1994). For the most part, these 
computational models of visual search account for one or two 
of the perceptual, strategic, or oculomotor processes involved 
in visual search, but not all three. Ideally, a model of visual 
search would explain some aspect of each process involved in 
visual search. 
 This research proposes a flexible and reusable 
computational cognitive model of text search that builds 

directly on a number of previous studies of structured, menu-
like visual layouts. The purpose of this modeling effort is to 
further clarify and build a framework for understanding 
(scientifically) and predicting (scientifically and for design 
purposes) how people integrate perceptual, strategic and 
motor processes in visual search. This paper describes the 
evolution of a visual search model from a constrained, 
random search strategy into a robust and flexible model of 
menu search that accounts for a wide variety of eye 
movement data. We believe the resulting model, while 
developed using data from one task, has been evolved by the 
analysts with sufficiently few task-specific requisites. That is, 
the model is flexible and reusable. 

Building on Previous Visual Search Models 
This research builds directly on previous research of menu 
search. Hornof (2004) studied the visual search of layouts 
with and without a useful visual hierarchy. The task relevant 
to the current research is the visual search of layouts without 
a visual hierarchy. Figure 1 shows a sample layout from the 
experiment. 
 Sixteen participants searched four different screen layouts 
for a precued target object. Each layout contained one, two, 
four, or six groups. Each group contained five objects. The 
groups always appeared at the same physical locations on the 
screen.  One-group layouts used group A. Two-group layouts 
used groups A and B.  Four-group layouts used groups A 
through D. 
 Each trial proceeded as follows: The participant studied and 
clicked on the precue; the precue disappeared and the layout 
appeared; the participant found the target, moved the mouse 
to the target, and clicked on the target; the layout disappeared 
and the next precue appeared. 
 Hornof (2004) presented models that predicted and 

Figure 1. A 6-group layout. The precue, in the top left, 
would disappear when the layout appeared. The gray text 
did not appear during the experiment. 
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explained the search time data collected from the visual 
hierarchy task. Hornof and Halverson (2003) replicated the 
study to collect eye movement data to verify the eye 
movement strategies predicted by the models. In the model, 
the eyes moved down the first column of text, then down the 
second column, and then down the third.  Furthermore, the 
eyes jumped over a carefully controlled number of items with 
each eye movement.  This selection strategy resulted in a very 
plausible explanation for how people did the task. The model 
accounted for the reaction time and a fair number of eye 
movement measures, especially considering that the model 
was built without the eye movement data to guide its 
development. 
 However, the model’s strategy is perhaps somewhat tuned 
to aspects of this one visual task and layout.  Aspects of the 
strategy, such as the strict use of the three columns, will not 
be directly applicable to a wide range of visual layouts.  The 
original model might thus be characterized as somewhat 
brittle, whereas a more flexible model might be more useful 
for predicting human performance in a wider range of visual 
search tasks. 
 This concern motivated a need for a more flexible model 
that would predict the eye movements with greater fidelity 
and would do so in a more general, task-independent manner. 
The data collected by Hornof and Halverson (2003) are used 
in the current research. 

The EPIC Cognitive Architecture 
A series of computational cognitive models described in this 
study were built using the EPIC (Executive Process 
Interactive Control) cognitive architecture (Kieras & Meyer, 
1997). EPIC captures human perceptual, cognitive, and motor 
processing constraints in a computational framework that is 
used to build cognitive models. Into EPIC, we encoded (a) a 
reproduction of the task environment, (b) the visual- 
perceptual features associated with each of the screen objects, 
such as the text feature, and (c) the cognitive strategies that 
guide the visual search, encoded as production rules. These 
components were added based on task analysis, human 
performance capabilities, previous visual search model, and 
parsimony.  
 After these components are encoded into the architecture, 
EPIC executes the task, simulates the perceptual-motor 
processing and interactions, and generates search time and 
eye movement predictions. EPIC simulates ocular-motor 
processing, including the fast ballistic eye movements known 
as saccades, as well as the fixations during which the eyes are 
stationary and information is perceived.  

