UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Memory-Based Problem Solving and Schema Induction in Go

Permalink
https://escholarship.org/uc/item/2xd197mw

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 22(22)

Authors

Heneveld, Alex
Bundy, Alan
Ramscar, Michael

Publication Date
2000

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/2xd197mw
https://escholarship.org/uc/item/2xd197mw#author
https://escholarship.org
http://www.cdlib.org/

Memory-Based Problem Solving and Schema Induction in Go

Alex Heneveld, Alan Bundy, Michael Ramscar
{heneveld,bundymichael}@cogsci.ed.ac.uk
Institute for Representation and Reasoning

Division of Informatics
University of Edinburgh
Edinburgh, Scotland EH8 9LW

Julian Richardson
julianr@cee.hw.ac.uk
Deptartment of Computing and
Electrical Engineering
Heriot-Watt University
Edinburgh, Scotland EH14

Abstract

This project presents a memory-based, analogical model of complex problem solving with a technique of schema formation.
Cases in the game of Go are described in a predicate logic representation of spatial stone arrangements near recent moves
on the board, and then structure-mapping (Gentner 1983) is used to suggest candidate moves in novel situations based
on exemplar cases from expert games. The analogy process is also used to generalise across previous cases to form new
schema cases. Problem solving using these prototype schemas is compared with the exemplar-only model. The exemplar
run effectively found solutions to about 50% of the problems; schemas performed very similarly, taking half as long and
identifying a few useful Go principles. This suggests to us that pure-exemplar models of memory-based processing can be
made faster and more compact by introducing schemas. Analysing the model’s weaknesses highlights the need for richer board
representation and for a reminding stage to select relevant cases. Future work will also focus on using a move evaluation
stage to filter spurious generalisations, and using both the evaluation and the generated schemas to enrich the representation.

Introduction

This paper explores a model of memory-based problem
solving to see whether analogical reasoning can be
effective at suggesting solutions to complex problems and
to see whether schema induction via analogy can serve as
a basis for learning useful generalisations. We describe
two machine learning experiments designed to test how
well exemplars and abstracted schemas perform when
used to suggest candidate moves in the game of Go, and
review some computational and cognitive implications of
this work.

In the memory-based psychological paradigm, experi-
ence cases stored in memory are the starting point for
solving a target problem, roughly in a three step process.

(1) Reminding: surface features prime cases
(2) Matching: cases analysed to suggest solutions
(3) Ewaluation: solutions considered in context

Available features of the problem cue the retrieval of
experiences containing similar features, in the first,
reminding step. These potentially relevant experiences
are then analysed — such as by looking for analogous
propositional structure — and if it is a good match,
a portion of the remembered experience may be
transferred as a potential solution. (In iterative models,
the matching step may uncover new surface features
which cause new cases to be retrieved.) Potential
solutions are evaluated relative to the context and the
goals of the target problem, in the third step, and used
to form the eventual solution. This approach is closely
related to case-based reasoning, and is also apparent
in exemplar models of categorisation (Nosofsky, 1984)
and some recent work on natural language processing
(Daelemans, van den Bosch, & Weijters, 1997).

A schema is a description of general experiences,
often formed from a family of episodes with elements
in common. They can supplement or organise a
simple exemplar model by offering a concise source of
the essential factors in many experiences without the
incidental details present in episodic memories. Frames,
scripts, and model-based reasoning are examples of
their use in AI. The theory of pragmatic reasoning
schemas (Cheng & Holyoak, 1984) is a clear account
of how schemas can combine the best attributes of
competing memory-based and rule-based views to model
logical reasoning. In the categorisation literature, both
prototype and theory (see Komatsu, 1992, for review)
models can be considered as relying solely on a schema-
definition of categories. Unfortunately in all these
theories how to form these schemas is a difficult problem:
the second set of experiments below tries a rudimentary
method of inducing schemas from analogical matches
performed during the memory-based process.

The strategy game Go was selected as a domain for
our experiments for three main reasons: it is a plentiful
source of difficult problems, many of which computers
cannot currently solve; a vast amount of data is available
on the Internet Go Server (IGS, 2000); and it does not
involve much outside knowledge. The game is played
by two players, one with black stones and the other
with white, who take turns placing their stones in any
unoccupied space on a 19x19 board, with the goal of
amassing the greatest amount of territory. Players
can capture their opponent’s stones, individually or in
orthogonally connected groups, by surrounding them in
such a way that the captured group is not adjacent
to any empty squares of the board. Captured groups
are removed from the board, and the newly-unoccupied
region typically becomes the capturing player’s territory.

