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Smart Sampling without Reinforcement

Stefani Nellen (snellen@andrew.cmu.edu)
Marsha C. Lovett (lovett@cmu.edu)

Carnegie Mellon University, Department of Psychology, 5000 Forbes Ave
Pittsburgh, PA 15213 USA

Abstract

We conducted an experiment to compare the effect of natural
frequencies and active, trial-by-trial sampling on participants’
estimation of proportions in a population. The two
information formats evoked similar degrees of accuracy,
sensitivity to subtle statistical properties of the environment,
and sensitivity to the estimates’ accuracy. However, in some
situations participants who didn’t have to sample information
showed a greater desire for this information, suggesting
profound differences between the two information formats.

Background and Objective
Consider two explorers, each on their own island. They

don’t know of each other, but they have identical objectives:
To determine how many of the birds on their island can both
fly and swim under water for extended periods. Let’s call
such birds “swimming birds”. These explorers don’t want to
destroy the rich wildlife around them, and so have to rely on
their own observations of birds for making their final
judgments.

Assume one of the explorers happens to be on an island
that hosts only a small proportion of swimming birds, the
true proportion being around 20%, or p=0.2. The other one
is on an island where about half of the birds are also
swimming birds, p=0.5. Both don’t want to submit their
reports until they can be sure they are reasonably accurate.
Which explorer should collect more evidence? Which
explorer should collect more evidence?

An intuitive answer to that question would be to say they
both should collect the same amount of evidence, and as
much as reasonably possible. After all, the bigger the
sample-size, the more reliable and accurate the information
from that sample will be. However, our explorers are
interested in proportions, more specifically one “target
proportion” (swimming birds). In the case of binary
variables (such as swimming birds vs. other birds, a
binomial 1/0 notation) that form the basis of estimates of
proportions, the variance associated with the estimate of a
proportion is a function of the estimate itself, and it
increases monotonically as the proportion becomes closer to
0.5. Consider two binomial distributions A and B, each
corresponding to a set of observations in which there is a
certain proportion of “positive instances”, e.g. successes, or
swimming birds. Let this proportion be .5 for distribution A
and .2 in distribution B.  Even if there is an equal  number
of observations underlying the two distributions,
distribution A will have a greater variance than distribution
B. Because of this, the explorer on the island where half of

the birds are swimming birds should be collecting more
evidence than his colleague on the other island, at least if we
assume that they both aspire for a similar level of accuracy.
This is a relatively subtle statistical characteristic, and one
objective of this research is to find out whether people are
sensitive to this kind of feature in their environment.

In a broader context, the “explorers scenario” represents a
familiar situation: a situation in which we have to estimate
proportions on the basis of information we encounter
sequentially. The format in which such sequentially
encountered information can be described is called “Natural
Frequencies” (Kleiter, 1994), and the argument has been
made (Gigerenzer & Hoffrage, 1995; Kurzenhaeuser &
Hoffrage, 2002) that information that is presented in a
Natural Frequencies format is easier to process and
therefore leads to more accurate quantitative judgments than
information that  is presented in a more “formal” statistical
probabilistic format. For instance, judgments based on
information of the form “2 out of 10 birds are swimming
birds” are on average more accurate than judgment based
information of the form “the probability of a bird being a
swimming bird is 0.2”, even though the two are equivalent.

The beneficial effect of a natural frequencies format on
probabilistic inference, reasoning, and information search
tasks is well documented by now,  (Gigerenzer & Hoffrage,
1995; Hertwig & Gigerenzer, 1999; Oaksford & Chater,
2003). However, the comparison between the frequency
format and the probabilistic notation was usually made by
giving participants descriptions of the same information in
the two different formats, as in the example given above.
The effect of having to sample information trial by trial has
not been directly compared with that of “just reading”
information in a frequency format.

The effect of accumulating information trial by trial (let’s
call it “active sampling” for short) on judgments and
decisions has, however, been investigated separately, and it
has been found to reduce judgment biases such as the
“illusion of control” or base-rate neglect (see Koehler, 1996,
for an overview). Again, the “competitor”, in terms of
information format, has been the probabilistic format.

