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Abstract

Latent Semantic Analysis (LSA) has been used to represent
the domain of computer literacy in AutoTutor, a fully
automated computer tutor.  The analyses in the present study
support the claim that the 200-dimensional LSA space
captures aspects of the structured mental models that underlie
computer literacy.  Knowledge structures were constructed
that contained causal networks, goal/plan/action hierarchies,
and taxonomic hierarchies.  The proximity of a pair of nodes
(i.e., concept, state, event, action, goal) in these structures
predicted the cosine similarity scores that are routinely
computed in LSA analyses.

Representing World Knowledge with
Conceptual Graph Structures

World knowledge has traditionally been captured by
knowledge structures throughout the history of cognitive
science, artificial intelligence, and discourse processes.  The
knowledge structure structures include semantic networks,
taxonomies, causal networks, planning networks, ontological
trees, spatial region hierarchies, and various other classes of
conceptual graph structures (Golden, 1997; Graesser &
Clark, 1985; Kiel, 1979; Lehmann, 1992; Lenat, 1995;
Norman & Rumelhart, 1975; Schank & Abelson, 1977;
Trabasso, van den Broek, & Suh, 1989; Sowa, 1983).   A
knowledge structure contains a set of categorized nodes that
refer to concepts, events, processes, states, actions, goals,
and other ontological classes.  The nodes are connected by

relational arcs that also are assigned to various categories,
e.g., is-a, has-as-parts, cause, reason, enables, contains, etc.
A particular package of knowledge may incorporate spatial
composition, causal networks, goal hierarchies, taxonomic
hierarchies and other viewpoints.  All of these viewpoints
allegedly can be represented as a set of categorized nodes
that are integrated by a set of directed, relational arcs.

It is a time consuming, methodical task to map out
knowledge structures for a domain of knowledge.
Developers of expert systems and other knowledge based
systems would require a decade to perform the knowledge
engineering that is needed for a system of reasonable scope
with widespread practical applications (Lenat, 1995).  There
are authoring tools that guide either experts or novices in the
building of the knowledge structures (Williams, Hultman, &
Graesser, 1998).  The structures are built in a principled
fashion that caters to the constraints of the composition
rules, so guidance is needed to prevent illegal compositional
structures.  All of this takes training and experience that can
be measured in months or years.  However, conceptual
graph structures are powerful theoretical entities because
they support the intelligent procedures and processes that
operate on the representations, as in the case of retrieval,
classification, summarization, problem solving, question
asking, question answering, and so forth.

The distance between two nodes in a conceptual graph
structure is frequently regarded as a metric of conceptual
relatedness.  That is, the conceptual relatedness between
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nodes A and B decreases as a function of the number of arcs
that exist on a legal path between A and B.  For example, if
1 arc separates A and B on a causal chain, then A and B are
strongly related, compared to the case where 4 arcs separate
two nodes on a causal chain.  The structural proximity
between any two nodes that are connected by a legal path of
arcs is designated as its structural-proximity (A, B).

Representing World Knowledge with Latent
Semantic Analysis

Researchers have more recently turned to Latent Semantic
Analysis (LSA) because it provides an approximation of the
representation of world knowledge, but in a very short
period of time -- measured in weeks, days or even hours.
LSA is a statistical representation of a body of world
knowledge that is reflected in a large corpus of textual
documents (Landauer & Dumais, 1997; Landauer, Foltz, &
Latham, 1998).  LSA capitalizes on the fact that particular
words appear in particular texts (called “documents”); the
cooccurrence of words in documents reflects the constraints
that exist in world knowledge.  The input to LSA is a
cooccurrence matrix that specifies the number of times that
word Wi occurs in document Dj.  These frequencies are
adjusted with a logarithm transformation that also corrects
for the base rates of words appearing across documents.  A
word is a distinctive index for a document to the extent that
its occurrence in the document is above the base rate for that
word across documents.  A standard statistical method,
called singular value decomposition, reduces the large WxD
cooccurrence matrix to K dimensions (typically, 100 to 500
dimensions).  Each word, sentence, or text ends up being
represented as a weighted vector on the K dimensions.