Many books can give more information on the rules,
the strategy, and the history of the game (Bozulich,
1992, is good for this). Archives for research in Go-
playing computer programs are on-line (Reiss, 2000), as
are archives for psychological studies in Go (Burmeister,
2000).

One of these psychological studies (Saito & Yoshikawa,
1996) indicates that expert Go players quickly focus on
their eventual move, (order of 200 ms in TsumeGo); and
that they usually consider the outcome of only one or
two possible moves. For these candidate moves, there is
a lengthy lookahead evaluation which may go as far as
11 moves deep. Traditional Go-playing programs, even
those which have been proposed as cognitive models,
perform a broader search on a much greater number of
candidate moves, necessarily to a lesser depth and with
the result that no Go programs play any better than an
amateur. It is fascinating that skilled players are able
to focus rapidly — intuitively — on the best moves. In
this research, we explore a memory-based model of how
this might be done and also whether the abstraction of
schemas can benefit performance.

Experimental Design and Setup

In our view, the expert Go player relies on a large
number of case experiences in memory, efficiently
represented, and when a new problem is presented,
retrieves a small number of possibly-relevant exemplars
for fuller evaluation. Schemas may also be involved in
representing common, recurring segments of exemplars
as easily-accessible, general cases. The major issues
involved in developing a computational cognitive model
of this view are how the experiences are internally
represented, how relevant experiences are selected from
memory, and how schemas are formed.

Representation

As in many machine models of complex problem solv-
ing, the representational format used here was a proposi-
tional description language recording a small number of
perceptually basic, salient features. Specifically, for each
problem, this encodes the colours of neighbouring stones
around the two previous moves (X and 0); the relative
position between these two moves (in the format (rel X
(rel-1 w 1)), meaning one position to the west of the
last move); and, for cases including the expert’s solution,
the relative position between the actual response (Q) and
the two previous moves.

El (my-last-move 0)
E2 (is-colour white 0)
E3 (is-colour black (rel 0 (rel-1 w 1)))
E4 (is-colour black

(rel 0 (rel-1n 1)))
E5 (is-colour black

(rel 0 (rel-1 s 1))) =
E6 (is-colour white

(rel 0 (rel-1 s 2)))
E7 (make-move Q)
E8 (is-colour white Q)
E9 (equal-position Q (rel 0 (rel-1 e 1)))

__f-‘gﬁ__
it

Figure 1: A fragment describing an atari opening east

This subset of information was selected because it
corresponds generally to the initial observations that
a player makes, guided by attentional cues to recent
moves and nearby stones, and because as limited and
easily-compiled as it is, it already contains enough
information to begin drawing conclusions about where
to play in certain circumstances. A more complete
model of the expert’s initial representation might note a
great many more features, symbolising more complicated
concepts, but we hoped that this simplification would
yet give promising results. The routines we developed
to build the description from on-line game records and
the routines to evaluate the descriptions as LISP code
for visual output are designed to work with a family of
vocabularies.

Analogical Processing

The target problems were compared with cases
in memory using the Structure-Mapping Theory of
Analogy (Gentner, 1983). We chose this theory because
it has been widely examined in the literature on
the psychology and computer modelling of analogy,
and because the Structure-Mapping Engine program
(Falkenhainer, Forbus, & Gentner, 1989) is ideally suited
to our representation. Routines in SME can easily read
our descriptions, perform the analogy in keeping with
a demonstrated psychological theory, score potential
matches, and return inferences which correspond to
candidate move suggestions.

In the implementation of our model, individual
analogies are taken between a target problem and each
of 1500 cases in memory. In practice, this is a slow,
sequential process that takes between 10 and 30 minutes
per problem on a Sun Ultra-10 workstation. In theory,
however, each analogy is independent, and this might
correspond to a very quick, parallel neural computation
done by the brain. It could also be made significantly
quicker by incorporating a more diverse description
language with a “reminding” approach. A smaller
number of cases which seem relevant can be primed
by surface features in the target problem, with only
those cases containing similar predicates used for the
analogical matching (Forbus, Gentner, & Law, 1995).
Whether these improvements could get the time per
problem down to the order of 200 ms is unclear; up to 30
minutes per problem, though, is not prohibitive at this
stage of the experimentation.