Natural Frequencies and active sampling are, obviously,
related. In fact, the beneficial effect of frequency formats
has often been explained by the pointing out that, among
other things, they match the way in which we encounter
information as we move through life). It has also been
pointed out (Kleiter, 1994) that Natural Frequencies
communicate reliable statistical information about the
environment that can be the basis of point estimates (such as
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a proportion) a well as second order statistics (such as the
variance around the estimate of a proportion), and this true
both if they are encountered sequentially and if they are
presented in the form of a description. However, there are
also differences between the trial-by-trial information search
situation and reasoning with natural frequencies. For
instance, trial-by-trial information search is more effortful
than reading summary information of a sheet of paper, and
explicit processes, such as computing proportions, are less
likely to occur.

In this paper, we therefore attempt a comparison between
two good things (“good” in terms of being an information
source, and relative to the probabilistic format): Presenting
information about a sample in natural frequency format on
the one hand, and having participants sample information
about the same sample trial by trial.

The particular task in which we apply this manipulation is
essentially the explorer scenario mentioned in the
introduction: We asked participants to estimate proportions
within a population “with reasonable accuracy”. The
accuracy of these estimates aside, we were particularly
interested in seeing whether participants in the two
situations are sensitive to the subtle statistical property
inherent in this type of estimation: the monotonic increase
of the variance around an estimate of a proportion as this
proportion approximates .5. In the trial-by-trial sampling
situation, this sensitivity would be indicated if the number
of instances participants sample before making their
estimate was an inverted U-shaped function of the “target”
proportion. In the situation in which information about a
sample is presented in a frequency format (to return to the
explorer scenario, an example would be: “2 swimming birds
and 3 non-swimming birds have been encountered so far”)
such a sensitivity would be indicated if, given the same
sample size, participants were more likely to judge the
sample size as insufficient for making a good estimate if the
target proportion (of swimming birds) is close or equal to .5.

The two situations we are comparing correspond to two
classes of situations that often occur outside of the lab:
Starting an active search for more information from scratch
(and, at some point, deciding to stop), and deciding on the
basis of already existing information whether or not more
evidence is needed. The first class of situations might be
encountered by a biologist who wants to find out the
proportion of different species there are on an island by
exploring the island, or by sociology research assistant who
wants to find out about the proportion of women in a field
of study by walking down the hallway of the department, or
by an ordinary person who has just had a shocking breakfast
experience and now wants to find out the degree of
infestation by cockroaches in his cereal by taking spoonfuls
of content out of the box. The second class of situations
might be encountered by someone who has to judge the
sufficiency of the information collected by the first person:
The publisher of the Journal of Rare Species, who reads the
explorers research paper; the Campus Diversity Initiative

Intern who reads the observers report; the person who
answers the cereal company’s complaints hotline.

In summary, these are the research questions we seek to
address:

1.) Does the overall accuracy of estimates differ between
participants that are receiving information in a natural
frequency format and participants that have to sample
this information trial by trial?

2.) Do people in both or either of these two situations
show sensitivity to the “target proportion” they wish
to find out? In other words, do they sample more
information if that proportion is equal or close to 0.5?

3.) Do people in both or either of these two situations
show sensitivity to the accuracy of their own
estimates? In other words, do people who are actively
sampling information stop when their estimates have
reached a specific level of accuracy, regardless of the
true proportion in the sample? And, in the second
situation, does the probability that people feel a
sample is sufficient for making a good estimate
decrease systematically as the accuracy of their
estimates increases?

Method

Participants
100 CMU undergraduate students participated in the study
in exchange for credit counting towards the fulfillment of
their research requirements. Participants were randomly
assigned to either a “sampling group” (N=51) or a “numbers
group” (N=49). We provide a detailed definition of these
terms below.

Procedure and Stimuli
Participants in both the “sampling group” and the “numbers
group” worked on the computer, where they were presented
with, and read, the instruction text and then made responses
by clicking virtual buttons with the mouse.