Evolving the Cognitive Strategy 
This paper presents the several steps in the principled 
evolution of a model of visual search. The motivation for 
creating the model is the need for a computational model that 
is flexible enough to predict performance on a variety of 
menu-like visual layouts, and that can explicitly account for a 
wider range of eye movement measures than previous 
models.  

 The principled approach adopted here for building the 
model was to make gradual improvements based on “low-
level” eye movement data (for example, fixation duration and 
saccade distances). At each step in the evolution of the model, 
a sub-strategy was added or a perceptual parameter was 
changed to increase the fidelity of the model. Basic visual 
search research or previous computational modeling 
motivated each change. It should be noted that each strategy 
or perceptual parameter change was considered “fixed” for 
later iterations of the model. 
 This model-building procedure resulted in gradual 
improvements, which we believe results in a model that meets 
our goal of a flexible, reusable model that accounts for how 
people search a visual layout. The following sections discuss 
four substantial steps made in the evolution of our cognitive 
model, starting with the motivation and explanation of the 
baseline model. 

Step 1: Start with the baseline model 
This modeling endeavor started largely as an attempt to 
integrate two pre-existing visual search models—the best-
fitting model for the (unlabeled) visual hierarchy layouts from 
Hornof (2004) and the best-fitting final “mixed density” 
models from Halverson and Hornof (2004).  In an effort to 
integrate the two, we started by finding the common elements 
between the best-fitting models for each of the visual search 
tasks. Interestingly, in the process of stripping down each of 
the models to find the common elements of both models so 
that they could be merged, we ended up with pretty much the 
same purely random model promoted by Hornof (2004), and 
the same purely random search strategy used in Halverson 
and Hornof (2004).  They were integrated and used to start 
the exploratory modeling discussed here.  
 The new purely-random baseline model started with a 
strategy in which saccade destinations were selected at 
random from among potential targets.  Beyond that, the 
model imposed a minimal number of constraints, primarily 
imposed by the EPIC cognitive architecture and task analysis, 
including: 
 (a) Search proceeded without replacement. In other words, 
objects were not selected as a saccade destination after their 
text had been identified. Analysis of our eye movement data 
suggested that people rarely fixated an object more than once. 
A model with no memory for fixated locations or objects 
would predict way too many fixations. 
 (b) Saccades were initiated after the fixated objects are 
identified. This was a feature of the “mixed density” model 
from Halverson and Hornof (2004). In EPIC, the visual 
properties of objects are available at varying eccentricities. 
For the text property, the default availability radius is one 
degree of visual angle from center of fixation. Once an object 
enters the availability region of a property, that property 
enters working memory after an amount of time determined 
by two parameters: (i) transduction time (50 ms for text), the 
time it takes from the information to reach sensory memory, 
and (ii) recoding time (100 ms for text), the time it takes to 
recognize the property. Given the strategy used in these 
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models, these constraints directly affect when the next 
saccade is initiated.  
 (c) EPIC’s oculomotor feature preparation time parameter 
was changed to zero. Recent progress with the EPIC 
cognitive architecture has found that oculomotor preparation 
time may not be necessary or may occur in parallel with 
saccade destination decisions (Kieras & Meyer, 2005). 
Movement feature preparation time was previously 
determined based on shared features (e.g. direction and 
extent) with the previous motor movement. Initiation and 
execution times are still required. 
 These three constraints persisted throughout all models 
discussed in this paper. 
 Combining these constraints with the baseline random 
strategy, the resulting model predicted only one eye 
movement metric quite well, namely mean fixation duration. 
Figure 2 shows the predicted and observed fixation durations 
by layout size. The model predicts the mean fixation duration 
with an average absolute error (AAE) of 7.8%. In that our 
goal is an AAE of less than 10%, this is an acceptable error. 
 The model did a poor job of predicting other eye movement 
data, including saccade distance, fixations-per-group, 
fixations-per-trial, and scanpaths. Many of these 
shortcomings result because the model does not accurately 
predict trends in saccade destinations. Though a purely-
random search strategy is good first approximation for 
predicting mean search times, a more refined strategy is 
needed for a robust, reusable, general purpose model of visual 
search. 