Schema Induction

Once an analogical match has been made between
a target problem and a source (base) case, the result
can also be used to abstract the common substructure.
Instead of looking only at the inferences, the process
copies all the matching expressions into a new, schema
case. This encodes the essential description elements
from pairs of exemplar cases into more compact,
abstracted descriptions which can then be used as base
cases for solving future problems. Additionally, by
repeating the induction on schema cases, the process can

also capture patterns recurring across many experiences
in memory. This cognitive model of generalisation
learning has been argued for on the basis of order
effects by Kuehne, Forbus, & Gentner (1999). A similar
algorithm, the Least General Generalisation (Plotkin
1971), has been widely used in AT to induce descriptions
in logic, and a related approach has been applied to
pattern learning in Go (Stoutamire, 1991). In our model,
applying this type of schema induction after analogy
has been used to generate candidate solutions has the
advantage that the generalisation is returned with very
little additional computational effort.

To perform the induction, we developed a LISP
module within the SME package that transforms the
result of a completed analogy into an abstracted schema.
The schema uses the same description language as the
parent cases, copying identical predicates exactly and
inventing new tokens where the corresponding labels in
the parents differ. The resulting schema can be used
directly as a base case for analogical reasoning or output
to a file. The second set of experiments reviewed below
investigates the utility of this induction algorithm in
solving complex problems and learning patterns.

Problem Solving from Examples

The first experiment tried to solve 100 random Go
problems by analogy to a library of exemplar cases.
We take solve to mean that the move chosen by the
expert player in the actual game is ranked in the top
50 in the program’s list of suggestions (sometimes also
top 3 or top 10). In a full-fledged Go-playing model
this would be followed by an elaborate evaluation stage
which would consider the effects of the candidate moves,
typically using some form of lookahead search. Go
players perform this lookahead on 1.5 moves on average
(Saito & Yoshikawa, 1996), whereas most computer Go
programs will evaluate between 20 and 70 moves.

4 IRl # [

] 11 —

Cleles el

3 { i '

& T

T

: !

w 1l

5] # o -

11

L=

| T

b -E-’} ¢

I { { €CC

eer e

WA BCDEFJIHILI T ELMNOPJRES
Figure 2: Sample results to a target problem.

Numbers indicate ranked suggestions; X and 0 are
the last two moves; and q is the expert’s move.

Materials

We simulated the human’s experience as consisting
of 1500 exemplar cases drawn from ten tournament
games (freely available on the Internet Go Server, IGS,
2000). These source cases, ten-games, are each a
LISP-style description in the vocabulary outlined above,
recording the neighbourhood of the last two moves with
an indication of the move the expert made at that
point in the game. One-hundred target problems, query-
random-100, were compiled from random turns (before
the end-game) in other IGS tournament games in the
same manner but without any indication of the expert’s
response.

Results

Figure 2 illustrates one of the better responses to a
target problem. The program’s top suggestion (1) is
the expert’s “right” answer (Q), and is quite close to
the opponent’s previous move (X). Many of the other
candidates were in other sections of the board, reflecting
problems locally similar to this one where the expert did
play in other areas. (In this situation, playing elsewhere
might be better, but as this model attends to stones near
X and 0, it cannot draw very good conclusions about
distal play.)

The program solved 51 of the 100 problems after
running for 13 hours (taking the top 50 suggestions). If
all suggestions are considered, solutions to 93 problems
were found; however, the program made an average
of 6791 suggestions per problem. (There are only 361
positions on the board). There were a large number of
repetitions — on average, the right answer is suggested
104 times. Looking at different suggestion depths gives
a better picture of the program’s performance: among
the top 3 suggestions, the right answer was found for 7
problems; among the top 10, for 20; and among the top
50, for 51. Figure 3 shows the performance as up to 200
suggestions are considered.

0
8ol
700
60
B J
a0 JJ_/J

30- S

20-

Percent Correct
U

ten-games
random

Figure 3 Experiment 1 results. This graph shows
the percentage of problems solved by considering the
z highest-scoring suggestions. The heavy line is our
program, and the light line a chance player based
on the 1970 Zobrist program. The dotted line is the
asymptotic percent solved when all inferences were
considered.