Sampling Group
In the “sampling group”, participants were assigned the goal
of estimating a proportion within a population with
reasonable accuracy. They were allowed to sample as many
instances from that population as they wished before
making the estimate.
More specifically, participants were asked to look through a
virtual stack of photographs on the computer. All photos
showed animals.  Participants had to estimate the proportion
of photos in this stack that showed fish. Each participant
repeated this for nine photo-stacks. The procedure was the
same each time. Participants were able to look through the
current stack by selecting a “next” button with the mouse.
Whenever they did so, a new photo from the stack, showing
either a fish or another animal, was displayed in the middle
of the computer screen. (These photos were drawn from a
large database, so a different photo was displayed each
time). At each trial, participants either decided to look at
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another photo or to give their estimate and thereby end the
sampling process. If they wanted to look at another photo,
the previous photo was removed from the display and a new
photo was displayed. Participants couldn’t see how many
photos they had already looked at. They could theoretically
know the number of photos they had inspected by counting
them. We wanted to prevent this behavior in the sampling
condition, because we were primarily interested in the effect
of the sampling process itself, and less in the effect of
mathematical or counting strategies. We instructed
participants not to count, and post-experiment interviews
indicated that participants complied with these instructions.
Moreover, a counting strategy would have obliterated any
sensitivity to the target proportion, and the fact that we
discovered this sensitivity lends additional credibility to
participants’ self-reported compliance.
Each photo-stack was associated with an underlying
probability of sampling a fish-photo. These probabilities
varied between .1 and .9 with steps of .1 between them, and
the order of probabilities was randomized for each
participants. To relate the underlying, or “true” fish-
probabilities to participants’ actual experiences, our
experimental software generated a random number between
0 and 1 at each trial. If the number was lower than the
current “true” probability, a fish-photo was shown.
Therefore, the fish-proportions in the actual sequences of
photos encountered by participants could actually deviate
slightly from the underlying proportions; a fact we have
taken into account in our analyses.
Participants were giving their estimates by using a slider
they could drag with the mouse on a scale with 5 categories:
0-20%, 20-40%, 40-60%, 60-80% and 80-100%. The entire
procedure (i.e. Reading the instructions, sampling through
all nine photo stacks and the debriefing) took approximately
10 minutes for all participants.

Numbers Group
In the “numbers group”, participants also had to estimate the
proportion of fish-photos in a series of virtual photo stacks.
However, instead of sampling photos themselves, they were
given summary-information about a sample from the current
stack. More specifically, they were told how many photos
with fish and other animals had been found in the stack so
far. Then, they were asked to indicate whether they thought
that this information was sufficient for making a reasonably
accurate estimate. After having given this assessment (by
selecting either a button saying “Yes, I know enough” or
one saying “No, I need to see more”), they made an estimate
using the same scale as the participants in the numbers
group. Two factors varied between stack-summaries:
Sample Size (i.e. the sum of photos that had “already been
found”) and the true proportion of fish-photos. The
proportions again varied between .1 and .9 with intervals of
.1. We wanted to generate a reasonable range of sample
sizes, with a preference for smaller over larger samples,
since we expected the shift between “insufficient” and
“enough” to be located in a small to medium sample size.

To this end, we took the sum of 3 plus (1,…,8) to the power
of 1.88 and rounded the result downwards. This gave us the
following set of sample sizes: 4, 6, 10, 16, 23, 32, 41, 52,
and a total of 72 different stacks per participant (9
proportions * 8 sample sizes). The order of the stacks was
randomized for each participant. Again, we generated the
information about the sample sat each trial. A number of
photos equal to the sample size was generated, where each
individual photo had a probability equal to the true
probability of being a fish-photo. Basically, this was the
same procedure as in the sampling group, but used to
generate an entire sample of a pre-specified size instead of
one experience after the other.