Step 2: Refine the saccade destinations 
As discussed previously, the two models whose integration 
initially motivated this research used either task-specific or 
purely random strategies. Step 2 pursued a more flexible 
strategy.  To this end, Step 2 worked to improve the 
prediction of saccade destinations.  
 Two metrics were used to determine saccade destinations: 
mean saccade distance and mean fixations per group. Saccade 
distance measures the distance between contiguous fixations. 
Fixations-per-group measures the number of contiguous 
fixations within one group in the layout.  

 Direct visual inspection of hundreds of individual eye 
movements made by participants revealed two clear patterns 
not accounted for by the Step 1 random model. First, once 
participants had finished dwelling on a group, they tended not 
to revisit that group until the remainder of the layout had been 
searched (this was true 94% of the time).  Second, 
participants were more likely to saccade to nearby objects 
rather than to distant objects. Step 2 introduces two 
modifications that account for these behaviors. 
 To maintain forward progress in the search, a sub-strategy 
was added to prohibit group revisits until all groups had been 
searched. If two contiguous fixations land on two different 
groups, then objects in the first of the two groups are no 
longer potential saccade destinations until the entire layout 
had been searched. This sub-strategy uses layout-specific 
information, that objects are organized into groups, but we 
suspect that most visual layouts will have some sort of natural 
grouping that can be similarly used. 
 People do not search randomly.  When searching, they are 
more likely to saccade to objects that are relatively nearby 
rather than objects across the layout. In visual search, saccade 
destinations are based on proximity to the center of fixation 
(e.g., Motter & Belky, 1998). Other models of visual search 
prefer nearby objects as saccade destinations (e.g., Barbur, 
Forsyth, & Wooding, 1990). 
 The Step 1 model was modified so that saccade 
destinations were selected based on proximity to the center of 
fixation. Objects in EPIC have a property, eccentricity, which 
reflects the object’s distance (in degrees of visual angle) from 
the center of fixation. The random saccade destination 
selection strategy was changed to select the potential target 
with the least eccentricity. To account for variability in the 
human saccade distances, noise was also added to the 
eccentricity to vary saccade distances, while at the same time 
preferring nearby objects. 
 Saccade destinations are thus selected as follows: (a) After 
each saccade, the eccentricity property is updated based on 
the new eye position. (b) The eccentricity property is scaled 
by the eccentricity fluctuation factor, which has a mean of 
one and a standard deviation of 0.3. This scaling factor is 
individually sampled for each object after each saccade. (c) 
Objects whose text has not been identified and that were in 
unvisited groups are marked as potential candidates for the 
saccade destination. (d) The candidate object with the lowest 
eccentricity property, after the scaling factor is applied, is 
selected as the next saccade destination. 
 The standard deviation of the fluctuation factor was 
determined by varying the fluctuation factor (by increments 
no smaller than 0.01) to find the best fit of both the mean 
saccade distance and mean fixations per group. We 
recommend this parameter setting for future modeling. 
 Figures 3 and 4 show the Step 1 and 2 model predictions 
for mean saccade distance and mean fixations per group.  As 
can be seen, the Step 2 model predicts the data much better. 
The two modifications made to the model dramatically 
decreased the error in the predicted eye movement data. Figure 2. Fixation duration observed (solid line) and predicted

by the Step 1 model (dashed line). AAE = 7.8% Error bars are
too small to be visible (standard errors < 15) 
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 The improvements made to the model in this step have 
improved the fidelity of the model, while making the model 
more reusable and flexible.  The model requires only one 
directly-extractable, task independent object feature—
location. However, the model still requires improvement. As 
will be seen, the model still finds the target too quickly, even 
though the model correctly predicts how long people dwell in 
each group. 