The similarity or conceptual relatedness between two bags
of words (A and B) is computed as a geometric cosine (or
dot product) between the two vectors.  The values normally
range from 0 to 1.  This LSA match between two language
strings is designated as its LSA-match (A, B).  The LSA
match can be high even though there are few, if any words in
common between the two strings.  LSA allegedly goes well
beyond simple string matches because the meaning of a
language string is partly determined by the company (other
words) that each word keeps (Landauer & Dumais, 1997).

The empirical success of LSA has been promising and
sometimes remarkable.  Landauer and Dumais (1997)
created an LSA representation with 300 dimensions from 4.6
million words that appeared in 30,473 articles in Grolier’s
Academic American Encyclopedia.  They submitted to the
LSA representation the synonym portion of the TOEFL test,
a test developed by the Educational Testing Service to
assess how well non-native English speakers have mastered
the words in the English language.  The test has a four-
alternative, forced choice format, so there is a 25% chance
of answering the questions correctly.  The LSA model
selected the alternative that had the highest match with a

comparison word.  The LSA model answered 64.4% of the
questions correctly, which is essentially equivalent to the
64.5% performance for college students from non-English
speaking countries.  LSA has had remarkable success in
capturing the world knowledge that is needed to grade
essays of students (Foltz, 1996), to assign texts to students
of varying abilities to optimize learning (Wolfe, Schreiner,
Rehder, Laham, Foltz, Kintsch, & Landauer, 1998), and to
provide effective feedback in the training of summarization
skills (E. Kintsch, W. Kintsch, Laham, Landauer, DePaula,
Schreiner, Stahl, & Steinhart, 2000).  There are now LSA-
based graders of essays that assign grades to essays with the
validity and reliability of human experts in composition
(Foltz, 1996).  In our research on computer literacy, LSA
has been quite successful in evaluating the quality of college
students’ answers to deep reasoning questions and to the
contributions of learners during the tutorial interactions with
AutoTutor (Graesser, Wiemer-Hastings, Wiemer-Hastings,
Harter, Person, & the TRG, 2000; Wiemer-Hastings,
Wiemer-Hastings, Graesser, and the TRG, 1999).

The success of LSA is quite remarkable given that it was
never designed to capture many of the traditional problems
in language understanding systems, such as word order,
syntax, quantification, and negation.  There are other
corpus-based probabilistic models that capture word order
and syntax (Burgess, Livesay, & Lund, 1998; Charniak,
1993) but the present study focuses on the capabilities of
LSA.

At this point, there is a great deal of uncertainty about
what is being represented in the K-dimensional spaces of
LSA.  One optimistic possibility is that the K dimensions
reflect ontological categories, semantic features, and
structural compositions of mental models that would be
directly adopted in structural theories of world knowledge
representation.  For example, a simple and straightforward
assumption would be that particular banks of the K
dimensions of LSA would have a one-to-one or many-to-one
mapping onto ontological categories (Chi, Slotta, & de
Leeuw, 1994; Keil, 1979), to conceptual primitives (Miller
& Johnson-Laird, 1976; Norman & Rumelhart, 1975;
Schank & Abelson, 1977), or to the domain-specific features
that are associated with a particular topic.  Very few
researchers would go out on the limb and propose an elegant
mapping between the K dimensions of LSA and
sophisticated theories of world knowledge.  However, most
researchers would seriously entertain the possibility of
weaker correspondences.  At the other end of the continuum,
there are researchers who believe that the K dimensions
have nearly an arbitrary mapping to the attributes of mature
theories of world knowledge (Landauer & Dumais, 1997).

A somewhat different question addresses whether the LSA
space is capable of recovering aspects of the deeper mental
models that underlie text (Forbus, Gentner, & Law, 1995),
or what is sometimes called situation models (Kintsch,
1998).  Foltz, Britt, and Perfetti (1996) reported evidence
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that suggested that LSA does capture mental model
representations to some extent, whereas Perfetti (1998) has
expressed doubts that LSA captures the representations and
processes of psychological models.  LSA may capture
shallow knowledge rather than deep knowledge. That is,
LSA may capture the sort of word associations that are
reflected in the archives of dictionaries and encyclopedias,
but may not penetrate the deeper mental models.  On the
other hand, LSA may be successful in capturing aspects of
the deeper situation model.  An accomplished expert on
some topic certainly does know how to use the right bags of
words at the right time; the systematic use of words in
particular documents may be recovered in the LSA solution
spaces.  At this point in the science, however, there is not
enough empirical evidence to support one position or
another.