Results

Before reporting the results, we will explain how we defined
several variables of interest.
Two dependent measures that are important for exploring
participants’ sensitivity to the target proportion in both
groups are:
“Extent of Sampling” (sampling group): average number of
photos participants chose to look at before making their
estimate.
“Desire for information” (Numbers Group): Overall
proportion of trials at which participants decided that they
would need more information to make a reasonable
estimate.
“Desire for more Information-Standardized” (Numbers
Group): proportion of trials corresponding to a certain target
proportion at which the participant indicated that s/he
wanted “more” information, computed for each participant
individually.
As an independent measure in these analyses we used
“experienced proportion” (both groups): Participants’ actual
experience, determined by the generative processes
described above. For clarity, we binned the measure into
bins of .1 in the figures and in some analyses, but in reality
it is continuous.
 We also consider two measures of accuracy, the former as a
dependent measure and the latter as both a dependent and an
independent measure:
“%correct” denotes the proportion of trials at which the
“true” proportion is within the category chosen by the
participant at that trial. For instance, if the true proportion is
.3, selecting the bin 20-40% would count as correct, or “1”
and all other would count as “0”. In the case of proportions
that are at the boundaries between the available categories,
such as .2, both neighboring categories count as a correct
estimate. In the case of .2, this would be the categories 20-
40% and 0-20%.
“p(correct)” denotes the probability that the choice
participants have made, given the instances they have seen
so far, is actually correct. This measure is independent of
the true probability and views p(correct) from the
perspective of the participant. We can calculate this
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probability using the beta function and the current evidence
as follows:

p(correct) = beta(a, b, pupper) – beta(a, b, plower)

Here, beta is the cumulative beta function, a is the number
of fish-photos + 1, b is the number of non-fish-photos + 1,
pupper is the upper bound of the bin the participant chooses,
and plower is the lower bound of that category.
An alpha-level of .01 was used for all statistical tests.

Overall accuracy
How accurate are participants’ estimates in both groups?
Figure 1 shows the overall accuracy in both groups. Since it
is reasonable to assume that accuracy increases with sample
size, we plotted accuracy as a function of sample size.
Overall, participants’ accuracy was rather high, around 70%
in both groups. There seems to be no effect of sample size
on accuracy in either group. This impression was confirmed
by the result of a logistic regression of accuracy on sample
size as a predictor, which was performed for both groups. In
the sampling group, there was no significant increase of
accuracy with sample size (p = .714). The same was true for
the numbers group (p = .481). Because the sample sizes
were pre-defined in the numbers group and essentially self-
defined in the sampling group, a direct statistical
comparison between the two groups is not appropriate.
However, eyeballing the data makes it seem unlikely that
accuracy as a function of sampling size differs significantly
between the groups. However, this issue awaits further
investigation.
We already knew that active sampling and natural
frequencies formats lead to a better understanding of
quantitative information than probabilistic formats. Now we
have evidence that their benefits might be comparable, at
least using as coarse a measure of accuracy as “%correct”.
In the following sections, we will investigate how the two
information formats compare on the level of more detailed
processes.
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Figure 1:  Extent of overall sampling as a function of
current sample size for both sampling and numbers group.

Sensitivity to target proportion
An important objective of this research was to see whether
participants under either or both of the two conditions

investigated here would be sensitive to the variance
associated with their current target proportion and adjust the
extent of their sampling, or the desire for more information,
accordingly. If this were the case, both measures would be
an inverted U-shaped function of the experienced
proportion.
Figure 2 shows the extent of sampling in the sampling group
as a function of experienced proportion. Note that, in this
analysis, we computed how much of their total sample each
participant devoted to stacks with each of the 11
experienced proportions. In other words, we analyzed the
extent of sampling evoked by each proportion relative to
each individual participants total sampling size, controlling
for inter-individual differences in the overall extent of
sampling.
We see a clear effect of the target proportion: middle
proportion lead to larger samples. There is one interesting
exception to this pattern: A “dip” at the point where the
experienced proportion is very close to .5. This seems to be
at odds with normative prescriptions, because variance
increases monotonically until .5. There are three possible
reasons for the “dip”: a) it might be the result of random
noise (note that it is absent from the corresponding curve in
the sampling group, Fig. 3), b) participants might use by the
familiar sensation of a “fifty-fifty” situation as a sign that
they “know enough”, c) the fact that .5 is in the middle of
the answer category “40-60%” facilitates the estimation
process to some degree.
We conducted an ANOVA with experienced proportion as
factor and found its effect on the standardized extent of
sampling significant (F(10, 430) = 5.24, p <.001. Moreover,
regression analysis revealed a significant quadratic trend
(F(10, 430) = 18.4, p <.001. The best fitting linear model
did not fit the data well, F(10, 430) = .26, p = .61.
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Figure 2: Extent of sampling (standardized) as a function
of experienced proportion (sampling group)