Step 3: Account for whole-task performance 
Our goal is to produce a model that accounts for multiple eye 
movement measures. This includes accounting for eye 
movements at multiple scales. The previous iteration of the 
model accounted for the number of fixations per group, which 
can be viewed as accounting for a sub-task (searching each 
group) of the whole task (searching the entire layout). We 
next investigated means of improving the model at the 
“whole-task” level. 
 Again, a qualitative analysis of the participants’ eye 
movement behavior suggests what might be needed in the 
model. It was observed that the participants sometimes 
looked at or near the target but continued to search. This 

suggests that the participants may be failing to recognize the 
target occasionally. It should be noted that it is unlikely that 
the participants did not react to the target because they had 
forgotten the target, as the participants eventually found the 
target and completed the task successfully. 
 Previous modeling research suggests that people do 
occasionally fail to recognize fixated text. In Halverson and 
Hornof’s (2004) “mixed density” model, a perceptual 
parameter was introduced to explain an increase in the 
likelihood  of missing a target based as a function of the text 
density. The modeling suggested that even in sparse text, 
people fail to recognize the target with approximately a 10% 
probability. 
 The model was modified to include a text recoding failure 
rate. Text recoding failure rate has only recently been added 
to EPIC, and the default value is zero (i.e. no chance of 
failing to identify text). The parameter represents the 
probability that the text property of fixated visual objects will 
be unknown. 
 This perceptual parameter was used in the current work for 
two reasons. First, to explore ways to account for the 
observation that participants missed the target occasionally. 
Second, to potentially provide converging support for the 
validity of using this parameter. If the current exploratory 
modeling predicts observed eye movement data with a text 
recoding failure rate similar to that used in the previous 
modeling, this would not only support the use of the 
parameter here, but also suggest a recommended default 
value for the parameter for future modeling. 
 The text recoding failure rate was initially set 10%, the 
value used in the previous modeling effort for sparse text 
(Halverson & Hornof, 2004). This failure rate was varied by 
1% increments until the model predicted the mean number of 
fixations per trial. A value of 9% provided the best fit for the 
number of fixations per trial, the eye movement measure used 
to evaluate “whole-task” level performance. 
 Figure 5 shows the observed and predicted number of 
fixations per trial. As can be seen in the figure, the Step 2 
model under-predicts the total number of fixations required to  

Figure 3. Saccade distance observed (circle), predicted by 
the Step 1 model (squares), and predicted by the 
Step 2 model (triangles). 
Step 1 AAE = 112%, Step 2 AAE = 5.8% 
Error bars are too small to be visible (standard errors < .2) 
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Figure 5. Fixations per trial observed (circles), predicted by 
the Step 2 model (squares), and predicted by the Step 3 
model (triangles). Step 2 AAE = 14.3%, Step 3 AAE = 4.2% 
Error bars indicate ±1 standard error. Some error bars are 
too small to be visible.
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Figure 4. Fixations per group observed (circles), predicted 
by the Step 1 model (squares), and predicted by the Step 2 
model (triangles). Step 1 AAE = 42%, Step 2 AAE = 4.6% 
Error bars indicate ±1 standard error. 
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find the target by 14%. This is not a bad prediction, but an 
error of less than 5% would be ideal. 
 As shown in Figure 5, the Step 3 model predicts the 
number of fixations per trial with an error of 4.2%. This is a 
very good prediction. The decreased error and the similarity 
between the best fitting text recoding failure rate found here 
and the rate found in past research provides support for the 
use of this perceptual parameter here. This finding suggests 
that future modeling of menu-like search tasks should use a 
text recoding failure rate of around 9-10%. 
 
Step 3A: Increase visual working memory decay 
An interesting interaction between small layouts and EPIC’s 
visual working memory gave rise to a surprising prediction. 
Occasionally the model would search a small layout without 
finding the target (due to text recoding failures introduced in 
Step 3) and stall. The model assumed that objects whose text 
properties (regardless of a text recoding failure) existed in the 
visual perceptual store were not candidate saccade 
destinations. EPIC’s visual perceptual store retains the 
properties of objects for 500 ms after the eyes moves. 
Therefore, the text properties of all objects were known after 
the second fixation and there were no candidate destinations 
for a third saccade. A variety of solutions were pursued, but 
only one was consistent with recent literature and did not 
worsen eye movement predictions. 
 Woodman, Vogel, and Luck (2001) showed that when 
VWM is occupied, visual search remains efficient. When 
people are given a task that fills VWM with visual properties 
like shape, and then perform a second task searching for a 
shape, search rates are unaffected. One interpretation of these 
findings is that VWM decays quickly for goal-irrelevant 
information, like non-targets. 
 The model was modified by setting the perceptual store 
property retaining-time parameter to 50 ms. We would 
recommend this setting for future visual search models that 
include small layout conditions.  