The present study hopes to shed additional light on what is
captured by the LSA representations.  An LSA space has
been developed in the domain of computer literacy.  This
LSA representation has been used in a fully automated
computer tutor, called AutoTutor  (Graesser, Franklin,
Wiemer-Hastings, & the TRG, 1998; Graesser et al., in
press; Graesser et al., 2000; Wiemer-Hastings, Graesser,
Harter, & the TRG, 1998).  In addition to the LSA space,
AutoTutor has dozens of conceptual graph structures that
capture knowledge in a more structured form.  The present
study examines whether the structural composition of the
conceptual graph structures can predict the LSA match
scores.  That is, is there a significant correlation between
structural proximity and LSA match scores when we
examine taxonomic hierarchies, causal networks, and goal
structures?  A positive correlation would support the claim
that LSA spaces to some extent recover aspects of the
mental models.  A zero correlation supports the claim that
the K dimensional LSA spaces have an unsystematic
mapping onto structural theories of knowledge
representation.

Corpus of Texts and LSA Space on Computer
Literacy

A 200-dimensional LSA space was developed for the
domain of computer literacy during the development of
AutoTutor.  The corpus of included (a) two books on
computer literacy, (b) 30 articles that focus on hardware,
operating systems, and the internet, and (c) AutoTutor’s
curriculum script of lessons, example problems + solutions,
and questions + answers.  An LSA analysis requires the
preparation of a document by word (D x W) co-occurrence
matrix. Each cell in the matrix specifies the number of
occurrences of word Wi  in Document Dj.  In order to
prepare the DxW matrix, the researcher needs to define what
constitutes a document unit.  A single document was defined
as (a) a paragraph in the case of the textbooks and 30
articles and (b) a sentence that conveys a lesson, a good

answer, or piece of a solution in the case of the curriculum
script.  An LSA analysis was performed on the 2.3 MB
corpus of documents, yielding a solution with 200
dimensions.

The 200-dimensional LSA was validated in our
assessments of AutoTutor (Graesser et al., 2000; Wiemer-
Hastings et al., 1999).  For example, Wiemer-Hastings et al.
(1999) analyzed how well the LSA space on computer
literacy could accurately evaluate a sample of 192 answers
to the questions in the curriculum script. College students
enrolled in the computer literacy course answered the
questions in the curriculum script by typing in their answers
into a web cite facility.  The data were collected after the
college students had read the relevant chapters in the book
and had received a lecture on each macrotopic (i.e.,
hardware, operating system, Internet).  Trained experts (such
as graduate research assistants) also rated the 192 answers to
the questions. The results of correlational analyses revealed
that the LSA did an excellent job evaluating the quality of
student answers.  The correlation between LSA’s answer
quality scores and the mean quality scores of the experts was
.49. This correlation is indistinguishable from the .51
correlation between the ratings of the two intermediate
experts (i.e., the individuals who normally grade exams in a
college computer literacy course).  Graesser et al. (2000)
reported that AutoTutor’s LSA component did an excellent
job discriminating the ability of learners who interact with
AutoTutor in a multi-turn tutorial dialog.  LSA was capable
of discriminating different classes of student ability (good,
vague, erroneous, versus mute students) and in tracking the
quality of contributions in tutorial dialog.

The LSA space in AutoTutor was adopted in the present
study.  We computed the LSA-match scores between pairs
of nodes in the conceptual graph structures that had been
prepared for topics on hardware, operating systems, and the
internet.

Conceptual Graph Structures on Topics in
Computer Literacy

AutoTutor’s architecture includes a set of conceptual graph
structures on the various topics in the curriculum script.  A
typical structure contains approximately 10 to 30 nodes.  We
randomly selected 12 conceptual graph structures in the
present analysis, including 4 structures for hardware, 4 for
operating systems, and 4 for the internet.