Figure 3 shows the “Desire for more information” as a
function of the experienced proportion in the numbers
group. The two most extreme data-points (corresponding to
experienced proportions of 0 and 1, respectively, are
strikingly different from the corresponding ones in the
sampling group: Whereas participants in the sampling group
sample very little information when they experience these
extreme proportions, participants who are presented with
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them all at once apparently feel that they are lacking some
crucial piece of information. This does not necessarily mean
that they are insensitive to the statistical information in the
sample: from the behavior of the participants in the
sampling group we can conclude that a few experiences
would have been enough to satisfy these participants.
Indeed, statistical analyses confirm the intuition that these
participants are just as sensitive to the changes in variance
as the ones in the sampling group, with the notable
exception of the two most extreme proportions:
An ANOVA in which al l levels of the experienced
proportions are included shows that there are significant
differences in the standardized desire of information
measure, depending on the current proportion (F(10, 506) =
3.805, p < .001. However, there is no significant quadratic
trend in the data (best fitting curve: F(10, 506) = .85, p =
.456).
However, if we exclude the two most extreme proportions,
the overall effect of experienced proportion remains
significant (F (8, 414) = 3.575, p  = .001), and we can
identify a significant quadratic trend (F(10, 506) = 10.61, p
= .000). A linear model did not show a good fit to these
data.
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Figure 3: Desire for more information as a function of
experienced proportion (numbers group)

Sensitivity to Accuracy
We have seen that participants in both groups do, on
average, sample/desire more information when the target
proportion is around 0.5. Can it be argued that they do this
in order to achieve a comparable subjective accuracy for all
estimates?
One indication of such a sensitivity to accuracy would be if
p(correct) remained constant for all proportions in both
groups, especially for those estimates that are indeed
correct. Since p(correct) is a measure of accuracy from the
participants view, the finding that it remains constant across
proportions would suggest that a single criterion is
underlying participants’ subjective  decisions to stop
sampling.
Figure 4 shows p(correct) as a function of experienced
proportions in both groups. We split the data into incorrect
and correct estimates. Trivially, p(correct) is higher for the
correct estimates. It also appears that, for the correct
estimates, p(correct) is quite constant across proportions, in