To put these numbers in perspective, we developed
an informed random heuristic on the basis of the 1970
Zobrist program (Burmeister, 2000), also shown in
Figure 3. This program selected positions at random,
weighted heavily nearby the two prior moves. It took
6 minutes to query the same set, finding solutions to 3
of the 100 problems within its top 3 suggestions; 10 in
its top 10; and 35 in its top 50. These numbers are not
very sensitive to the precise weights used, so we take this
as a baseline for how a rudimentary statistical learning
algorithm would perform given only X, 0, and Q.

There were a large number of repeated suggestions in
the lists of candidate moves, as well as quite a few invalid
moves, either off the board or in an occupied square. A
human player would immediately filter these out, and a
machine evaluation routine would also quickly eliminate
them from the lookahead search; it is interesting to
review the effect this has. For our system, after removing
these candidates, 13 of the correct solutions were in the
top 3 suggestions, 32 in the top 10, and 64 in the top
50. For the informed random player, 5 were in the top 3
suggestions, 14 in the top 10, and 51 in the top 50.

Analysis

A comparison of our analogical problem solver with
the weighted random player shows that, for very small
numbers of suggestions, our program performs much
better, solving twice as many problems, though taking
orders of magnitudes longer. At greater suggestion
depths, the chance player improves relative to our
program, for the trivial reason that will eventually guess
every space on the board; considering more than 50 or
100 suggestions is not very practical either for input to a
machine evaluation routine or as even a rough model of
human candidate move generation. If we further focus
on the source and target problems where the expert
played within three stones of one of the last two moves
(between 30 and 50 possibilities), the correct answer
is in the top 10 different valid suggestions for 67 of
the 100 problems. (This compares with 20 for the
chance player). This shows that our analogical Go solver
performs best on localized problems, which are in fact
those instances where our solver has the largest amound
of relevant information. This points to the fact that the
representation was the biggest weakness when reasoning
from exemplars.

Schema-Based Processing

The second set of experiments was designed to explore
the use of schemas in memory-based problem solving.
Hundreds of thousands of pairs of cases from the
ten-games set were passed to our Structure-Mapping
Engine schema induction module, and the highest-
scoring schemas (after normalisation) were kept as the
set schemas-1500. This set was then used to solve
the same selection of 100 random problems as in the
previous experiments, using the same procedure as
described above. Next, we examined the schemas which
were most effective in solving problems and repeated

the induction process to investigate how well the
generalisation technique captures the essential, common
aspects in families of cases.

Comparison with Exemplars

The most significant result with the schema-based run
was that the computations took about half as long,
achieving approximately the same success rate. On the
same problem set (query-random-100), this run took 7
hours; in the top three suggestions, the schemas-1500
source set found answers to 7 of the 100 problems; in the
top 10, 23; and in the top 50, 51. In the limit, schemas
suggested the solution to 88 problems.

Two main factors explain the speed difference. Firstly,
the schema cases are much smaller, about 1/3 the size.
Secondly, a much smaller number of suggestions were
made per problem, 3204 on average. Nonetheless, the
performance at low suggestion depths was about the
same. In fact, as a percentage of the total number of
suggestions, the correct move was suggested 60 more
often by the schemas (77 of 3204) than by the exemplars
(104 of 6791). This implies two things:

e When the schema set contained a case which
solved the problem, it contained a lot of cases which
solved the problem.

e Schemas were more likely to make suggestions to
appropriate problems than were exemplars; i.e. they
were less likely to give wrong answers.

The first point tells us that there was even more
repetition in the schema set than in the exemplar set,
which might have been expected, considering that the
schemas encode common patterns among the exemplar
set. The second point was quite surprising, though: one
might expect the schemas to be more general, and hence
more applicable than the exemplars. What happened,
however, was that the exemplars, because they contained
so much background information, could match more
situations. With many exemplar cases, analogies were
based on irrelevant criteria but were still strong enough
to form inferences — inappropriately — about Q.
Asymptotically, however, exemplars solved 93 of the 100
problems; in some cases, exemplars appropriately made
inferences about Q based on information that had been
lost in the schema formation process.

After filtering out repetitions and invalid moves, the
schema-based run was slightly better than the exemplar-
based run. The top three suggestions gave solutions
to 14 problems (compared to 13 for exemplars); the
top 10 solved 39 (versus 32); and the top 50 solved
70 (versus 64). This strengthens our conclusion that
in this experiment, the schema induction process was
somewhat successful in discarding irrelevant, distracting
information from cases and achieving better performance
much more quickly.