The 12 knowledge structures were composed by applying
the conceptual graph structure (CGS) representations
developed by Graesser (Graesser & Clark, 1985; Graesser et
al., 1992; Graesser, Wiemer-Hastings, & Wiemer-Hastings,
in press; Williams, Hultman, & Graesser, 1998).  The CGS’s
have 5 node categories: concepts, states, events, goals, and
style specifications.  There are 22 basic arc categories.  The
composition of these conceptual graph structures is not
arbitrary, but is based on formal and conceptual constraints
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that have been studied for several decades in artificial
intelligence (Lehmann, 1992). The categories of nodes and
arcs are sufficient for implementing computational models
of question answering which have been validated in
experiments on adults (Baggett & Graesser, 1995; Graesser
& Hemphill, 1991; Graesser, Lang, & Roberts, 1991).

Three types of knowledge structures were directly
analyzed in the present study: taxonomic hierarchies, causal
networks, and goal hierarchies. A node was included in the
present analysis if and only if it was part of any of these
three types of structures.  The composition of these three
types of structures is specified below.

Taxonomic Hierarchies
Concept nodes are connected by is-a arcs.  For example, the
concepts Norton Antivirus, utility program, and tool would
be connected by two is-a arcs:

(concept-1: Norton Antivirus) –isaÅ
(concept-2: utility program) –isaÅ
(concept-3: tool)

The structure distance is 1 between concepts 1 and 2 and
between concepts 2 and 3; the structural distance is 2
between concepts 1 and 3.

Causal Networks
State and event nodes are connected by arcs that signify

Cause, Enables, Subprocess, and Implies (see Graesser &
Clark, 1985 and Graesser, Wiemer-Hastings, & Wiemer-
Hastings, in press for more complete definitions of arcs).
Some of these categories of nodes and arcs are illustrated in
the following chain.

(state-1: the operating system is stored on the hard disk) –
EnableÅ
(event-2:  the operating system is loaded onto the computer)
–SubprocessÅ
(event-3: the operating system gets into RAM) –CauseÅ
(event-4: the CPU executes instructions)

The structural distance is 1 between nodes 1&2, 2&3, and
3&4, is 2 between nodes 1&3 and 2&4, and is 3 between
nodes 1&4.

Goal-structures
Goal nodes are connected to other nodes by virtue of arcs

that signify Reason, Manner, Initiate, and Outcome.  For
example, the following three goal nodes form a goal
hierarchy via a Reason arc.

(goal-1:  user types in command) –ReasonÅ
(goal-2:  user starts word processing software) –ReasonÅ
(goal-3:  user writes article)

The goals are triggered by various events and states in the
world by virtue of Initiate arcs, whereas Outcome arcs
specify whether or not the goals are achieved.

Scaling of Pairs of Nodes on Structural Proximity
Pairs of nodes in the 12 conceptual graph structures were
scaled on structural proximity with respect taxonomic
hierarchies, causal networks, and goal structures.  A node in
a structure was included in the analysis if and only if it was
part of one or more of these three types of structures.  When
considering all 12 conceptual graph structures, there were
536 pairs of nodes in the analysis.  A pair of nodes (A and
B) was scaled on causal proximity by computing the
reciprocal of the structural distance on a legal causal path
between A and B (i.e., 1/distance).  Thus, if two nodes have
a structural distance of 1, 2, 3, versus 4 arcs on a legal path,
then the causal proximity scores would be 1.00, .50, .33, and
.25, respectively.  If there is no legal causal path that
connects A and B, the causal proximity score is 0.  Goal
proximity and taxonomic proximity was computed in a
similar fashion for all 536 nodes.   The mean proximity
scores were .07, .31, and .40 for the taxonomic, causal, and
goal proximity scores, respectively; the corresponding
standard deviations were .26, .40, and .45.

Relationship Between LSA Match Scores and
Structural Proximity Scores

The analyses uncovered a robust relationship between the
LSA match scores and the structural proximity scores.
Consider first the causal proximity scores.  The mean LSA
match scores were .47, .35, and .24 when the causal
proximity scores were 1.00, .50, and .33 or lower (but not
0), respectively.  When analyzing the goal proximity scores,
the LSA match scores were .53 and .42 for goal proximity
scores of 1.00 and .50 or lower (but not 0), respectively.
The taxonomic proximity scores rarely went lower than 1.00
when considering nonzero values, so we could not isolate a
sensitive gradient for this proximity score.  The overall
mean LSA match score was .44 (SD = .30).