the sampling as well as in the numbers group. Exceptions
are the two most extreme proportions, .1 and .9. where
p(correct) is highest. Note that this is a demonstration of the
lower variance associated with extreme proportions: Even
though participants in the sampling group sample little
information when the experienced proportions are extreme,
their probability of being correct is still quite high. Note
also that, given the overall rather high accuracy, “being
correct” is actually the more frequent situation in this study.
For both groups, we analyzed p(correct) as a function of
experienced proportion and accuracy in a 2-way ANOVA.
There was a significant interaction between the two factors
in both groups, confirming the difference in the patterns
(sampling: F(10, 419) = 4.248, p = .000; numbers: F(10,
3434) = 118, p = .000). To investigate whether p(correct0 is
indeed “flat” across proportions, we excluded incorrect
estimates and cases in which the experienced proportion
was smaller than .1 and greater than .9 and conducted an
ANOVA with proportion as factor and p(correct0 as
dependent measure. In the sampling group, the differences
in p(correct) between proportions were no longer significant
(F(6, 306) = .682, p = .664). In the numbers group, the
effect of proportion on p(correct) remained significant (F(6,
2546) = 24. 45, p =<.001). Whether this is a systematic
effect or an artifact of the extreme sample size is an issue
that can’t be decided upon on the basis of the current
evidence.
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Participants in the numbers group do not produce samples
but judgments in a binary format (do / do not want more
information). This data format allows us to conduct another
interesting analysis that is related to participants’ sensitivity
to accuracy: We can plot the probability that participants
want more information as a function of p(correct) to see
whether they are sensitive to differences in the reliability of
their estimates. If their tendency to request information
decreases systematically as p(correct) increases, this is an
indicator for that sensitivity – and again, this should be
mostly true for correct estimates. In Figure 5, we show the
results of this analysis, plotted separately for correct and
incorrect estimates. We see that there is a negative linear
relationship between p(correct) and the probability of
wanting more information, such that p(wanting more) is
roughly 1-p(correct) + 0.1. In the case of the incorrect
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estimates, there seems to be no relationship between
p(correct) and the propensity to desire more information.
Again, this is a systematic pattern, which suggests that, on
average, participants are sensitive to the reliability of their
estimates when they are indicating whether or not they need
more information.
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Figure 5: Desire for more information as a function of
p(correct) for correct and incorrect estimates in the numbers

group.

Discussion
So how do the active sampling paradigm and the Natural
Frequency (or “numbers”) Paradigm compare?  They appear
to evoke a similar level of accuracy in participants’
estimates, which might be related to the fact that this talk
wasn’t insurmountably hard. However, we find it mildly
surprising that the accuracy in the sampling group was
relatively similar to that in the numbers group, given that
participants in this condition possessed no external records
of their experiences and were furthermore “forbidden” to
count instances. The fact that even small samples led to
relatively high levels of accuracy demonstrates the value
and reliability of sampled information.
A striking difference between the group was the response to
extreme proportions, such as 0 or 1. Participants in the
numbers group seem to have felt compelled to ask for
information in these cases (note that this was true across all
sample sizes, not just for small samples), while participants
in the sampling groups collected only very small samples
when they experienced these extreme proportions. This
shows two things: Participants in the sampling group were
probably sensitive to the smaller variance of these extreme
proportions, and sampling information is not always
comparable to seeing that same information on a page.
Participants in the numbers group probably felt as if they
were missing information if one of the two categories (fish
or other animals) was empty. Had they had the chance to
sample for themselves, they would probably have stopped
quite quickly. This supports the notion that active sampling
is reducing biases, or, to put it more neutrally, certain
reasoning patterns that might or might not be reasonable in a
given situation. One possible mechanism behind this could
be that the actual physical effort of collecting information

provides people with a better clue about the “size” of their
information and its reliability. It is also effortful to collect
information yourself: information that is likely to be useful
is more desirable under these circumstances. Participants in
the numbers group only had to indicate whether or not they
wanted more information, but they didn’t have to collect it
themselves. As a result, they might have had a lower
threshold for demanding new information, a phenomenon
that might well be true in all kinds of situations in which we
are given information we haven’t collected ourselves.
There are two issues that need to be addressed in future
research. The first of these is the influence of statistical
knowledge. In the present study, we have assumed that our
participants were unaware of the fact that variance around
proportion estimates increases as these approach .5, and
post-experiment interviews revealed no reason to doubt this
assumption. However, in future studies, this knowledge
should be controlled for explicitly, for instance by
administering a post-test. Another interesting issue is the
effect of the response format on the sampling process. In
this experiment we provided participants with 5 pre-defined
bins. It would be interesting to see whether these findings
generalize to situations in which there are more or fewer
bins. We predict that the sensitivity would remain, but the
overall sample size would increase with the number of
available bins. In conditions identical to or similar to our
sampling group, we expect to find the same inverted U-
shaped relationship between sample size and experienced
proportion, but with bigger sample sizes overall. In the
numbers group, however, we expect the curve to become
flatter, since more bins require more precision, which
should be mirrored by a greater probability to ask for more
information across all experienced proportions.
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