The Effectiveness of Schemas

If this conclusion is correct, then many of the
schemas should correspond to common Go situations or
aphorisms. Figure 4 below shows one schema that was

Figure /: A particularly good schema. Playing Q to
the left of X in a situation like this solved many of
the target problems.

particularly useful: it gave correct suggestions to 20%
of the posed problems, usually in the top 50 and
several times in the top 10. Other effective schemas
also helped to solve a large number of problems, to
a much greater extent than individual exemplars. On
the other hand, there were some problems which no
schemas matched but which were matched closely and
solved by some exemplars. In summary, it appears
that some good schemas can effectively replace a large
number of common exemplars, but that in outlying
cases, exemplars are important to keep around.

An approach we are currently investigating is to
lump exemplars and schemas together, developing new
schemas at random (weighted by the SME match score)
and adding them to the pool. Some of the high-
generation schemas, i.e. those formed after multiple
generalisations, match patterns in standard Go reference
books. One of these is the principle to “hane at the head
of two stones”, to jump out in front of an opponent’s line
of stones (shown in the left of figure 5 below). Another
interesting configuration left out the colour of X and Q,
suggesting that whether black or white played X relative
to the other two stones, then the other player should set
Q down to the lower right of X.

¢

~,

Figure 5: Some very generalised schemas. Interest-
ing schemas found included the “hane”, on the left
(play just below X), and the loose rhombi, both on
the right (play to the lower right of X).

However, not all the high-generational schemas corre-
spond to nicely stated principles or even to reasonable
Go play. Anytime there is a large intersection between
cases, even if it is meaningless and accidental, a schema

can form: for reliable, iteratable induction, a better tech-
nique is needed.

Conclusion

This memory-based model of the candidate move gen-
eration phase of Go has promising and interesting re-
sults. One of the three highest-scoring valid suggestions
matched the expert’s move in one out of eight problems,
and the best 50 suggestions solved more than half the
problems despite a simple and locally-confined represen-
tation. Still, a large number of problems could not be
solved by this model, and in considering future research
directions it is useful to analyse these failings.

Reminding and Richer Representations

Most of the problems that were not solved were ones
where the subsequent move was in a different region of
the board than either of the two previous moves. In
these instances, the source exemplars simply did not
store the information to enable our approach to find the
answer. It seems likely that human players attend to
a much wider range of features; if more of these could
be recognised and encoded by the routines that generate
the descriptions, we might expect better performance.

On the other hand, it is expensive to keep all this
information: the cases would become too large to
perform analogies on the entire set. One possible
resolution would be to encode initially only the most
salient features of the target; a reminding stage, such
as in MAC/FAC (Forbus et al., 1995), could select a
small number of cases on which to perform the analogical
matching. Some inferences would posit the presence
of certain features in the target problem, which could
be added to the initial representation if they hold, and
the analogy could continue iteratively, re-representing,
re-reminding, and re-matching, until it flounders or
suggests something about where to play.

There is also the question of where these features will
come from. Most Go programs have an extensive feature
recognition routine, and it would be possible at first
just to duplicate some of these. Ideally, these features
could then evolve, with better ones developing as the
program collects more experience. Schemas might be
useful here, to replace common, structured phrases in the
representation by a single reference to a schema, similar
in a way to chunking. This model would be interesting to
test, in Go, or in any domain where expertise might take
the form of good feature recognition for case retrieval.

Evaluation and Improving Abstraction

A major criticism of this particular approach to
schema formation is that it only identifies patterns in
static input descriptions. It does this without any
regard for the significance of stones, and so encodes a
lot, of useless, coincidental substructures. An interesting
AT perspective would be to grade cases and individual
description lines according to their performance. A
similar, more cognitive approach comes from Riesbeck
& Schank (1989) who stress the importance of building
logical explanations for generalisations to eliminate this
sort of spurious abstraction. This is precisely what
is done in the evaluation phase. While we have so

far ignored this phase as distinct and unrelated to
representation and matching, it could conceivable be
used to build explanations for good schemas; by storing
this information as part of exemplar cases, it could also
serve to enrich the representation.

General Discussion

This model gives an example of how experiences
and generalisations might be used, by people and by
machines, to solve difficult problems. It essentially
performs pattern matching using analogy, with good
initial results in a very complex domain. Additionally,
it embeds some powerful logic and machine learning
techniques in a cognitive framework of schema induction.
The major weaknesses of our model seem to be in
the simplicity of the representation and the absence
of the reminding and evaluation stages. These issues,
sometimes considered separate from the matching stage,
must on the contrary be addressed simultaneously and in
depth when developing a memory-based problem solver.