A multiple regression was conducted to assess the extent
to which the LSA match scores could be predicted by the
taxonomic, causal, and goal proximity scores.  The three
predictor variables together explained a significant 9% of
variance in the LSA match scores, F(3, 532) = 16.46, p <
.05, R2 = .09.  All three predictors had a significant unique
impact on the LSA scores, with beta weights of .14, .31, and
.47 for taxonomic, causal, and goal proximity, respectively.

We performed some follow-up multiple regression
analyses that statistically controlled for some potential
extraneous variables.  One extraneous variable was the
length of the node descriptions, as defined by the number of
words in the pair of nodes.  Those who have conducted
research on LSA have reported that lengthier descriptions
have a slight tendency to produce higher LSA matches when
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two bags of words are compared (Rheder, Schreiner, Wolfe,
Laham, Landauer, & Kintsch, 1998; Wiemer-Hastings et al.,
1999).  The mean length of the node descriptions in our
sample was 10.62 words in the node pair (SD = 4.03), or
5.31 words per node.  A second extraneous variable was the
number of nouns that overlap between the pair of nodes.
Overlapping nouns are analogous to argument overlap in
propositional theories of text processing (Graesser, Millis, &
Zwaan, 1997; Kintsch, 1998); the fact that constituents refer
to the same entity is one important foundation for coherence
in discourse processing.  However, from the standpoint of
the present analyses, we would not be particularly surprised
if the LSA match scores could be explained by mere noun
overlap because it is analogous to a keyword overlap.  The
mean number of overlapping nouns in a node pair was .71
(DS = .67).

Table 1 presents the results of the multiple regression
analysis that predicted LSA match scores as a function of the
three structural proximity scores, length, and noun overlap.
The five predictor variables accounted for a significant 55%
of the variance in LSA match scores, , F(5, 530) = 128.05, p
< .05, R2 = .55.  When considering the two extraneous
variables, noun overlap had a robust impact on the LSA
match scores whereas length had no significant effect.
Although noun overlap was robust, the three structural
proximity variables still had a significant unique impact on
the LSA match scores in the multiple regression analyses.
Interestingly, we did not find the noun overlap scores to be
correlated very highly with the taxonomic, causal, and goal
proximity scores, r = -.18, .25, and -.02, respectively.
Overlap in predicates was also analyzed but the correlations
were also modest or nonsignificant.  These results support
the claim that the structural proximity scores have an impact
on LSA match scores over and above keyword matches.

Table 1: Multiple regression analyses that predict LSA
match scores

----------------------------------------------------------------
Predictor Variable   beta-weight t-score
----------------------------------------------------------------
Taxonomic proximity  .14   4.08 *
Causal proximity  .11   2.17 *
Goal proximity  .15   2.94 *
Length (number of words) -.02     .75
Noun overlap  .72 23.20 *
---------------------------------------------------------------
* significant at p < .05.

Conclusions
The results of this study support the claim that LSA captures
aspects of the mental models that underlie computer literacy.
The content of the mental models includes taxonomic
structures, causal networks, and goal/plan/action hierarchies.
The LSA match scores between pairs of nodes in the
conceptual graph structures can be predicted by taxonomic,
causal, and goal structural proximity.  The structural
proximity scores predict LSA match scores over and above
noun overlap, keyword overlap, and the number of words in
the node descriptions.

Aside from demonstrating that LSA captures aspects of
mental models, we have demonstrated that LSA can be
useful for performing semantic and conceptual analyses on
relatively short verbal descriptions.  Researchers have
sometimes claimed that LSA is only useful when analyzing
lengthier verbal descriptions on the order of a paragraph.
The present study supports the claim that LSA can be useful
for compositional analyses on individual words and short
sentences of 5-6 words.  Additional research is needed to
identify the limits of LSA in recovering different aspects of
semantics and world knowledge.
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