Step 4: Add a global strategy 
Step 4 adds a global search component to improve the  

robustness of the model for predicting the frequency with 
which various scanpaths are followed.   
 Figure 6 shows the number of fixations per trial as a 
function of target group.  (Figure 1 identifies the six groups as 
A through F.)  There is a slight bump in the data when the 
target is located in group C. The purely local strategy for 
selecting nearby objects as saccade destinations motivates the 
model to reach group D before group C, which was not the 
case with people.  Though the effect is slight (with an overall 
AAE of 8.1%), we believe this trend points to the need for 
some sort of global component to the strategy. 
 In local strategies, saccade destinations are determined 
based on what is encountered during the course of the search. 
In global strategies, saccade destinations are planned out in 
advance based on the task and stimuli. 
 A global component was added to the strategy such that the 
model could develop a global “preference” for scanning 
horizontally or vertically. A preferred scanning direction is 
established after the model, using the local strategy, starts 
searching horizontally or vertically. Once a direction is 
established, it is preferred unless no more groups exist in that 
direction. 
 Figure 7 shows that the global component slightly 
improved the model’s prediction of fixations per trial. Most 
important, the bump in the data for group C is diminished. 
 Figure 8 shows the three most frequently observed 
scanpaths, as well as the predictions of the Step 3 and Step 4 
models. People tended to start by going either down the first 
column or across the top.  As shown in the predictions, the 
Step 3 model almost never goes across the top. However, the 
Step 4 model increased the frequency. 
 The improvements made by adding the global strategy are 

Figure 8. The most commonly observed scanpaths in six-
group layouts and how often each path was taken by the 
participants (observed) and the models (Step 3 and 4). 

Figure 6. Fixations per trial observed (solid lines) and
predicted by the Step 3 model (dashed lines).
AAE = 8.1%. Error bars indicate ±1 standard error.
Some error bars are too small to be visible. 
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subtle, but they add to the fidelity of the model. However, the 
addition of the global strategy does not improve the 
quantitative fit of the model substantially and the addition 
may be considered overfitting as the additional production 
rules introduce additional free parameters. Therefore, the Step 
3 model may be a better candidate on which to build 
successive flexible, reusable models of visual search that 
account for more factors. 
 Figure 9 shows the observed and predicted search times of 
the Step 4 model. The model predicts the observed search 
time quite well. This is a validation of the principled approach 
used to gradually improve the model using a variety of eye 
movement data. Moreover, it is gratifying to find that the 
model is able to make such accurate predictions without using 
the more brittle strategies of its predecessors. 

Conclusion  
A flexible and reusable model of visual search was developed 
that accounts for a wide variety of search data by (a) 
saccading to nearby objects when the fixated text is 
recognized, (b) positing a partial inspection of some objects 
and an occasional failure to identify others, (c) remembering 
more-or-less where but not what’s been searched, and (d) 
accounting for people’s tendencies to follow regular 
scanpaths with an element of a global strategy. The model 
explains the observed saccade distances, the number of 
fixations to each group in a layout, the total number of 
fixations in a trial, the number of fixations to find an object 
based on the object’s location in the layout, the fixation 
duration, and to a slightly lesser extent the scanpaths that 
people used. The prediction of such a wide variety of 
measures bodes well for a priori prediction of visual search. 
 The model is flexible and reusable. The strategy is not 
tuned to the visual layout of the task. The only features 
required by the model are the location and identification (text) 
of the visual objects to be searched. If the visual layout is 
divided into clearly distinguishable groups, the model can 
utilize that information, but this division is not required. The 
model is currently limited to the visual search of textual 
layouts, but most aspects of the model are clearly 
generalizable to other stimuli. 

 The integration of recent, relevant psychological 
phenomena benefits the continued integrative development of 
computational models and advances in basic psychological 
research, and thus for Cognitive Science in general. 
Phenomena include general saccadic selection behavior 
(Motter & Belky, 1998), visual working memory (Woodman, 
Vogel, & Luck, 2001), and the integration of both local and 
global strategies. This work will continue with further 
integration of cognitive models of visual search from various 
cognitive architectures. 
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