Our approach can also be viewed as finding solution
categories for a target problem, as analogical problem
solving and categorisation are closely related. In this
light, our results suggest that it is more efficient (in
terms of time, memory, and to a lesser extent success
rate) to define categories on the basis of schemas when
there are many similar cases. This offers circumstantial
evidence in favour of multiple-prototype and theory-
based views of categorisation with the added benefit of
describing how schema definitions might be formed from
structural and surface features of exemplars. Instead
of relying on a complete set of episodic exemplars, a
memory-based approach can benefit from the clustering
and compression given by analogical induction and the
formation of schematic (semantic?) memories.

On the other hand, our schemas did not even suggest
solutions to some of the problems that were easily solved
by exemplars; forming good schemas, if it is possible
in most cases, is more difficult than our technique
recognises. No matter what, exemplars will always be
needed for those areas where experience is minimal and
where categories are not neatly defined. For Go, the data
suggest that the best categorisation and problem solving
would be achieved by a mixed source set containing a
few very general schemas, more specific schemas, and
exemplars in areas not well represented by the schemas.

In conclusion, we have implemented and analysed
a model of memory-based cognition — in a symbolic
architecture — and applied it to complex problem
solving in Go, achieving better-than-chance performance
with a very limited representation. At this stage, it
seems that schemas can assist but not supplant pure
exemplars in this type of problem solving. It seems also
that the central matching stage may be more intricately
dependent on the reminding and the evaluation stage
than is typically acknowledged, particularly regarding
the representation. This indicates compelling research
directions both for Computer Go and for the psychology
of problem solving.

1

References!

Bozulich, R., ed. (1992) The Go Player’s Almanac.

San Jose: Ishi.

Burmeister, J. (2000) Research Page, http://wuw.psy
.uq.edu.au/"jay/

Cheng, P. W., & K. J. Holyoak. (1985) Pragmatic
reasoning schemas, Cognitive Psychology 17:391-416.

Daelemans, W., A. van den Bosch, & T. Weijters.
(1997) Empirical Learning of Natural Language
Processing Task, workshop position paper, The 9th
European Conference on Machine Learning.

Falkenhainer, B., K. D. Forbus, & D. Gentner.
(1989) The structure-mapping engine: algorithm and
examples, Artificial Intelligence 41:1-63.

Forbus, K. D., D. Gentner, & K. Law. (1995) MAC/
FAC: a model of similarity based retrieval, Cognitive
Science 19:141-205.

Gentner, D. (1983) Structure-mapping: a theoretical
framework for analogy, Cognitive Science 7:155-170.
Holyoak, K. J., & P. Thagard. (1989)

Cambridge, MA: MIT Press.

Mental Leaps.

IGS (2000) The Internet Go Server. http://igs.
joyjoy.net/
Komatsu, L. K. (1992) Recent views of conceptual

structure, Psychological Bulletin 112:500-526.

Kuehne, S. E., K. D. Forbus, & D. Gentner. (1999) Cat-
egory Learning as Incremental Abstraction using
Structure-Mapping, poster presentation, 21st Annual
Meeting of the Cognitive Science Society. Vancouver.

Nosofsky, R. M. (1984) Choice, similarity, and the con-
text theory of classification, Journal of Experimental
Psychology: Learning, Memory, and Cognition 10:104-
114.

Plotkin, G. D. (1971) Automatic Methods of Inductive
Inference, PhD Thesis, University of Edinburgh.

Reiss, M. (2000) Mick’s Computer Go Page, http://
www.reiss.demon.co.uk/webgo/compgo.htm

Riesbeck, C. K., & R. C. Schank. (1989) Inside Case-
Based Reasoning. Hillsdale, NJ: Erlbaum.

Saito, Y., & A. Yoshikawa (1996) A Protocol Study of
Problem Solving in Go, Poster presentation, abstract
in Proceedings of the 18th Annual Conference of the
Cognitive Science Society 833.

Stoutamire, D. (1991) Machine Learning, Game
Playing, and Go, Technical Report TR 91-128.
Cleveland, OH: Case Western Reserve University.

In addition to the referees, we are indebted to Jon Oberlander, Tan Frank (now at ETL Japan), and others in the Edinburgh

Informatics community for helpful discussions; and to Ken Forbus’s group at Northwestern University for their insights and the
SME code. The work was funded principally by a British Marshall Scholarship.

